1º Simpósio Latino Americano de Canola

19 a 21 de agosto de 2014 Passo Fundo, RS, Brasil

EFEITO DE ÉPOCAS DE SEMEADURA SOBRE O DESEMPENHO DE GENÓTIPOS DE CANOLA EM DOURADOS, MS

Marcio Akira Ito¹, Cesar José da Silva¹, Denise Nascimento Fabris² Gilberto Omar Tomm³

¹Engenheiro Agrônomo, Pesquisador - EMBRAPA Agropecuária Oeste. Dourados, MS, Brasil. E-mail: marcio.ito@embrapa.br

²Mestranda - Universidade Federal da Grande Dourados, Dourados, MS, Brasil. ³Pesquisador, EMBRAPA Trigo, Passo Fundo RS, Brasil. E-mail: gilberto.tomm@embrapa.br

ABSTRACT

This study aimed to establish the best sowing time for each hybrid of canola at the region of Dourados, MS, Brazil. The experiment was installed in 2013 under field conditions at Embrapa Western Agriculture, in randomized blocks design with split plot. Five hybrids were evaluated (Hyola 61, Hyola 76, Hyola 411, Hyola 433 and Hyola 571 CL) and four sowing dates (01/03, 22/03, 12/04 and 07/05/13). Grain yield ranged from 234 kg ha⁻¹ to 1.895 kg ha⁻¹. There were increment of yield averages with the delay of sowing. Hyola 411 and Hyola 433 showed higher productivity with later sowing. This confirms the great potential for the canola production in the region of Dourados. However, research data are still scarce for their integration in regional production systems. Studies must be accomplished to improve the commercial hybrids yield at Mato Grosso do Sul, Brazil.

Keywords: Agronomy; savanna; sustainability.

INTRODUÇÃO

A canola (*Brassica napus* L. *var. oleífera*), variedade melhorada da colza (*Brassica napus* L.), originária de regiões de clima temperado, adapta-se bem às condições climáticas do Sul do Brasil, sendo tolerante às baixas temperaturas. Porém, esta cultura foi introduzida no Centro-Oeste como opção para a segunda safra.

A partir de 1994, cultivos comerciais foram implantados próximos ao município de Aral Moreira, na fronteira entre Brasil e Paraguai, após a safra de verão, geralmente com o cultivo de soja (adaptado de TOMM et al., 2007).

Em Mato Grosso do Sul, o período de semeadura, segundo o Zoneamento Agrícola do MAPA para a cultura da canola (Brasil, 2012), estende-se do início de janeiro até final de abril, conforme o município, tipo de solo e ciclo da cultivar. Para o município de Dourados, a época recomendada compreende o intervalo entre início de fevereiro e 20 de abril. Neste período de cultivo podem ocorrer intempéries climáticas como altas temperaturas, baixa precipitação e geadas.

Neste contexto, este trabalho teve como objetivo estabelecer as melhores combinações de híbridos e épocas para a semeadura da canola, com base na produtividade de grãos e teor de óleo.

MATERIAL E MÉTODOS

O experimento foi instalado na safra de 2013, sob condições de campo, na Embrapa Agropecuária Oeste, Dourados - MS, Brasil, nas coordenadas 22º 16' S e 54º 49' W, 408 m de altitude. O delineamento experimental foi em blocos casualizados, com parcelas subdivididas e três repetições.

Foram avaliados cinco híbridos de canola (Hyola 61, Hyola 76, Hyola 411, Hyola 433 e Hyola 571 CL) e quatro épocas de semeadura (1 - 01/03, 2 - 22/03, 3 - 12/04 e 4 - 07/05/13).

As parcelas foram constituídas das épocas de semeadura e as subparcelas foram constituídas dos híbridos de canola, sendo 5 linhas espaçadas de 0,45 m entre linhas e 9 m de comprimento, perfazendo área de 20,25 m². A correção do solo foi realizada de acordo com a análise de solo, considerando uma produtividade de 1.500 kg ha¹. A adubação de cobertura foi de 60 kg ha¹ de N, na forma de ureia, no estádio fenológico de quatro folhas desenvolvidas (Meier, 2001; citado por KRUGER *et al.*, 2011).

