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ABSTRACT

CCCTC-binding factor (CTCF) is the major protein involved in
insulator activity in vertebrates, with widespread DNA binding
sites in the genome. CTCF participates in many processes related
to global chromatin organization and remodeling, contributing
to the repression or activation of gene transcription. It is also
involved in epigenetic reprogramming and is essential during
gametogenesis and embryo development. Abnormal DNA
methylation patterns at CTCF motifs may impair CTCF binding
to DNA, and are related to fertility disorders in mammals.
Therefore, CTCF and its binding sites are important candidate
regions to be investigated as molecular markers for gamete and
embryo quality. This article reviews the role of CTCF in genomic
imprinting, gametogenesis, and early embryo development and,
moreover, highlights potential opportunities for environmental
influences associated with assisted reproductive techniques
(ARTs) to affect CTCF-mediated processes. We discuss the
potential use of CTCF as a molecular marker for assessing
gamete and embryo quality in the context of improving the
efficiency and safety of ARTs.

assisted reproductive technology, chromatin, early development,
epigenetics, genomic imprinting

INTRODUCTION

In recent decades, assisted reproductive techniques (ARTs),
such as superovulation and embryo transfer (ET), in vitro
embryo production (IVEP), intracytoplasmic sperm injection
(ICSI), and cloning by somatic cell nuclear transfer (SCNT),
have been developed for use in mammals [1]. Despite the great
advances in ART protocols, in general, their efficiency remains

low. Adverse effects of in vitro culture conditions on embryo
quality have been described in the literature [2–8], and studies
have shown that ARTs may induce imprinting errors [9–11];
however, the question has been raised as to whether the
increased incidence of birth defects in ARTs is due to ARTs
themselves or a consequence of fertility issues related to the
parents [12–16]. Therefore, the consequences of adverse effects
of ARTs on the health of animals and humans remain to be
completely characterized. Among the environmental influences
that may affect epigenetic factors, in vitro culture is one that
has drawn attention [2, 3]. Studies have shown that culture
medium, artificial atmosphere, and manipulation itself can have
adverse effects on epigenetic profiles and gene expression
patterns, and these can influence embryo quality [3–8, 17, 18].
This, in turn, may adversely affect fertility and the efficiency
and safety of ARTs.

Widespread epigenetic reprogramming occurs at two stages
of mammalian development: during gametogenesis and in early
embryo development [19]. This process is followed by
chromatin remodeling [20, 21]. While DNA methylation and
histone modification patterns remain very stable through
somatic cell divisions, during gametogenesis and initial embryo
development, these patterns are highly susceptible to the
influence of environmental and in vitro conditions [3, 17, 18,
22, 23]. Thus, the identification of epigenetic markers related to
gamete and embryo quality is necessary to support the
development and optimization of new protocols that increase
the efficiency and safety of ARTs in humans and animals. With
this goal, the majority of studies performed up to now have
been focused on gene expression and DNA methylation.
Considering that epigenetic mechanisms involve DNA meth-
ylation and posttranslational histone modifications, influencing
other proteins that bind to DNA, studies addressing all these
aspects and the DNA-protein binding patterns are essential to
understanding how chromatin regulates gene expression. The
CCCTC-binding factor (CTCF) is an important candidate
molecular marker, because it is the main known protein
required for insulator activity in vertebrates [24], it has
genome-wide, methylation-sensitive binding sites [25–27],
and it participates in imprinting establishment and global gene
regulation, activating or repressing gene expression.

