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Abstract

Background: Efficiency of feed utilization is important for animal production because it can reduce greenhouse gas
emissions and improve industry profitability. However, the genetic basis of feed utilization in livestock remains
poorly understood. Recent developments in molecular genetics, such as platforms for genome-wide genotyping
and sequencing, provide an opportunity to identify genes and pathways that influence production traits. It is known
that transcriptional networks influence feed efficiency-related traits such as growth and energy balance. This study
sought to identify differentially expressed genes in animals genetically divergent for Residual Feed Intake (RFI), using
RNA sequencing methodology (RNA-seq) to obtain information from genome-wide expression profiles in the liver
tissues of Nelore cattle.

Results: Differential gene expression analysis between high Residual Feed Intake (HRFI, inefficient) and low Residual
Feed Intake (LRFI, efficient) groups was performed to provide insights into the molecular mechanisms that underlie
feed efficiency-related traits in beef cattle. A total of 112 annotated genes were identified as being differentially
expressed between animals with divergent RFI phenotypes. These genes are involved in ion transport and metal
ion binding; act as membrane or transmembrane proteins; and belong to gene clusters that are likely related to the
transport and catalysis of molecules through the cell membrane and essential mechanisms of nutrient absorption.
Genes with functions in cellular signaling, growth and proliferation, cell death and survival were also differentially
expressed. Among the over-represented pathways were drug or xenobiotic metabolism, complement and coagulation
cascades, NRF2-mediated oxidative stress, melatonin degradation and glutathione metabolism.

Conclusions: Our data provide new insights and perspectives on the genetic basis of feed efficiency in cattle. Some
previously identified mechanisms were supported and new pathways controlling feed efficiency in Nelore cattle were
discovered. We potentially identified genes and pathways that play key roles in hepatic metabolic adaptations to
oxidative stress such as those involved in antioxidant mechanisms. These results improve our understanding of the
metabolic mechanisms underlying feed efficiency in beef cattle and will help develop strategies for selection towards
the desired phenotype.
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Background
Feed efficiency-related traits are increasingly being
studied because of their importance to the overall prof-
itability of animal production. Moreover, the selection
of more efficient animals reduces the land required for
feed production, methane emissions and nitrogen ex-
cretion resulting from the digestion/metabolic process
[1-3]. Heritability estimates for feed efficiency-related
traits are moderate in dairy and beef cattle [4-7], in-
cluding the Nelore breed [8]; however, genetic variation
for feed efficiency has not been widely exploited in ani-
mal breeding programs because the measurement of
this trait is costly [1].
There are several indices that are commonly used to

estimate the feed efficiency of growing cattle; one of
them being residual feed intake (RFI) which is independ-
ent of body weight and weight gain. RFI is used to identify
individuals that deviate from their expected level of feed
intake given their size and growth rate over at least a
70 day feeding period [3]. Because RFI is not phenotypic-
ally dependent on the production traits that are used to
estimate expected feed intake, it is possible to compare
RFI among individuals that differ in their level of produc-
tion. This independence has led some researchers to
believe that RFI may reflect intrinsic variation in basic
metabolic processes [9].
Developments in molecular genetics, specifically high-

throughput sequencing methods, offer a unique oppor-
tunity to identify genes and pathways that are associated
with complex traits and diseases [10]. Current DNA and
RNA sequencing methodologies are becoming important
tools for unravelling the mechanisms which underlie
complex traits, facilitating a new understanding of the
genetic regulation of phenotype and allowing for the
identification of potential biomarkers for early or more
accurate genetic prediction. Gene expression profiling
can be applied to identify differentially expressed (DE)
genes and isoforms involved in networks that control
complex traits, thereby shedding some light on the mo-
lecular mechanisms responsible for variation in target
traits.
Recent studies have identified putative quantitative

