

MARCHA DE ACÚMULO DE MICRONUTRIENTES POR CULTIVARES DE SOJA COM TECNOLOGIA RR® E INTACTA®

QUAREZEMIN, M.A.K.^{1*}; TRIGOLO, A.L.M.^{2*}; SILVA, R.P.C.³; CASTRO, C. de⁴; OLIVEIRA, F.A. de⁴; FOLONI, J.S.S.⁴; OLIVEIRA JUNIOR, A. de⁴

¹·Universidade Tecnológica Federal do Paraná - UTFPR, Campus Londrina, PR, melinakaizerutfpr@gmail.com; ² Universidade Estadual de Londrina, Londrina – PR; ³·Eng. Agrônomo; ⁴·Embrapa Soja, Londrina-PR.* Bolsista PIBIC-CNPg/Brasil

No Brasil, as práticas de manejo relacionadas à nutrição mineral da soja, desde a adubação de base até à adubação foliar foram definidas com base nos princípios fenológicos e metabólicos de cultivares de soja com Tipo de Crescimento Determinado (TCD), estando estas práticas/indicações muito bem estabelecidas, fundamentadas e validadas (OLIVEIRA JUNIOR et al., 2014). Entretanto, a partir de 2000 ocorreu um significativo aumento da área cultivada com variedades de soja com Tipo de Crescimento Indeterminado (TCI), que se caracterizam por apresentarem simultaneamente crescimento vegetativo e reprodutivo (CÂMARA, 1998). Associado ao tipo de crescimento, essas variedades apresentavam na maioria dos casos a inserção do gene com a Tecnologia Roundup Ready (RR®) e, mais recentemente, a tecnologia Intacta® (BtRR2).

Dessa forma, o aumento do cultivo dessas variedades trata-se de uma importante mudança no sistema de produção da soja. Todavia, são poucos os trabalhos na literatura que aborda sobre os aspectos nutricionais dessas variedades, principalmente quanto à dinâmica de acúmulo e as quantidades absorvidas dos micronutrientes. Assim, o objetivo do estudo foi determinar a marcha de absorção de zinco (Zn), manganês (Mn), ferro (Fe), cobre (Cu) e boro (B) por três cultivares de soja com TCI, sendo duas RR® e uma Intacta® visando obter os parâmetros relacionados à exigência nutricional e potencial de exportação dos micronutrientes por estes materiais.

O experimento foi conduzido na safra 2013/2014, na Fazenda Experimental da Embrapa Soja, em Londrina, PR. O solo é classificado como Latossolo Vermelho distroférrico, com 780 g kg $^{-1}$ de argila e fertilidade adequada para o desenvolvimento da cultura da soja segundo os resultados da análise, na camada 0-20 cm: pH_{CaCl2} = 5,3; Al $^{3+}$ = 0,0 cmol $_0$ /dm 3 ; K= 0,65 cmol $_0$ /dm 3 ; P = 7,9 mg/dm 3 ; C = 11,9 g/dm 3 e V = 65%. Os teores disponíveis dos micronutrientes no solo eram os seguintes: Zn, 6,5 mg/dm 3 ; Mn, 250 mg/dm 3 ; Cu, 20,5 mg/dm 3 ; Fe, 55 mg/dm 3 e B, 0,45 mg/dm 3 .

As cultivares BRS-378RR (GMR 5.3), Syn 1059 RR (V-TopRR, GMR 5.9) e DM 6563 lpro (GMR 6.3) foram semeadas no dia 20 de Outubro de 2013, em faixas de 50 metros com 8 linhas espaçadas de 0,50 cm (200 m² / cultivar). Esses materiais apresentam TCI, ciclos distintos, sendo duas com a tecnologia RR® e uma com a tecnologia Intacta®.

