INFLUÊNCIA DO USO NAS CARACTERÍSTICAS FÍSICO QUÍMICAS DE UM LATOSSOLO AMARELO, TEXTURA MUITO ARGILOSA, MANAUS, AM.

Wenceslau Geraldes Teixeira⁽¹⁾, Eliane Guimarães Pereira⁽²⁾, Luís Antônio Cruz⁽¹⁾, Newton Bueno⁽¹⁾

(1)Pesquisador - EMBRAPA - CPAA - Caixa postal 319 - Manaus, AM - 69011-970 E.mail:lau@cr-am.rnp.br; (2)Doutoranda -UFLA-DCS-C.P. 37-Lavras, MG - 37200-000

Palavras chave: Amazônia; áreas degradadas, kudzu; pueraria, macroporosidade.

Nas florestas tropicais, frequentemente a produção agrícola diminui drasticamente dentro de poucos anos depois do desmatamento da floresta primária. Isto tem sido atribuído a diversos fatores edáficos, como por exemplo as pequenas reservas de nutrientes no solo, toxicidade de alumínio, fixação do fósforo, redução da infiltração de água no solo, redução da porosidade e a destruição da estrutura do solo. Avalia-se que uma considerável parte da floresta Amazônica já foi desmatada, tanto pela agricultura migratória, quanto para implantação de pastagens e instalação de monocultivos. Grande parte destas áreas se encontram degradadas ou abandonadas. Os latossolos amarelos correspondem a uma grande parcela dos solos das áreas de terra firme da Amazônia (VIEIRA E SANTOS, 1987), estes solos apresentam geralmente textura argilosa e ou muito argilosa, mas com uma boa distribuição de poros, originada principalmente da agregação das partículas em "microagregados" e de uma intensa atividade biológica (atividade de raízes e da fauna do solo). No entanto tem sido constatado que a sua utilização inadequada destes solos pode causar alterações nas propriedades físicas (principalmente na porosidade) e químicas (redução dos teores de carbono orgânico). Existem evidências que estas alterações são causadas principalmente pelo preparo inadequado do solo e a exposição da superfície do solo as chuvas de alta intensidade e altas temperaturas. Alguns trabalhos tem verificado que a utilização de plantas de cobertura, em especial o kudzu tropical (Pueraria phaseoloides) pode reverter a redução da macroporosidade do solo (CHAVEL et al.,1991). O objetivo deste estudo foi: verificar alterações em algumas propriedades físico-químicas do solos provocadas pelo uso; a que profundidade ocorre e verificar o efeito da cobertura do solo com kudzu. As áreas em que foram feitas as amostragens se localizam no Campo Experimental da EMBRAPA-CPAA, Km 29 da AM-010, no município de Manaus, AM. O solo do local foi descrito por RODRIGUES et al., 1972 como latossolo amarelo, textura muito argilosa sob vegetação de floresta equatorial úmida. Três áreas foram amostradas para este estudo: uma área sob floresta, que serve como testemunho do desenvolvimento natural das propriedades do solo, uma área sob vegetação de kudzu e uma área sob vegetação de gramíneas nativas. O histórico de utilização das áreas de kudzu e pueraria é o seguinte: desmatamento no início da década de 70 para instalação de experimentos com seringueira (Hevea sp), sendo em 1987 novamente destocada, arada e gradeada, para instalação de novos experimentos que foram concluídos no início da década de 90, a área ficou sem uso até o final de 1993, quando foi roçada, arada e gradeada sendo instalado um banco de germoplasma de espécies nativas da Amazônia, utilizando-se o kudzu como

planta de cobertura do solo. A área sob gramíneas nativas é uma área adjacente a estas, tendo o mesmo histórico da área anterior, diferindo basicamente por não apresentar a cobertura de kudzu. As amostragens foram realizadas em trincheiras e coletadas amostras com cinco repetições em três profundidades:. que correspondem ao topo dos horizontes: A₁: 0-5cm; A₃: 8-13 cm e B₂₁: 30-35 cm. As amostras foram coletadas em anéis volumétricos de 100 cm³, para as determinações dos seguintes parâmetros físicos: composição granulométrica e argila dispersa em água (método da pipeta); densidade aparente (método do anel volumétrico); densidade real (método do balão volumétrico); microporosidade pela mesa de tensão com sucção de 0,06 atm. As características químicas determinadas foram: pH em água; fósforo (Mehlich₁); potássio; cálcio; magnésio; alumínio e carbono orgânico. Todas as análises foram realizadas segundo metodologias descritas por EMBRAPA, 1979. Na Tabela 1 são apresentados os dados da composição granulométrica do solo, sendo interessante ressaltar os elevados teores de argila e grau de floculação deste solo, onde praticamente toda a argila presente está floculada, nas camadas mais profundas. Na Tabela 2 verifica-se um aumento dos valores de densidade do solo nas áreas de gramíneas e kudzu em relação a floresta, com um decréscimo da macroporosidade nas camadas superficiais do solo. A redução da macroporosidade nestes solos provoca consequentemente uma redução na condutividade hidráulica e infiltração básica conforme já demonstrado por CORRÊA, 1985, cujas consequências podem se manifestar através do impedimento do crescimento radicular, de maiores taxas de erosão e diminuição da disponibilidade de água no solo. No entanto observa-se uma tendência de aumento dos valores da macroporosidade na área sob cobertura de kudzu em comparação com a área sob cobertura de gramíneas. Estes dados indicam o potencial da utilização de cobertura com kudzu para o aumento da macroporosidade em áreas degradadas pelo uso sob latossolos amarelos na Amazônia. Nos resultados das análises químicas (Tabela 3) verifica-se uma elevação dos valores de pH; fósforo; potássio; cálcio e magnésio e saturação de bases e redução dos teores de carbono orgânico, este último especialmente no horizonte A₃, consequência da utilização de corretivos e fertilizantes nas áreas de gramíneas (passado) e kudzu (passado e presente) e aumento da mineralização da matéria orgânica do solo. O desenvolvimento de tecnologias para a utilização racional de áreas degradadas ou abandonadas na Amazônia é imprescindível para que se possibilite alternativas de produção rentáveis e sustentáveis, bem como uma forma de reincorporar estas áreas ao processo produtivo e reduzir o desmatamento da floresta primária.