The role of CTCF in genomic imprinting, gametogenesis,
the early stages of mammalian development, and fertility are
considered along with the potential adverse effects of ARTs on
CTCF function. Also discussed are perspectives for CTCF as a
molecular marker to assess gamete and embryo quality in order
to improve the efficiency of ARTs.
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CTCF STRUCTURE AND FUNCTION

CTCF is an 11-zinc finger (ZF) protein flanked by
unstructured N- and C-terminal polypeptides, containing
;727 amino acids and two transcription repressor domains,
with flexible binding to divergent regulatory DNA sequences
[28–30]. CTCF domains are highly conserved among verte-
brates [31, 32], consistent with an essential role for CTCF in
cellular function [27]. CTCF is an evolutionarily conserved
protein that performs similar functions at dissimilar sequences
[33], although most of its genomic targets carry a conserved
consensus core motif [34, 35]. Despite the presence of 11 ZF
domains in the CTCF protein sequence, only four of them are
necessary to strongly bind to DNA, recognizing a core 12-bp
DNA sequence [34, 36].

Binding of CTCF to DNA was first identified at the 50-
flanking CTC-rich DNA sequences of the CMYC gene, and it
was termed the ‘‘CCCTC-binding factor’’ [29, 37]. However,
empirical studies reveal the presence of the canonical CCCTC
motif alone is neither necessary nor sufficient for CTCF
binding to DNA in vivo and in vitro [38]. CTCF is able to
mediate the formation of DNA loops [39], and its ability to
induce chromosomal loops enables it to regulate gene function
over long distances in the genome [40]. Furthermore, it
interacts with the nuclear lamina, which is a protein network,
participating in chromatin-nuclear membrane attachments in a
highly complex nuclear organization that can drive global
genome function [41]. Alongside chromosome looping, CTCF
is involved in nucleosome positioning, supporting another
essential chromatin remodeling process [42, 43]. Using
genome-wide mapping, Kim et al. [27] identified ;14 000
CTCF-bound sites across the genome in human fibroblasts, and
Prickett et al. [25] identified ;50 000 CTCF-bound sites in
mouse brain, consistent with a role for CTCF in whole-genome
chromatin organization. Li et al. [26] evaluated CTCF binding
in 56 human cell lines from the ENCODE project and
identified 23 709 constitutive CTCF-binding sites that were
occupied in more than 90% of cell lines, implicating CTCF in
fundamental biological processes.

Consistent with a genome-wide role in gene regulation,
CTCF can associate with a variety of different factors on DNA
and chromatin, performing many functions using different
partners [44]. For example, it interacts with a Y-box DNA/
RNA binding factor, YB1, that is involved in a range of
cellular processes, including transcription, DNA replication,
and RNA processing [38]. Although the HDAC1 and HDAC2
enzymes are components of the nuclear matrix, the insulator
activity of CTCF seems to be in part related to its ability to
interact with nuclear matrix proteins using an HDAC-
independent mechanism [45]. CTCF interacts with kaiso, a
member of the POZ (pox virus and ZF) family of ZF
transcription factors, where there are kaiso binding sites at
CTCF target genes, suggesting negative regulation of CTCF
insulator activity [46]. In addition, coincident binding of CTCF
and cohesin complex is reported genome wide [25, 47, 48],
participating in the establishment of DNA loops involved in
gene activation or repression, depending on the context of the
tissue-specific chromatin organization [48]. CTCF binds
cohesin via direct contact between the cohesin SA2 subunit
and its C-terminal tail [49], mediating both transcriptional
insulation [50] and sister chromatid cohesion during cell
division [51]. Despite the genome-wide association between
CTCF and cohesin, it seems that both contribute differently to
chromatin architecture and gene transcription [52]. Alongside a
role in mediating chromosome structure and remodeling,
association between CTCF and RNA polymerase II in vivo

and in vitro suggests a direct participation in gene transcription
[53] and alternative splicing [54]. CTCF function can be
regulated by posttranslational modifications, such as poly
(ADP-ribosyl)ation [55, 56] and by the small ubiquitin-like
protein (SUMO), which conjugates with CTCF, inducing
repressive chromatin organization and consequently reducing
CTCF transcriptional activity [57, 58]. Figure 1 provides a
summary of the interactions between CTCF and some of its
partners, and the effects of these interactions on chromatin are
shown.