Para avaliar a extração e acúmulo de nutrientes foram realizadas 12 coletas de plantas, na área durante o ciclo de desenvolvimento da cultura. Até a 8ª amostragem eram coletadas as plantas de um metro linear, aleatoriamente na faixa de cultivo. A partir da 9ª amostragem, optou-se por coletar 10 plantas em sequência de cada cultivar, visando diminuir o volume de material analisado. Após cada coleta era feita a separação em folhas, pecíolos, hastes e quando existentes, vagens e grãos, seguidos de pesagem e determinação da concentração de nutrientes nas amostras.

Foram ajustados modelos de regressão para o acúmulo de cada micronutriente nas folhas, nos grãos e total em função do tempo, e a partir dessas equações foi possível estimar as quantidades absorvidas e exportadas por cada cultivar. Os modelos que melhor se ajustaram ao acúmulo de Zn, Mn, Cu e B nas folhas e total foram o Gaussiano ou o Lorentziano. Especificamente para o acúmulo total de Fe para a cv. BRS-378RR, o modelo ajustado foi o Weibull. Já para os grãos, o modelo ajustado foi o Sigmoidal. Os ajustes foram feito com o software SigmaPlot® e as equações dos modelos estão descritas em OLIVEIRA JUNIOR et al., (2014).

Na Figura 1 estão apresentadas as curvas de acúmulo de Massa Seca Total (MST) e de Grãos das três cultivares. A cv. BRS-378 RR obteve produtividade de grãos próxima a

3000 kg/ha e MST de aproximadamente 8000 kg/ha no ponto de máximo acúmulo, com ciclo de 106 dias, caracterizando-se com um material precoce quando cultivado na Macrorregião Sojícola 2 (MRS-2). Para a BRS-378RR o potencial produtivo foi comprometido pelo déficit hídrico durante parte do florescimento, ocorrido em dezembro de 2013. A cv. V-TopRR, com ciclo de 120 dias alcançou produtividade de 4000 kg/ha e MST de 12 t/ha enquanto, a cv. DM 6563 lpro, também com ciclo de 120 dias e apesar do maior GMR (grupo de maturação relativa) obteve produtividade de 3000 kg/ha e MST de 7000 kg/ha. A diferença entre as produtividades das cultivares está diretamente associada ao ciclo de cada uma, isso porque, em fevereiro de 2014 ocorreu um longo período sob déficit hídrico e a cv. DM 6563 lpro acabou tendo tanto o ciclo quanto a produtividade reduzida pela falta de água disponível no solo.

As equações ajustadas para o acúmulo dos micronutrientes nas folhas, nos grãos e total, para as cultivares, estão apresentadas nas Tabelas 1 e 2. Em todas as cultivares, a ordem de acúmulo total foi: Fe > Mn > Zn = B > Cu. Para as quantidades exportadas, a ordem foi: Fe > Zn = Mn = B > Cu. A magnitude nos valores acumulados variou com a produtividade das cultivares, uma vez que, a cv. V-TopRR foi a que apresentou maior rendimento de grãos, consequentemente a maior extração e maior exportação de nutrientes. Este comportamento evidencia a importância do adequado manejo nutricional para a obtenção de altas produtividades. Entretanto, considerando a extração e exportação por tonelada de grãos (Tabela 3), os valores foram semelhantes entre as cultivares, indicando que materiais de ciclo precoce aparentemente não são mais exigentes em termos nutricionais. O mais importante para cultivares de ciclo precoce é a adequada distribuição hídrica de forma a permitir a absorção dos nutrientes num período menor que o disponível para as cultivares de ciclo dito normal.

O estádio para amostragem de folhas, caracterizado pelo ponto de inflexão da curva (Tabelas 1 e 2), variou principalmente em função do ciclo das cultivares, mas a amostragem no estádio R2-R3 é adequada para a maioria dos micronutrientes.

Com base nos resultados pode-se concluir:

 A exigência nutricional das cultivares de soja, em relação aos micronutriente, está muito mais relacionada ao potencial produtivo, do que outras características como ciclo ou à tecnologia inserida via transgenia.

Referências

CÂMARA, G.M. de S. Fenologia da Soja. **Informações Agronômicas**, Piracicaba, n.2, Junho/1998.