Referências citadas:

- CHAVEL, A.; GRIMALDI, M.; TESSIER, D. Changes in soil pore-space distribution following deforestation and revegetation: An example from the Central Amazon basin, Brasil. **Forest Ecology and Management**, 38(3-4):259-271, 1991.
- CORREA, J. C. Características físicas de um latossolo amarelo muito argiloso (Typic acrorthox) do Estado do Amazonas, sob diferentes métodos de preparo do solo. **Pesquisa agropecuária brasileira**, Brasília, 20(12): 1381-1387,1985.
- EMBRAPA. Manual de métodos de Analise de Solo. Rio de Janeiro, SNLCS, 1979, n.p.
- RODRIGUES, T. E.; REIS, R. S.; MORIKAWA, I. K.; FALESI, I. C.; SILVA, B. N. R. da. Levantamento detalhado dos solos do IPEAAOc. .Manaus, IPEAAOc, 1972, 63p.(Boletim Técnico, 3).

Tabela 1. Análise granulométrica de latossolo amarelo sob vegetação de floresta, gramíneas e kudzu tropical. Horizonte Profundidade Classificação Argila Grau de Areia grossa Areia Argila amostrada fina textural Dispersa Floculação g kg⁻¹ cm -g kg ⁻¹ % Gramíneas 0-5 122,4 29,3 81,0 84,7 A_1 767,4 muito argiloso 117,1. 8-13 113.6 28.0 84.1 774.3 muito argiloso 91 98.8 A_3 B_{21} 30-35 67,4 22,1 101,3 809,2 muito argiloso 0 100 Pueraria A_1 0-5 113,8 22,8 121,5 741,9 muito argiloso 142,0 80,6 8-13 110,2 23,9 156,5 709,4 muito argiloso 154,5 80,1 A_3 B_{21} 30-35 74,5 21.4 111.8 792.2 muito argiloso 0 100 Floresta 0-5 27,0 100,3 140,3 82 A_1 94,1 778,5 muito argiloso 114,4 154,5 A_3 8-13 102,7 28,5 754,4 muito argiloso 78,2 30-35 69,8 21,3 104,5 804,4 muito argiloso 0 100 B_{21}

Tabela 2 - Características físicas de latossolo amarelo sob vegetação de floresta, kudzu e gramíneas.

Horizonte	Profundidad	UA	US	DS	DR	PTcal	PTdet	PLA	Macro	Micro
	e amostrada cm	kg kg ⁻¹	kg kg ⁻¹	g cm ⁻³	g cm ⁻³	dm ³ dm ⁻³	dm³ dm⁻³	dm³ dm⁻³	poros — dm³ dm⁻³ — —	
	CIII				Gramíı	neas				
A_1	0-5	15,1	35,8	1,26	2,46	0,49	0,45	0,04	0,19	0,30
A_3	8-13	17,1	28,9	1,42	2,50	0,43	0,41	0,02	0,09	0,34
B_{21}	30-35	23,4	35,0	1,23	2,48	0,50	0,43	0,07	0,18	0,32
					Puera	ria				
A_1	0-5	17,0	36,6	1,19	2,46	0,52	0,43	0,09	0,25	0,27
A_3	8-13	19,1	30,7	1,35	2,50	0,46	0,41	0,05	0,15	0,31
B_{21}	30-35	23,6	30,3	1,29	2,48	0,48	0,39	0,09	0,17	0,31
					Flores	sta				
A_1	0-5	23,5	57,6	0,92	2,46	0,63	0,53	0,10	0,35	0,28
A_3	8-13	24,5	38,9	1,15	2,51	0,54	0,45	0,09	0,22	0,31
B_{21}	30-35	25,1	30,7	1,26	2,48	0,49	0,39	0,10	0,15	0,34

UA: umidade atual; US: umidade na saturação; DS: densidade aparente do solo; DP: densidade real; PT cal.: porosidade total calculada; PT det: porosidade total determinada; PLA: poros livres de água.

Tabela 3. Características químicas de latossolo amarelo sob vegetação de floresta, gramíneas e kudzu tropical.

	kudzu tropicai.			D ()				~ · ·	
Horizonte	Profundidade	pН	P	Potássio	Cálcio	Magnésio	Alumínio	Saturação de	Carbono
	amostrada		2			2		Bases	Orgânico
	cm	H_2O	mg dm ⁻³		-mmc	ol _c dm ⁻³		%	g kg ⁻¹
					Gramínea	S			
A_1	0-5	4,4	11	122	59	60	180	57	39,5
A_3	8-13	4,2	2	18	18	12	150	24	14,4
B_{21}	30-35	4,5	1	14	12	9	120	23	12,4
					Pueraria				
A_1	0-5	4,1	22	120	75	36	170	58	27,5
A_3	8-13	4,1	21	40	22	19	190	30	22,3
B_{21}	30-35	4,1	3	16	13	9	180	17	10,8
					Floresta				
A_1	0-5	3,9	2	54	30	23	230	32	39,5
A_3	8-13	4,3	2	30	9	13	130	29	25,9
B_{21}	30-35	4,3	3	10	6	11	110	20	13,6