CTCF, DNA METHYLATION, AND GENOMIC IM-
PRINTING

DNA methylation is generally considered a repressive mark,
related to gene silencing when it is located at the promoters of
genes. In mammals, DNA methylation mostly occurs at the
cytosine of CpG dinucleotides, which are unevenly distributed
throughout the genome. Gene promoters and intragenic regions
contain short sequences of ;250–3500 bp with a high G þ C
content known as CpG islands [59], which are frequently
unmethylated. Conversely, in the bulk of the genome, the CpG
dinucleotide is depleted because of deamination [60], and
usually methylated, although a variation in the methylation
pattern can be observed among different tissues [61]. CTCF
binds to DNA in a methylation-sensitive manner [54, 62],
because methylation at specific CpG sites in selected CTCF-
binding motifs influences binding efficiency [36]. Furthermore,
CTCF may be involved in the maintenance of the unmethylated
DNA; for example, after abolishing CTCF binding at the
human retinoblastoma (RB) gene promoter, a progressive gain
of methylation has been observed [63]. Reinforcing this, CTCF
can complex with DNMT1 and PARylated PARP1 (poly
[ADP-ribose] polymerase 1), which maintain unmethylated
CTCF-bound CpGs [64] (Fig. 1). However, it remains to be
completely clarified if unmethylated sequences facilitate CTCF
binding, or if bound CTCF maintains unmethylated DNA.

Imprinted genes are expressed in a parent-of-origin-specific
manner controlled by allele-specific DNA methylation marks
established in the gametes. They are frequently organized in
clusters in the genome, and several imprinted clusters harbor
CTCF-dependent insulators involved in the regulation of
monoallelic expression [65]. Igf2 is an important fetal mitogen
gene involved in normal embryo development. After fertiliza-
tion, the precise control of Igf2 expression is essential for
normal embryo and fetal development, and the H19/Igf2 locus
can be susceptible to in vitro culture [66]. This locus is one of
the best-understood models of imprinted gene regulation, and
CTCF participates centrally in its regulation. Due to reduced
affinity for methylated DNA, CTCF colocalizes with cohesin
[67] and binds to the unmethylated maternal allele at the H19/
IGF2 imprinted control region (ICR), which is also enriched
for H3K4 methylation [9], inducing intrachromosomal loop
formation [68] and recruitment of the polycomb repressive
complex 2 (PRC2) through CTCF-SUZ12 interactions. This
leads to methylation of H3K27 and suppression of Igf2/IGF2
expression from the maternal allele [69, 70]. On the other hand,
the paternal ICR is highly methylated and enriched for H3K9
methylation, preventing CTCF/cohesin complex binding and
contributing to Igf2 expression [9, 68]. Vigilin is a new CTCF
partner that has recently been identified to colocalize with
CTCF, further contributing to regulation of the H19/IGF2
locus [71]. The model of regulation at the H19/IGF2 imprinted
locus is shown in Figure 2, in which some of the main known
events involving CTCF are summarized. Monoallelically
expressed genes, including imprinted genes, are asynchronous-
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ly replicated during S phase of the cell cycle [72, 73].
Consistent with this, loss of CTCF binding at the H19/Igf2 ICR
results in loss of asynchronous replication [72]. Knockdown of
SNF2-like chromodomain helicase protein CHD8 [74] disrupts
the H19 DMR and reactivates the maternal allele of IGF2,
suggesting that the enhancer-blocking activity depends on a
CHD8-CTCF interaction [74] (Fig. 1). Introduction of point
mutations in each of the four CTCF DNA-binding motifs at the
mouse H19 ICR ablates CTCF binding and leads to activation
Igf2 on the maternal allele [75]. Mutation of only CTCF site 4
in the H19 ICR leads to DNA methylation and activation of the
maternal Igf2 allele, so that the methylation-free domain of the
maternal allele requires the cooperative participation of all four
CTCF sites [76]. In addition, expression levels of the CTCF
gene may also be involved in the imprinting control of the
IGF2 locus. A complete loss of IGF2 imprinting, with biallelic
expression and increased IGF2 expression in senescent human
cells, is correlated with a decrease in CTCF binding due to
reduced CTCF expression [77]. Other relatively well-charac-
terized imprinted loci include Dlk1-Dio3 and Kcnq1/Kcnq1ot1
[65, 78]. CTCF colocalizes with cohesin, showing distinct
binding at the Gtl2 and Kcnq1ot1 DMRs, likely indicating
locus-specific functions in the control of imprinted genes [78].