OLIVEIRA JUNIOR, A. de; CASTRO, C. de; OLIVEIRA, F. A. de; FOLONI, J. S. S. Marcha de absorção e acúmulo de macronutrientes em soja com tipo de crescimento indeterminado. In: **REUNIÃO DE PESQUISA DE SOJA**, 34., 2014, Londrina. Resumos expandidos... Londrina: Embrapa Soja, 2014. p. 133-136.

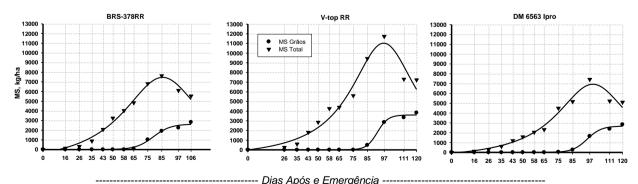


Figura 1. Acúmulo de Matéria Seca Total e de Grãos (kg/ha) nas três cultivares avaliadas. Londrina, PR. Safra 2013/2014.

Tabela 1. Estimativa dos parâmetros dos modelos ajustados para o acúmulo de Zinco, Manganês e Ferro, em função do tempo e os respectivos valores do ponto de inflexão (PI).

			Estimativa dos parâmetros do modelo				PI ⁽⁵⁾	F	
Cultivar	Parte da Planta	Modelo Matemático	y ₀ ou c ⁽¹⁾	a ⁽²⁾	$x_0^{(3)}$	b ⁽⁴⁾	PI	Estádio Pl	R ²
-				ha ⁻¹					
				Zinco -					
BRS-378RR	Folha	Gaussiano		124,0	62,7	19,4	43	R3	0,98
	Grãos	Sigmoidal		117,7	79,1	5,97	79	R5.5	0,99
	Total	Gaussiano		210,8	80,3	28,0	52	R4	0,99
V-TopRR	Folha	Gaussiano		182,1	78,7	20,2	59	R2	0,92
	Grãos	Sigmoidal		140,0	90,6	3,29	91	R5.3	0,99
	Total	Lorentziano	-28,0	365,6	91,0	26,3	65	R4	0,97
DM 6563 lpro	Folha	Gaussiano		93,4	77,5	23,6	54	R2	0,91
	Grãos	Sigmoidal		108,5	93,9	4,24	94	R5.3	0,99
	Total	Lorentziano	-19,5	233,4	94,2	29,1	65	R4	0,98
				- Manganê	s				
BRS-378RR	Folha	Gaussiano		386,9	68,8	22,5	46	R3	0,98
	Grãos	Sigmoidal		200,0	89,8	7,83	90	R6	0,94
	Total	Gaussiano		600,0	78,9	26,0	53	R4	0,97
V-TopRR	Folha	Gaussiano		607,3	83,2	20,2	63	R3	0,87
	Grãos	Sigmoidal		133,8	85,6	5,00	86	R5.3	0,98
	Total	Lorentziano	-3,8	1059,4	89,1	17,3	72	R4	0,96
DM 6563 lpro	Folha	Lorentziano		452,5	80,9	23,3	58	R3	0,90
	Grãos	Sigmoidal		95,7	87,9	5,10	88	R5.3	0,93
	Total	Lorentziano	-28,5	961,7	88,0	20,3	68	R4	0,98
				Ferro -					
BRS-378RR	Folha	Gaussiano		650,1	78,0	25,3	53	R4	0,95
	Grãos	Sigmoidal		170,0	74,6	3,22	75	R5.5	0,99
	Total	Weibull	6,96	1102,9	81,5	121,1	61	R3	0,97
V-TopRR	Folha	Lorentziano		2001,4	97,0	19,5	78	R5.1	0,65
	Grãos	Sigmoidal		250,0	90,0	5,24	90	R5.3	0,93
	Total	Lorentziano		2763,8	97,0	17,5	80	R5.1	0,79
DM 6563 lpro	Folha	Lorentziano		2105,2	94,8	13,2	82	R5.1	0,89
-	Grãos	Sigmoidal		143,3	90,7	3,15	91	R5.3	0,99
	Total	Lorentziano		2701,0	94,0	15,9	78	R5.1	0,93

⁽¹⁾ y0: Parâmetro do Modelo Lorentziano; c: Parâmetro do Modelo Weibull; (2) valor de máximo acúmulo do nutriente; (2) corresponde ao DAE que proporciona o máximo de acúmulo; (3) constante de ajustamento; (4) ponto de inflexão.