A precipitação média no período de cultivo da canola, de março a agosto, foi de 456,5 mm, ocorrendo um decréscimo de acordo com o atraso na época de semeadura. Para as épocas 1, 2, 3 e 4 ocorreram precipitações de 753,5 mm, 451,0 mm, 326,0 mm e 295,4 mm, respectivamente. A temperatura média, para todo o período, variou de 6,1 °C (23/07/13) a 28,9 °C (07/03/13), com a ocorrência de baixas temperaturas (próximas a 0 °C) em 24/07, 25/07, 15/08 e 28/08 e altas temperaturas (acima de 30 °C) em 51 dias do período avaliado (Figura 1).

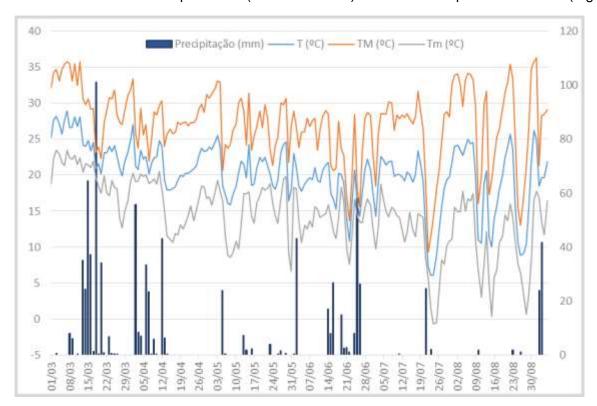


Figura 1. Precipitação e temperaturas mínima (Tm), média (T) e máxima (TM) no período de março a agosto de 2013 em Dourados, MS.

Fonte: Embrapa Agropecuária Oeste.

As variáveis avaliadas foram: população de plantas, pela contagem das duas linhas centrais de cada subparcela e conversão para plantas ha⁻¹; altura de plantas, pela medição direta a campo da altura média das plantas antes da colheita; peso de 100 grãos, pela contagem manual de cem grãos e pesagem; produtividade de grãos, pela colheita e pesagem das duas linhas centrais de cada subparcela e conversão para kg ha⁻¹; teor de óleo, pela extração de óleo de amostras de cada subparcela e conversão para porcentagem; e produção de óleo, pela relação entre a produtividade e o teor de óleo das subparcelas.

RESULTADOS E DISCUSSÃO

Com relação às médias de população de plantas, a época 1 foi inferior às épocas 2 e 3, que foram inferiores à época 4. Com relação às médias dos híbridos, menores populações foram observadas para Hyola 76 e Hyola 411, seguidos dos demais híbridos, com populações entre

163.394 plantas ha⁻¹ e 175.149 plantas ha⁻¹. Maiores populações de plantas para todos os híbridos foram obtidas na época 4 (Tabela 1). A população de plantas variou de 70.833 plantas ha⁻¹ a 260.119 plantas ha⁻¹, valores muito inferiores do recomendado que é de 400.000 plantas ha⁻¹. Este baixo estande da cultura ocorreu devido às condições inadequadas do solo no momento da semeadura, associadas às baixas precipitações e altas temperaturas nos dias seguintes à semeadura, que prejudicaram a germinação e emergência das plantas.

Tabela 1. População de plantas (plantas ha⁻¹) de híbridos de canola em quatro épocas de semeadura na safra 2013, em Dourados-MS.

		Épocas de Semeadura				
Híbridos	01/03/2013	22/03/2013	12/04/2013	07/05/2013	Média	
Hyola 76	79.167 aB	123.810 bAB	138.095 aA	149.405 cA	122.619 c	
Hyola 433	82.738 aC	183.333 abAB	158.333 aB	235.714 abA	165.030 a	
Hyola 571 CL	71.429 aC	167.857 abB	154.167 aB	260.119 aA	163.394 ab	
Hyola 411	70.833 aB	160.119 abA	129.762 aA	178.571 bcA	134.821 bc	
Hyola 61	105.357 aC	186.310 aAB	172.619 aB	236.310 abA	175.149 a	
Média	81.905 C	164.286 B	150.595 B	212.024 A		

Médias seguidas de letras minúsculas na coluna e maiúsculas na linha não diferem pelo teste de Tukey a 5%.

A altura de plantas variou de 85 cm a 143 cm. Foram observadas alturas maiores nas épocas 3 e 4 em comparação às épocas 1 e 2. O Hyola 76 apresentou maior altura em relação aos demais híbridos (Tabela 2).