CTCF, GAMETOGENESIS, AND EMBRYO
DEVELOPMENT

During mammalian embryo development, primordial germ
cells (PGCs), originating from the inner cell mass and
precursors of the gametes migrate to colonize the initial
gonads. In the early stage of gametogenesis, PGCs undergo
genome-wide demethylation, followed by the establishment of
a sex-specific pattern of epigenetic programming in the
gametes [19]. As a consequence of this, mature oocytes and
spermatozoa show a sex-specific chromatin configuration
during the fertilization period. After fertilization, a new wave
of demethylation and histone modification occurs, culminating
with the development of embryonic stem cells (ESCs), which
are epigenetically able to give rise to all the different tissues of
an organism. Despite many studies evaluating DNA methyl-
ation reprogramming in gametes and embryos, the role of
CTCF in this window of development is relatively unclear.
When maternal stores of CTCF are depleted from mouse
oocytes using a transgenic RNAi strategy, hundreds of genes
are misregulated, suggesting an essential role of CTCF during
oogenesis and embryo development [24]. CTCF may activate
or derepress transcription in oocytes, and its depletion can
induce mitotic defects and apoptosis [24]. Moreover, in the
presence of maternal CTCF, zygotic CTCF expression does not

FIG. 1. Summary of interactions between CTCF and some of its partners, showing the different functions performed as a result of these interactions within
the genome.
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seem to be required for preimplantation mouse embryo
development, and the loss of maternal transcripts is associated
with apoptosis in the developing embryo and peri-implantation
lethality [79]. During mouse ESC differentiation, unmethylated
CpG islands showed reduced nucleosome occupancy and
enrichment in CTCF-binding sites [80]. Additionally, CTCF
binds at or near many pluripotency genes, and is critical for
human ESC proliferation [81]. During oocyte growth,
hypomethylated oocytes gain a sex-specific pattern of DNA
methylation. Schoenherr et al. [75], using mutant mice, showed
that CTCF binding is not necessary to establish the
unmethylated status of the H19 ICR during oogenesis,
suggesting that a factor other than CTCF may protect the
ICR from methylation during oogenesis. On the other hand,
Fedoriw et al. [82] and Engel et al. [83] have suggested that
CTCF protects the H19 DMD from de novo methylation during
oocyte growth and after implantation, respectively. Despite
these conflicting results, it is clear that CTCF plays an
important role in the identity of the maternal H19 allele during
oogenesis [84]. In addition, replacing the H19/Igf2 ICR with
two copies of the chicken b-globin insulator, which does not
became methylated in male germ line, resulted in biallelic

insulation by CTCF of the H19/Igf2 locus and, subsequently,
fetal growth retardation and late fetal/perinatal lethality [85].