trait loci (QTL) for feed efficiency on several chromo-
somes in Nelore populations [8,11]. However, these stud-
ies have largely identified discordant genomic regions,
revealing a limitation of genome-wide association studies
(GWAS) for identifying loci with significant effects within
different subpopulations of the same breed [12]. In this
research, two divergent groups of Nelore cattle were se-
lected on their best linear unbiased predictions (BLUP)
of additive genetic merit for RFI and classified as either
high (HRFI) or low (LRFI). RNA sequencing was used
to profile the gene expression of hepatic tissue of 20
sampled animals.
Results
Sequencing throughput, read mapping, and assembly
The RFI phenotypes for this Nelore population were pre-
viously used to perform a genome-wide association study
(GWAS) and the summary statistics for the population
were described [8]. Table 1 presents the BLUP esti-
mates of additive genetic merit, phenotypes, sequencing
throughput and mapping statistics for each sample used
in this study.
After mapping reads with TopHat v2.0.6 [13,14], Cuf-

flinks v2.0.2 [14,15] was used to assemble the transcrip-
tome for each sample. The Cuffmerge utility was then run
to create a unique file which contained a parsimonious set
of transcripts for these data. The number of detected tran-
scripts that represented potentially new isoforms was very
large (~71.44% of the transcripts); nevertheless this was
expected considering that almost all genes in mammals
undergo alternative splicing [16]. We found a total of
16,962 annotated genes to be expressed in bovine liver;
however, 5,707 rare or highly expressed (>1 million reads)
genes were not tested in the analysis for differential ex-
pression. Lowly expressed genes cannot be statistically
tested by the Cuffdiff 2 algorithm while the analysis of
highly expressed genes leads to excessive machine mem-
ory demands [14,15].
To evaluate sequence quality, we assessed the distribu-

tion of transcript abundances for each expressed gene as a
box-plot of the log of FPKM values (Additional file 1:
Figure S1). Very similar median and quartile values for
FPKM estimates were observed for the members of
both RFI groups. We also evaluated the expression pro-
files of selected housekeeping genes Hypoxanthine
Phosphoribosyltransferase 1 (HPRT1) and Tyrosine
3-Monooxygenase/Tryptophan 5-Monooxygenase Acti-
vation Protein, Zeta (YWHAZ) and found expression
patterns for these genes to be similar within each of the
treatments. Finally, a principal component analysis
(PCA) of FPKM values for all genes indicated that there
were sufficient numbers of DE genes to differentiate
the RFI groups (Additional file 2: Figure S2).

Genome-wide transcriptome analysis and functional
annotation
Differential expression analysis between the HRFI (ineffi-
cient) and LRFI (efficient) groups identified 112 DE anno-
tated genes. The sign of the log2(fold change) was used to
partition the DE genes into up- and down-regulated
groups with 43 DE genes being down-regulated and 69
up-regulated in the LRFI relative to the HRFI groups
(Table 2).
Six genes that were previously identified in a microarray

study that profiled gene expression in the livers of Angus
cattle selected for high and low RFI [12] were also identi-
fied in this study. The coincident genes included collagen,



Table 1 Best Linear Unbiased Predictions (BLUP) of additive genetic merit for Residual Feed Intake (RFI), dry matter
intake (DMI), average daily gain (ADG), sire, number of reads passing filter and concordant pair alignment rate for
each animal within the Low (LRFI, efficient) or High (HRFI, inefficient) groups based on RFI BLUP estimates

Animal_ID Phenotype BLUP (Kg/day) RFI (Kg/day) DMI (Kg/day) ADG (Kg/day) Sire Reads passing filter Concordant pair
alignment rate (%)