Tabela 2. Estimativa dos parâmetros dos modelos ajustados para o acúmulo de Cobre e Boro, em função do tempo e os respectivos valores do ponto de inflexão (PI).

	Parte da Planta	Modelo Matemático	Estimativ	/a dos pará	imetros d	PI ⁽⁴⁾			
Cultivar			y 0	a ⁽¹⁾	x ₀ ⁽²⁾	b ⁽³⁾	PI\'	Estádio Pl	R^2
			kg ha ⁻¹		Dias após a emergência				
				Cobre -					
BRS-378RR	Folha	Gaussiano		16,9	62,7	20,0	43	R2	0,93
	Grãos	Sigmoidal		23,7	75,9	3,84	76	R5.5	0,99
	Total	Gaussiano		45,4	84,1	26,4	58	R5.1	0,97
V-TopRR	Folha	Gaussiano		36,0	79,2	19,6	60	R3	0,82
	Grãos	Sigmoidal		36,7	89,7	2,58	90	R5.3	0,99
	Total	Gaussiano		90,0	94,9	25,2	70	R4	0,88
DM 6563 lpro	Folha	Gaussiano		14,7	82,1	19,7	62	R3	0,79
	Grãos	Sigmoidal		24,7	94,3	4,07	94	R5.3	0,99
	Total	Gaussiano		38,6	99,8	25,6	74	R5.1	0,96
				Boro					-
BRS-378RR	Folha	Gaussiano		80,0	67,7	20,1	47	R3	0,98
	Grãos	Sigmoidal		78,3	75,5	3,87	76	R5.5	0,99
	Total	Gaussiano		225,0	84,1	22,9	61	R5.3	0,98
V-TopRR	Folha	Gaussiano		125,0	78,1	22,8	55	R2	0,92
	Grãos	Sigmoidal		123,8	89,7	4,35	78	R5.1	0,99
	Total	Gaussiano		375,0	96,5	25,0	72	R4	0,93
DM 6563 lpro	Folha	Lorentziano	-4,81	99,0	85,7	22,9	63	R3	0,90
•	Grãos	Sigmoidal		73,2	93,2	3,99	93	R5.3	0,99
	Total	Lorentziano	-9,47	225,0	98,2	25,9	72	R5.1	0,98

⁽¹⁾ valor de máximo acúmulo do nutriente; (2) corresponde ao DAE que proporciona o máximo de acúmulo; (3) constante de ajustamento; (4) ponto de inflexão.

Tabela 3. Quantidades absorvidas e exportadas dos micronutrientes por três cultivares de soja

Cultivar ¹	Parte da Planta	Zn	Mn	Fe	Cu	В			
		g/t de grãos							
BRS-378RR	Grãos	39	67	57	8	26			
	Restos Culturais	31	133	311	7	49			
	Total	70	200	368	15	75			
	% Exportada	0,56	0,33	0,15	0,52	0,35			
V-TopRR	Grãos	34	33	61	9	30			
	Restos Culturais	55	226	613	13	61			
	Total	89	258	674	22	91			
	% Exportada	0,38	0,13	0,09	0,41	0,33			
DM 6563 lpro	Grãos	36	32	48	8	24			
	Restos Culturais	42	289	853	5	51			
	Total	78	321	900	13	75			
	% Exportada	0,46	0,10	0,05	0,64	0,33			

 $^{\rm 1}$ Produtividades consideradas nos cálculos: 3000 kg/ha para as cvs. BRS-378RR e DM 6563lpro e 4000 kg/ha para V-TopRR.