One important event that occurs during mammalian embryo
development is X chromosome inactivation (XCI), a process
that has evolved to equalize the expression levels of X-linked
genes between males and females [86]. Many factors and
specific epigenetic marks are involved in XCI, and CTCF is
essential for the cis-acting choice of which parental X
chromosome will remain active, interacting with YY1, OCT4
[87–89], the Jpx noncoding RNA [90], and other factors. X
chromosome pairing is an important event in the initiation of
the XCI process [91]. CTCF is implicated in this event, in
agreement with its function in mediating long-range chromatin
interactions [91], and depletion of CTCF results in aberrant
XCI [89, 92]. CTCF interacts with the XIST/Xist promoter in
female human and mouse cells, and specific point mutations in
the promoter sequence reduce CTCF binding affinity, skewing
the choice of which X will be inactivated [93]. Therefore,
altered expression and/or mutations of CTCF-binding sites may
disrupt XCI, blocking the developmental process in mamma-
lian female embryos.

The paralogous gene to mammalian CTCF/Ctcf, BORIS/
Boris, encodes the same 11-ZF domain and, thus, has the same

FIG. 2. Model of regulation at the imprinted H19/Igf2 locus, showing the role of CTCF in this process. In the maternal chromosome, the CTCF/cohesin
complex binds to the unmethylated ICR, which is enriched for methylation at H3K4, and to the unmethylated Igf2 DMR1. Consequently, a specific
intrachromosomal loop is induced; the SUZ12 subunit attracts the PRC2 complex, which induces methylation at H3K27, repressing Igf2 expression.
Additionally, vigilin, which is a recently identified CTCF partner, also binds to the CTCF complex on the active maternal allele. In the paternal
chromosome, the ICR is methylated and enriched for methylation at H3K9, and CTCF is unable to bind. The methylated ICR links to the methylated Igf2
DMR2, inducing a different intrachromosomal loop formation, allowing enhancers to access Igf2, which is expressed, whereas H19 is silenced.
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DNA binding potential, but the N-terminal sequence does not
exhibit significant homology [94], suggesting interactions with
different proteins. BORIS/Boris is present in testis [94, 95],
indicating a likely role in male germ line establishment [96]
and absence of expression results in subfertility [97]. Knockout
mice have defects in spermatogenesis with dramatically
reduced expression of the cerebroside sulfotransferase (Cst)
gene, which is known to play a crucial role in meiosis [98].
During mouse spermatogenesis, the paternal-specific methyl-
ation pattern is acquired by the maternal H19 allele
concomitantly with activation of Boris, and this allele is
largely unmethylated while interacting with BORIS [99].
Moreover, in the prospermatogonial stage, both unmethylated
H19/Igf2 alleles show different rates of de novo methylation,
with the maternal allele presenting a CTCF-dependent delay in
gain of methylation [100]. Unlike oocyte chromatin, the
haploid nucleosomal chromatin of sperm is repackaged,
exchanging histones for small basic protamines, and thus
generating highly compact toroidal chromatin essential to
sperm function [101, 102]. Despite this change, a small
proportion of sperm chromatin maintains its nucleosomal
structure [103–105]. This structure is important to zygotic
chromatin, involved in the paternal epigenetic reprogramming
after fertilization [106], related to embryo development and the
establishment of embryonic totipotency [21], and it is closely
associated with gene promoters and sequences recognized by
CTCF [107, 108]. The in vivo sperm capacitation process,
which is acquired in the female reproductive tract and enables
spermatozoa to fertilize an oocyte, is accompanied by an
increase in tyrosine phosphorylation of a subset of proteins. A
capacitation-related tyrosine phosphorylation of serine/threo-
nine-phosphorylated CTCF occurs, enhancing the affinity of
the capacitated sperm CTCF to its target DNA [109]. Taken
together, this links CTCF with the chromatin configuration that
is essential for initial stages of embryo development after
fertilization and totipotency.

CTCF, FERTILITY, AND ARTS

ARTs, such as superovulation and ET, ovum pickup, and
IVEP, ICSI, and cloning by SCNT are used worldwide in
animals [1], contributing to animal breeding and animal
conservation programs. In 2011, 1 230 773 in vivo and in vitro
embryos were produced worldwide in domestic animals (IETS,
International Embryo Transfer Society [http://www.iets.org/])
[110]. In humans, since the first IVEP baby was born in 1978,
an estimated 5 million such babies have been born worldwide
(ESHRE, European Society of Human Reproduction and
Embriology [http://www.eshre.eu]) [111], enabling couples
with fertility problems to have children. Despite the routine use
and significant advance of ART protocols in the last decades,
their efficiency remains low, with in vitro culture conditions
adversely affecting gamete and embryo quality.