NE003327 LRFI −0.0914 −1.0493 7.75 1.7 NE003322 9,761,212 92.3

NE003343 LRFI −0.0699 −0.5469 8.75 1.41 NE001360 12,689,051 92

NE003344 LRFI −0.036 −0.5714 8.45 1.48 NE001388 8,324,143 91.8

NE003349 LRFI −0.099 −1.2284 8.49 1.73 NE001383 9,476,944 92

NE003350 LRFI −0.0862 −0.7682 8.57 1.75 NE001360 8,179,991 91.4

NE003363 LRFI −0.0414 −0.6588 7.43 0.98 NE001382 11,090,049 92.5

NE003364 LRFI −0.0341 −0.3803 8.38 1.39 NE001380 10,369,298 92

NE003377 LRFI −0.0417 −0.1459 10.1 1.83 NE001391 10,209,752 91.9

NE003464 LRFI −0.0679 −1.1983 8.4 1.78 NE003323 9,821,754 92

NE003473 LRFI −0.0306 −0.2845 10.41 2.33 NE001359 9,570,163 91.9

Mean −0.0598 −0.6832 8.47 1.715 9,949,236 91.98

NE003352 HRFI 0.0856 0.327 8.97 1.66 NE001707 10,736,571 91.7

NE003355 HRFI 0.0939 0.6588 10.07 1.54 NE001360 8,304,145 92.5

NE003368 HRFI 0.0876 0.4115 9.72 1.86 NE001390 11,240,045 92.6

NE003393 HRFI 0.048 0.2443 9.36 2.06 NE001383 12,166,612 92.4

NE003398 HRFI 0.0721 −0.1548 9.78 1.78 NE003322 8,778,347 92.5

NE003416 HRFI 0.1247 1.8084 10.53 1.39 NE001388 10,473,989 92

NE003431 HRFI 0.0875 0.4206 10.32 1.92 NE001394 9,370,303 92.1

NE003439 HRFI 0.0688 −0.2976 8.92 1.77 NE001391 10,588,391 92

NE003456 HRFI 0.0861 1.2807 9.09 1.53 NE001382 9,238,005 92.2

NE003498 HRFI 0.0924 0.5969 10.17 1.85 NE003323 10,059,686 92.2

Mean 0.0847 0.5296 9.75 1.775 10,095,609 92.6
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type I, alpha 1 (COL1A1), glutathione S-transferase M1
(GSTM1), regulator of G-protein signaling 2 (RGS2), ring
finger protein 150 (RNF150), solute carrier family 2 (facili-
tated glucose/fructose transporter), member 5 (SLC2A5)
and vimentin (VIM).
Other candidate genes previously described as func-

tioning in the determination of traits related to feed effi-
ciency were also found in this analysis [17-22]. For
example, the fatty acid-binding protein 1 (FABP1) also
known as liver-type fatty acid-binding protein (L-FABP)
was up-regulated in the LRFI group. Uncoupling protein
2 (mitochondrial, proton carrier) (UCP2) and fatty acid
desaturase 2 (FADS2) with roles in carbohydrate and/or
fatty acid metabolism and mitochondrial function were
also found to be DE and up-regulated in the LRFI group.
A joint functional annotation analysis using both the

up- and down-regulated genes was performed to avoid the
potential loss of pathways in which up-regulated genes
down-regulate other DE genes and vice versa. When ana-
lyzed using Database for Annotation, Visualization, and
Integrated Discovery (DAVID) v6.7 using cattle as the
background [23], the identified functional gene clusters
were related to signal, glycoprotein, glycosylation, mem-
brane or transmembrane region, integral to membrane,
transport, metal ion binding, regulation of transcription,
among others (Additional file 3: Table S1).
The top bio functions identified by QIAGEN’s Ingenuity®

Pathway Analysis (IPA®, QIAGEN Redwood City, CA
www.qiagen.com/ingenuity) were involved in cellular
movement, represented by 28 genes, including COL1A1;
cytochrome b-245, beta polypeptide (CYBB) and UCP2
and in cell-to-cell signaling and interaction, in which 27
genes were reported as related to this function, including
early growth response 1 (EGR1), VIM, and FBJ murine
osteosarcoma viral oncogene homolog (FOS). Cellular
growth and proliferation (represented by 46 genes includ-
ing connective tissue growth factor (CTGF); FABP1 and
FADS2 - Figure 1) and cellular function and maintenance
(represented by 23 genes, including surfactant protein A1
(SFTPA1) and transglutaminase 2 (TGM2)) were also ob-
served. These functions were primarily up-regulated in the
LRFI group.
Five KEGG database pathways were found by the DAVID

software to be over-represented for genes DE between the

http://www.qiagen.com/ingenuity


Table 2 Genes found to be differentially expressed in the livers of high and low RFI animals