Tabela 2. Altura de plantas (cm) de híbridos de canola em quatro épocas de semeadura na safra 2013 em Dourados-MS.

Híbridos	Épocas de Semeadura				
	01/03/2013	22/03/2013	12/04/2013	07/05/2013	Média
Hyola 76	121	131	139	143	133 a
Hyola 433	93	96	132	129	113 b
Hyola 571 CL	94	93	128	134	112 b
Hyola 411	85	90	124	109	102 b
Hyola 61	87	91	120	117	104 b
Média	96 B	100 B	129 A	127 A	

Médias seguidas de letras minúsculas na coluna e maiúsculas na linha não diferem pelo teste de Tukey a 5%.

Tabela 3. Peso de 100 grãos (g) de híbridos de canola em quatro épocas de semeadura na safra 2013 em Dourados-MS.

	Épocas de Semeadura				
Híbridos	01/03/2013	22/03/2013	12/04/2013	07/05/2013	Média
Hyola 76	0,27	0,20	0,29	0,29	0,26 a
Hyola 433	0,26	0,27	0,24	0,30	0,27 a
Hyola 571 CL	0,27	0,27	0,23	0,32	0,27 a
Hyola 411	0,24	0,25	0,24	0,24	0,24 a
Hyola 61	0,23	0,23	0,24	0,31	0,25 a
Média	0,25 AB	0,24 B	0,25 AB	0,29 A	

Médias seguidas de letras minúsculas na coluna e maiúsculas na linha não diferem pelo teste de Tukey a 5%.

Não houve diferença entre o peso de 100 grãos para os híbridos. Porém, na época 4, o peso de 100 grãos foi maior e semelhante às épocas 2 e 3, que foram intermediários. O menor peso foi obtido na época 1, o qual foi semelhante às épocas 2 e 3, mas diferiu da época 4 (Tabela 3).

A produtividade de grãos variou de 234 kg ha⁻¹ a 1.895 kg ha⁻¹. Houve incremento das médias de produtividade em função do atraso da época de semeadura. Para Hyola 433 foram obtidos maiores valores de produtividade, seguido de Hyola 411, com a segunda maior produtividade, Hyola 76 e Hyola 61, com produtividade intermediária e, por último, o Hyola 571 CL. As maiores produtividades para todos os híbridos foram obtidas na época 4 (Tabela 4), na qual ocorreram também as maiores populações de plantas (Tabela 3). Kruger et al. (2011) mostraram que, no Rio Grande do Sul, os efeitos proporcionados pelo ano de cultivo influenciam mais a produtividade do que o potencial genético da cultivar e a densidade de cultivo. Porém, em Mato Grosso do Sul, as condições ambientais são menos favoráveis para a cultura, havendo menor compensação das plantas em condição de baixa população.

Tabela 4. Produtividade de grãos (kg ha⁻¹) de híbridos de canola em quatro épocas de semeadura na safra 2013 em Dourados-MS.

Híbridos	01/03/2013	22/03/2013	12/04/2013	07/05/2013	Média
Hyola 76	701 aB	467 cC	820 cB	1.334 bA	831 c
Hyola 433	660 abD	1.233 aC	1.575 aB	1.895 aA	1.341 a
Hyola 571 CL	234 cD	648 bC	857 cB	1.009 cA	687 d
Hyola 411	522 bD	799 bC	1.058 bB	2.041 aA	1.105 b
Hyola 61	664 abB	803 bB	430 dC	1.296 bA	798 c
Média	556 D	790 C	948 B	1.515 A	

Médias seguidas de letras minúsculas na coluna e maiúsculas na linha não diferem pelo teste de Tukey a 5%.

De maneira geral, em relação às épocas de semeadura, apenas para a época 1 foram obtidas menores médias de teor de óleo nas sementes, diferindo das demais épocas. Em relação às médias dos híbridos, foram obtidos teores maiores de óleo para Hyola 571CL e Hyola 61, seguidos do Hyola 433 e Hyola 76, que foram intermediários e diferiram do Hyola 411. Houve diferença no teor de óleo nas sementes de acordo com o híbrido e a época de semeadura, o que implica em diferença na adaptabilidade de cada híbrido às condições ambientais (Tabela 5).

Tabela 5. Teor de óleo (%) nas sementes de híbridos de canola em quatro épocas de semeadura na safra 2013 em Dourados-MS.