In vitro maturation of oocytes may interfere with imprinting
establishment, altering gene expression [112, 113], and
impairing oocytes and preventing them from generating
good-quality embryos. Furthermore, DNA methylation alter-
ations are associated with subfertility and/or infertility in
humans and animals, and abnormal DNA methylation at the
CTCF-binding site 6 of the H19 DMR is closely associated
with oligozoospermia [114, 115], azoospermia [116], terato-
zoospermia, and oligo-astheno-teratozoospermia [117] in
humans, and altered conception rates in cattle [118]. Interest-
ingly, the same sixth CTCF-binding site was found to be
hypomethylated in placentas of pregnancies conceived by
IVEP/ICSI [119]. Whether the altered DNA methylation of the

CTCF-binding site 6 is due to the IVEP/ICSI techniques or is a
result of parental fertility problems remains to be clarified,
considering that both in vitro manipulations and infertility may
be correlated with epigenetic abnormalities. The methylation
status of the H19 DMR seems to be susceptible to in vitro
culture conditions, with CTCF-binding sites revealing an
aberrantly methylated state in MI and MII human oocytes
[112]. However, it would be useful to know whether this
altered methylation pattern impairs CTCF binding to DNA and
influences oocyte competence. There is documented evidence
that CTCF is unable to link to the H19 methylated allele [84].

IVEP induces abnormal DNA methylation and histone
modifications at the H19/Igf2 CTCF-binding site [9], and
perturbations of H19/IGF2 and KvDMR1 loci, mainly in ART-
conceived individuals, are related to two similar overgrowth
syndromes in humans and animals, Beckwith-Wiedemann
syndrome (BWS) and large offspring syndrome, respectively
[120–123]. Microdeletions abolishing CTCF target sites on the
H19 DMR locus are related to BWS in humans [120, 121]. In
pigs, CTCF-binding site 3 showed abnormal methylation in
cloned offspring, which may contribute to the low efficiency of
porcine SCNT [10]. In bovine cloned embryos, demethylation
of the CTCF site on the paternal H19 DMR was found,
suggesting that this alteration could be associated with reduced
size and low implantation rates of cloned embryos in cattle
[11]. In addition, altered imprinting control with abnormal
hypomethylation of the KvDMR1 domain on bovine chromo-
some 29 and altered gene expression in cloned and IVEP-
produced calves have been found [122].

Considering the adverse influence of environment on
development and fertility, exposure of pregnant mice to
ethanol alters the methylation status of CTCF-binding sites in
imprinted loci in the brain [124] and decreases the methylation
status of CpGs in CTCF-binding site 2 of the H19 DMR and
sperm concentration in the offspring [23]. Likewise, precon-
ception paternal alcohol exposure decreased the methylation
status of CTCF-binding sites 1 and 2 in offspring and reduced
postnatal offspring weight [125].