Gene ID Locus Mean HRFI, efficient Mean LRFI, inefficient log2(fold change)* p-value q-value

ABCA3 25:1796503-1838160 14.089 10.041 −0.489 0.00010 0.0146

ACE2 X:135148112-135200083 4.048 7.033 0.797 0.00010 0.0146

ACTA2 26:10662362-10679648 43.210 63.910 0.565 0.00010 0.0146

AGXT2L1 6:17710759-17730624 12.884 20.459 0.667 0.00005 0.0086

AKR7A3 2:133971793-133988579 9.568 14.340 0.584 0.00010 0.0146

ARHGEF38 6:20756178-20911532 2.807 1.393 −1.011 0.00005 0.0086

ATP2A2 17:56458580-56516270 30.796 21.928 −0.490 0.00040 0.0391

C1QA 2:130792854-130795743 332.759 475.615 0.515 0.00015 0.0192

C1QC 2:130783985-130788357 288.826 403.344 0.482 0.00035 0.0354

C28H10orf57 28:35425156-35433927 69.737 99.972 0.520 0.00005 0.0086

CA3 14:79406490-79446489 98.122 150.958 0.622 0.00005 0.0086

CACNA2D1 4:38338971-38860701 1.265 0.704 −0.845 0.00010 0.0146

CFD 7:45029927-45032847 132.823 179.814 0.437 0.00035 0.0354

CHPF2 4:114609573-114641250 4.314 10.102 1.228 0.00005 0.0086

CHRNE 19:27117262-27123208 4.823 7.803 0.694 0.00030 0.0311

CKB 21:69809411-69812615 15.935 24.904 0.644 0.00005 0.0086

COL1A1 19:37088245-37106162 5.848 8.630 0.561 0.00015 0.0192

COL1A2 4:11624469-11661163 8.463 11.675 0.464 0.00050 0.0467

CR2 16:5253369-5329698 10.291 15.184 0.561 0.00005 0.0086

CRELD2 5:120933368-120940337 48.548 34.638 −0.487 0.00030 0.0311

CST3 13:42562165-42566091 108.479 149.461 0.462 0.00030 0.0311

CTGF 9:70873215-70876451 2.906 4.964 0.772 0.00030 0.0311

CYBB X:111078497-111112510 3.318 5.155 0.636 0.00025 0.0277

CYP2B6 18:50564357-50581409 3.226 6.360 0.979 0.00005 0.0086

CYP4B1 3:99937027-99957426 4.738 2.662 −0.832 0.00045 0.0434

CYR61 3:58678776-58681686 11.769 19.795 0.750 0.00010 0.0146

EGR1 7:51438709-51442512 2.865 4.958 0.791 0.00005 0.0086

EPPK1 14:2132703-2147067 3.731 2.606 −0.518 0.00010 0.0146

ERO1LB 28:8948959-9026767 52.787 33.039 −0.676 0.00005 0.0086

FABP1 11:47786225-47793339 1306.810 2103.300 0.687 0.00005 0.0086

FADS2 29:41045093-41083225 23.288 43.606 0.905 0.00005 0.0086

FAM115C 4:107802455-107821622 1.889 0.854 −1.145 0.00005 0.0086

FAM174B 21:14689962-14731037 1.176 3.262 1.472 0.00005 0.0086

FAM47E 6:92915864-92950560 2.131 0.979 −1.122 0.00030 0.0311

FBXL14 5:108602493-108613689 8.953 6.000 −0.578 0.00005 0.0086

FCGR3A 3:7996469-8005232 28.713 43.892 0.612 0.00005 0.0086

FKBP5 23:9521253-9643463 22.981 12.855 −0.838 0.00005 0.0086

FOLR2 15:52601882-52605587 41.287 56.769 0.459 0.00030 0.0311

FOS 10:86883738-86887170 3.668 5.806 0.663 0.00050 0.0467

GALE 2:129707102-129711871 29.431 20.571 −0.517 0.00005 0.0086

GCSH 18:7793105-7805806 48.733 65.951 0.437 0.00050 0.0467

GLCE 10:16009392-16119077 27.221 17.796 −0.613 0.00005 0.0086

GNG11 4:11074736-11079756 18.381 26.593 0.533 0.00035 0.0354

GPC3 X:17305527-17770816 16.338 8.928 −0.872 0.00005 0.0086
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Table 2 Genes found to be differentially expressed in the livers of high and low RFI animals (Continued)