Híbridos	01/03/2013	22/03/2013	12/04/2013	07/05/2013	Média
Hyola 76	21,50 dD	31,19 cC	33,81 aB	37,10 aA	30,91 b
Hyola 433	30,76 cB	35,26 bA	34,75 aA	26,11 cC	31,72 b
Hyola 571 CL	33,86 abB	39,25 aA	28,75 bC	30,02 bC	32,97 a
Hyola 411	35,54 aA	18,86 dC	30,04 bB	29,67 bB	28,53 c
Hyola 61	31,96 bcBC	30,11 cC	34,02 aB	36,66 aA	33,18 a
Média	30,72 C	30,93 AB	32,27 A	31,91 AB	

Médias seguidas de letras minúsculas na coluna e maiúsculas na linha não diferem pelo teste de Tukey a 5%.

Para as médias de produção de óleo foram obtidos melhores resultados de acordo com o atraso na semeadura, sendo a época 4 melhor do que a época 3 e, assim, sucessivamente. Para as médias dos híbridos, Hyola 433 foi superior a Hyola 411, seguido de Hyola 61 e Hyola

76. Houve diferença na produção de óleo de acordo com o híbrido e época de semeadura (Tabela 6).

Tabela 6. Produção de óleo (kg ha⁻¹) de híbridos de canola em quatro épocas de semeadura na safra 2013 em Dourados-MS.

Híbridos	Épocas de Semeadura				
	01/03/2013	22/03/2013	12/04/2013	07/05/2013	- Média
Hyola 76	151 aC	146 cC	277 bcB	495 bA	267 c
Hyola 433	202 aC	435 aB	547 aA	495 bA	420 a
Hyola 571 CL	79 bB	245 bA	246 cA	303 cA	221 d
Hyola 411	185 aC	151 cC	318 bB	606 aA	315 b
Hyola 61	212 aB	242 bB	147 dC	475 bA	269 c
Média	166 D	245 C	307 B	475 A	

Médias seguidas de letras minúsculas na coluna e maiúsculas na linha não diferem pelo teste de Tukey a 5%.

CONCLUSÕES

Os híbridos Hyola 411 e Hyola 433 se destacaram em produtividade com semeadura mais tardia, o que confirma o grande potencial para a produção de canola na região de Dourados – MS. Porém, ainda são escassos dados de pesquisa para sua plena inserção nos sistemas de produção regionais.

Considerando que, entre as variáveis estudadas, as principais, em termos econômicos, são produtividade de grãos e de óleo por área e, que para ambas, a melhor época de semeadura foi aquela realizada após o período previsto pelo zoneamento, tanto na média dos híbridos quanto considerando-se os dois melhores (Hyola 411 e Hyola 433), sugere-se a realização de pesquisas futuras para calibração do zoneamento de acordo com as características dos materiais comerciais de canola recomendados para MS.

REFERÊNCIAS

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Portaria n.327, de 13 de dezembro de 2012. Diário Oficial [da] República Federativa do Brasil, Brasília, DF, 13 dez. 2012. Seção 1. Available at:

http://sistemasweb.agricultura.gov.br/sislegis/action/detalhaAto.do?method=visualizarAtoPortalmapa&chave=1998904448>

KRÜGER, C.A.M.B.; SILVA, J.A.G. da; MEDEIROS, S.L.P.; DALMAGO, G.A.; SARTORI, C.O.; SCHIAVO, J. Arranjo de plantas na expressão dos componentes da produtividade de grãos de canola. Pesquisa Agropecuária Brasileira, v.46, p.1448 - 1453, 2011. DOI: 10.1590/S0100 - 204X2011001100005.

MEIER, U. **Growth stages of mono and dicotyledonous plants**. 2 ed. Berlin: Federal Biological Research Centre for Agriculture and Forestry, 2001. 158p. (BBCH Monograph).

TOMM, G. O.; TRENNEPOHL, J.; BONI, A.; PESSATO, J. C.; MORRIS, H.; TATSCH, R. A **Performance of canola genotypes in Mato Grosso do Sul, 2006**. Passo Fundo: Embrapa Trigo, 2007. 18 p. html (Embrapa Trigo. Boletim de Pesquisa e Desenvolvimento Online, 43). Available at: http://www.cnpt.embrapa.br/biblio/bp/p_bp43.htm.