Mutations in the CTCF gene may correlate with develop-
mental disorders in humans and animals. Although no
mutations have been found in the coding sequence of the
CTCF gene in BWS patients who show gain of methylation in
the H19/IGF2 ICR [126], mutations in CTCF have been found
in individuals with intellectual disability, microcephaly, and
growth retardation [127]. Additionally, these individuals show
deregulation of genes involved in signal transduction, which
may affect developmental processes and cognition, suggesting
that CTCF has a role in driving gene regulation and
development [127]. Furthermore, a single-nucleotide polymor-
phism (SNP) in the 50 region of the H19 gene and located near
CTCF-binding sites has been associated with abnormal birth
weight in humans, with a decrease or increase in birth weight,
depending on the parental origin of allele [128]; furthermore,
SNPs located in critical CTCF and OCT4 binding sites of the
H19 ICR region have been associated with increased hyper-
methylation of specific CpG sites of the maternal H19 allele
[129, 130] in BWS patients [130], which, in turn, may affect
CTCF binding and subsequent IGF2 expression and growth.
Additionally, SNPs in another imprinted gene, KCNQ1, affect
CTCF binding to DNA and also correlate with BWS risk [131].
CTCF is also involved, in a methylation-dependent manner, in
the modulation of genetic repeat instability, which, in turn, is
related to several human disorders resulting from microsatellite
expansion [132].

While the role of CTCF in cellular differentiation is not yet
fully clear, it is involved in mouse and zebrafish myogenesis
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and development, and is indispensable for muscle development
[133]. In this sense, considering that many developmental
disorders and fetal weight problems that occur in SCNT
cloning are also linked to placental alterations [134, 135],
abortions [1, 136, 137], and other alterations in early life [138],
we speculate that CTCF may be involved in these disorders,
possibly through mechanisms associated with the low efficien-
cy of the technique. Furthermore, CTCF involvement may be
related to the deregulated DNA methylation reprogramming
that is generally found in SCNT [17], considering that CTCF
may bind DNA in a methylation-sensitive manner. The
strength of evidence reviewed here suggests that CTCF and
its DNA binding sites are important candidate regions to be
investigated as molecular markers involved in fertility, growth,
and developmental disorders related to environmental effects
on the genome and ARTs. To provide evidence for this,
evaluation of the methylation status, point mutations, and
CTCF occupancy at the H19/IGF2 CTCF-binding region in the
context of ART may reveal this region as a novel candidate
molecular marker in ARTs.

CONCLUSIONS

In recent decades, the use of ARTs has increased
enormously. Nevertheless, their efficiency remains low,
demanding, for example, the transference of multiple human
embryos to the uterus to obtain pregnancies, which increases
twin birth rates. Furthermore, two of the most important topics
that remain to be elucidated are the understanding of the
adverse influence of in vitro culture and of the fertility
problems of the parents on the health of ART-conceived
individuals, especially the long-term effects manifested in
adulthood. The use of the highest quality gametes to produce
embryos in the context of ARTs is one way to overcome these
problems. More targeted strategies are needed to improve IVEP
protocols. The identification of molecular markers associated
with gamete and embryo quality is essential to ensure the
identification of the best gametes and embryos to be used and
the development and optimization of new IVEP protocols with
increased efficiency and safety. CTCF may be a good
candidate molecular marker due to its participation in gamete
and embryo chromatin configuration, imprinting, and gene
regulation. It is established that the methylation patterns of
CTCF sites influence imprinting, fertility, and the efficiency of
ARTs. However, the majority of studies have focused only on
one specific locus, and the mechanisms of how methylation
patterns influence phenotypes are not completely clear.
Therefore, it is also important to evaluate other imprinted and
nonimprinted domains in the genome. All of the molecular
mechanisms that affect the capacity of CTCF binding to DNA
are relevant to investigate, considering the importance of this
major insulator protein on chromatin and gene regulation
genome wide. Studies that evaluate the genome-wide DNA
methylation and mutations of CTCF sites and the mutations
and expression levels of the CTCF gene are investigations of
important strategies aimed at establishing CTCF as a molecular
marker in reproductive genetics. However, obtaining the
necessary quantities of chromatin and/or DNA, especially
from human oocytes and embryos, required for the techniques
used in genome-wide evaluations still remains a challenge. The
development of noninvasive molecular tools for the assessment
of molecular markers, such as cumulus cell biopsies and low-
cell number ChIP-seq, will allow researchers to develop new
methods to assess and screen ART oocytes and embryos.
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