GPX3 7:64286947-64295117 30.626 17.682 −0.792 0.00005 0.0086

GSTM1 3:33874015-33880642 40.537 61.121 0.592 0.00005 0.0086

GSTO1 26:25088447-25097722 16.668 25.758 0.628 0.00005 0.0086

HDAC10 5:119814024-119819662 3.337 5.156 0.628 0.00025 0.0277

HEBP2 9:77215759-77222555 9.297 13.808 0.571 0.00025 0.0277

HNF4G 14:40830784-40965794 18.177 13.052 −0.478 0.00055 0.0499

HOOK1 3:86647456-86719014 7.709 4.926 −0.646 0.00005 0.0086

HOPX 6:73639365-73649114 8.841 5.224 −0.759 0.00055 0.0499

HSPB8 17:58405436-58418688 10.167 15.476 0.606 0.00015 0.0192

HYOU1 15:30159426-30171029 41.647 27.360 −0.606 0.00005 0.0086

IFI27 21:59330457-59336765 52.798 98.679 0.902 0.00005 0.0086

IFITM3 29:51341810-51368123 558.839 816.830 0.548 0.00010 0.0146

IRF6 16:75380659-75418348 6.314 9.481 0.586 0.00040 0.0391

ISG15 16:52714626-52715654 35.812 59.838 0.741 0.00005 0.0086

LOC100847320 27:138114-161660 0.722 1.358 0.912 0.00015 0.0192

LOC100848726 29:50712831-50713218 206.496 423.775 1.037 0.00005 0.0086

LOC100848941 21:2075268-2167679 23.499 16.438 −0.516 0.00020 0.0239

LOC510860 16:4939774-4950979 62.685 88.581 0.499 0.00010 0.0146

LOC524810 21:71453611-71596379 9.180 16.524 0.848 0.00005 0.0086

LOC540627 26:16130424-16159317 44.807 67.441 0.590 0.00005 0.0086

LOC786073 11:107260658-107267533 153.889 225.053 0.548 0.00010 0.0146

LRRC25 7:4702830-4708713 6.805 10.810 0.668 0.00010 0.0146

LST1 23:27524079-27526993 12.877 21.210 0.720 0.00020 0.0239

MIR365-2 19:18810082-18811372 0.825 10.836 3.715 0.00005 0.0086

MKNK1 3:100126012-100172590 35.636 25.591 −0.478 0.00015 0.0192

MSR1 27:19976239-20058029 10.613 16.751 0.658 0.00005 0.0086

MYOM1 24:37673539-37817780 1.312 0.630 −1.058 0.00040 0.0391

NPC2 10:86170652-86179237 92.901 132.098 0.508 0.00005 0.0086

NUFIP1 12:15163420-15203164 13.200 7.426 −0.830 0.00005 0.0086

PCDH7 6:51536696-52011680 2.654 1.318 −1.010 0.00005 0.0086

PCSK5 8:52196351-52715122 11.589 8.282 −0.485 0.00010 0.0146

PGCP 14:69287216-69893488 2.546 4.513 0.826 0.00015 0.0192

PRUNE2 8:52957790-53036819 10.746 14.944 0.476 0.00020 0.0239

PTGER3 3:74488088-74589990 7.829 3.859 −1.021 0.00005 0.0086

PYROXD2 26:19334004-19359393 13.577 20.835 0.618 0.00020 0.0239

RGS2 4:58723599-58724929 5.763 10.749 0.899 0.00005 0.0086

RN28S1 3:35428044-35862958 383.558 767.972 1.002 0.00050 0.0467

RN5-8S1 25:32467531-32467688 761.308 2520.190 1.727 0.00005 0.0086

RNASE6 10:26402505-26404143 13.589 21.187 0.641 0.00005 0.0086

RNF150 17:16939480-17220422 4.004 1.299 −1.624 0.00005 0.0086

ROBO2 1:24082833-24592295 3.212 2.147 −0.581 0.00020 0.0239

S100A11 3:18765878-18770271 37.152 55.245 0.572 0.00015 0.0192

SALL1 18:19639132-19657385 12.502 8.288 −0.593 0.00005 0.0086

SELL 16:38147609-38173246 9.491 14.272 0.589 0.00005 0.0086

SFRP2 17:3829563-3838138 2.129 0.636 −1.743 0.00005 0.0086
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Table 2 Genes found to be differentially expressed in the livers of high and low RFI animals (Continued)

SFTPA1 28:35850156-35867073 4.006 2.182 −0.877 0.00025 0.0277

SIGLEC12 18:57588039-57596060 4.484 7.160 0.675 0.00015 0.0192

SIX1 10:73068133-73073934 1.255 0.416 −1.594 0.00005 0.0086

SLC10A7 17:11923413-12252718 5.001 3.181 −0.653 0.00015 0.0192

SLC2A5 16:45244700-45255826 4.359 0.410 −3.412 0.00005 0.0086

SLC41A2 5:68697936-68842834 48.840 31.419 −0.636 0.00005 0.0086

SLC45A3 16:3243333-3261978 4.388 2.053 −1.096 0.00005 0.0086

SLC5A8 5:65385341-65454064 2.067 0.553 −1.901 0.00005 0.0086

SMAD1 17:12877363-12989110 25.185 17.865 −0.495 0.00025 0.0277

SPTSSB 1:106851521-106880436 7.439 12.679 0.769 0.00005 0.0086

TCIRG1 29:46211734-46223102 20.358 28.700 0.495 0.00045 0.0434

TGM2 13:67663047-67697628 12.721 18.074 0.507 0.00015 0.0192

TM4SF5 19:27210644-27216978 78.602 107.731 0.455 0.00025 0.0277

TMSB10 11:49933203-49934214 647.567 886.612 0.453 0.00055 0.0499

TMSB4 1:51022807-51023449 53.115 79.168 0.576 0.00005 0.0086

TNFRSF8 16:42437033-42512705 2.533 1.513 −0.743 0.00005 0.0086

UCP2 15:54193876-54202724 28.975 41.770 0.528 0.00005 0.0086

UGGT1 2:4222092-4333464 10.663 7.574 −0.493 0.00005 0.0086

UGT2A3 6:86810491-86838901 12.425 18.879 0.604 0.00005 0.0086

UGT3A1 20:38221291-38259719 0.442 1.961 2.151 0.00015 0.0192

VIM 13:31944988-31952941 34.456 47.092 0.451 0.00025 0.0277

WDR35 11:78912231-78963232 19.525 10.498 −0.895 0.00005 0.0086

WFDC2 13:75077193-75084339 15.124 8.167 −0.889 0.00030 0.0311

*Fold change estimates are relative to LRFI, inefficient group.
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divergent RFI groups. These pathways were related to drug
or xenobiotic metabolism (BH-adj≤ 0.44 and BH-adj ≤
0.27, respectively) complement and coagulation cascades
(BH-adj ≤ 0.25) and glutathione (BH-adj ≤ 0.48).
The IPA software reported several other significant

canonical pathways involving the 112 DE genes, in-
cluding complement system (P ≤ 2.16E-05), NRF2-
mediated oxidative stress (P ≤ 2.16E-05), melatonin
degradation (P ≤ 1.54E-04), glutathione-mediated de-
toxification (P ≤ 2.08E00), IGF-1 signaling (P ≤ 1.28E-02),
TGF-β signaling (P ≤ 7.06E-02), glutathione redox reac-
tions I (P ≤ 8.64E-02) and G-Protein coupled receptor
signaling (P ≤ 4.44E-01).
The upstream regulatory analysis performed by IPA

predicted regulators based on the consistency of ex-
pression direction changes for DE genes within each
pathway (Additional file 4: Table S2). The most important
regulators identified in this analysis were apolipoprotein E
(APOE) (Figure 2; Additional file 5: Table S3), which was
predicted to be inhibited in the LRFI group, endothelin-1
(EDN1) (Figure 3; Additional file 6: Table S4) and arachi-
donic acid (Figure 4; Additional file 7: Table S5) which
were predicted to be activated in the LRFI group. Two
additional top upstream regulators were inferred:
lipopolysaccharide and lysophosphatidic acid, however, it
was not possible to infer their activation or inactivation
based upon the DE gene set.
The animals comprising the HRFI and LRFI groups

were regrouped based on their phenotypes for the com-
ponent traits dry matter intake (DMI) and average daily
gain (ADG). We performed global DE analyses based on
these trait groupings (high vs low DMI and ADG) to
provide insights into the molecular mechanisms that
underlie RFI in Nelore beef cattle.
In order to generate differentiated groups for these traits

we reduced the sample size to 12 (6 high and 6 low) and 8
(4 high and 4 low) animals for DMI and ADG, respectively,
however, we consequently lost some statistical power.
Of the 58 DE genes for DMI, 35 were also identified for
RFI and of the 39 DE genes for ADG 18 were also DE
for RFI. While ACE2, AGXT2L1, ARHGEF38, CFD,
COL1A1, COL1A2, CYP2B6, EGR1, FABP1, FADS2,
FAM115C, FKBP5, GLCE, HDAC10, HOOK1, HOPX,
IFI27, LOC100848726, LOC100848941, LOC524810,
NUFIP1, PCDH7, PTGER3, PYROXD2, RN28S1, RN5-
8S1, RNF150, SFRP2, SFTPA1, SIX1, SLC10A7, SLC5A8,
SPTSSB and WDR35 are likely related to RFI by influ-
encing DMI, CACNA2D1, CHPF2, CST3, CYR61,



Figure 1 The differentially expressed gene network with functions in cellular growth and proliferation. Genes presented in red are
up-regulated in the LRFI phenotype group. Genes presented in green are down-regulated in LRFI animals. The intensity of the colors is related to
fold change estimates. Arrows presented in orange, gray and yellow indicate activation, effect not predicted and inconsistency, respectively.

Figure 2 The mechanistic network of the inferred upstream regulator APOE. Genes presented in orange are related to genes up-regulated
in the LRFI phenotype group. Genes presented in blue are related to genes down-regulated in LRFI animals. The intensity of the colors is related
to fold change estimates. Arrows presented in orange, gray and yellow indicate activation, effect not predicted and inconsistency, respectively.
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Figure 3 The differentially expressed gene network of the inferred upstream regulator EDN1. Genes presented in orange are related to
genes up-regulated in the LRFI phenotype group. Genes presented in blue are related to genes down-regulated in LRFI animals. The intensity
of the colors is related to fold change estimates. Arrows presented in orange, gray and yellow indicate activation, effect not predicted and
inconsistency, respectively.
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FAM115C, FCGR3A, FKBP5, GPC3, HSPB8, IFI27,
ISG15, LOC524810, MSR1, RGS2, RNF150, SFRP2,
UGT3A1 and WDR35 influence ADG.

Discussion
The profitability of beef cattle production is based on both
input expenses and output prices for the final products,
and these can be used to compute a selection index for
feed efficiency [1]. Feed has a major impact on the total
cost of beef production systems. It is known that feed
efficiency traits are heritable and have sufficient genetic
variation within populations to facilitate selection [4-8].
The artificial selection of efficient animals would poten-
tially reduce the cost of cattle production; however, selec-
tion for this trait is not easy to implement because it is
challenging and expensive to measure individual feed
Figure 4 The differentially expressed gene network of the inferred up
related to genes up-regulated in the LRFI phenotype group. Genes present
intensity of the colors is related to fold change estimates. Arrows presented
and inconsistency, respectively.
intake on large samples of animals. Residual feed intake, a
measure of feed efficiency of growing cattle, is a complex
trait controlled by different metabolic processes [9].
The integration of multiple sources of genetic informa-

tion could potentially explain additional genetic variation
via the elucidation of the molecular mechanisms con-
trolling important production traits. Gene expression is
a key source of variation between individuals and may
be used to identify functional candidate genes and path-
ways that control target traits. Genes that have previ-
ously been identified as being DE in a study of liver
tissues of Angus cattle selected for RFI [12] were also
found in our analysis. These include COL1A1, GSTM1,
RGS2, RNF150, SLC2A5 and VIM and suggest that com-
mon gene networks underlie RFI regardless of breed
genetic background.
stream regulator arachidonic acid. Genes presented in orange are
ed in blue are related to genes down-regulated in LRFI animals. The
in orange, gray and yellow indicate activation, effect not predicted
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Glutathione S-transferase enzymes catalyze the conju-
gation of glutathione to endogenous compounds such as
lipid hydroperoxides and exogenous xenobiotics [24];
the liver is a vital organ for xenobiotic metabolism [25].
The exploration of our genome-wide transcriptome re-
sults in DAVID revealed xenobiotic and drug metabol-
ism pathways as being overrepresented and up-regulated
in the LRFI group. Chen et al. [12] also found xenobiotic
metabolism to be an overrepresented pathway for DE
genes, but found this pathway to be down-regulated in
the LRFI Angus group in contrast to our findings. Be-
sides GSTM1 and glutathione S-transferase omega 1
(GSTO1) found in our study; other members of the
Glutathione S- (GST) family were also reported to be
DE by Chen et al. [12]. Genes of the cytochrome P450,
family 2, subfamily B, polypeptide 6 (CYP2B6) and UDP
glucuronosyltransferase 2 family, polypeptide A3
(UGT2A3) families were also detected in this pathway.
The CYP family and UGTs, which are primarily
expressed in liver, encode several enzymes with a crucial
function on oxidative metabolism of endogenous sub-
strates, including steroids, fatty acids and exogenous
molecules [26,27]. These gene families are also likely
involved in the NRF2-mediated oxidative stress response
pathway which was consistently found to be up-regulated
in the LRFI group by the IPA. While glutathione S-
transferase functions in the detoxification of products of
oxidative stress, cytochrome P450 proteins catalyze reac-
tions involved in drug metabolism and the synthesis of
cholesterol, steroids, and other lipids [26,27]. Our findings
suggest that inefficient animals have increased oxidative
metabolism possibly stimulated by an increased oxidative
stress.
The NRF2-regulated signaling pathway plays a role in

protecting mitochondria from oxidative stress during
fasting and ensures the efficient utilization of fatty acids
in mouse liver. A study has shown that Nrf2-knckout
mice are predicted to diminish oxidation and increase
the accumulation of lipids in liver due to mitochondrial
damage [28]. These findings are also pertinent to
broilers, which suggest that genes involved in glutathi-
one metabolism may influence feed efficiency due their
function in preserving or improving the activity of cer-
tain respiratory chain complexes [29].
Besides NRF2-mediated oxidative stress, IPA also

pointed to other pathways overrepresented for DE genes,
including, melatonin degradation, IGF-1 signaling, G-
Protein coupled receptor signaling, and in agreement
with the DAVID results, glutathione redox reactions.
The IGF-1 signaling pathway was also found by Chen
et al. [12], however, while they found the IGF-Binding
Protein 3 (IGFBP3) gene to be up-regulated in the LRFI
group, we found CTGF and CYR61 genes (cysteine-rich,
angiogenic inducer, 61) to be DE in this pathway.
Some of the pathways found in this study, such as IGF-1
signaling have already been reported as functioning in feed
efficiency-related traits [30]; however, others are new and
may elucidate important unknown mechanisms in Nelore
cattle. For example, the involvement of the melatonin deg-
radation pathway in RFI is novel and more studies are ne-
cessary to elucidate its role and action in feed efficiency in
cattle. Melatonin is responsible for controlling several dif-
ferent biological processes such as a combination of cyclic
background and circadian rhythm and also for establishing
energy balance and maintaining body weight [31,32]. Its
role in energy metabolism and obesity is also recognized
[31]; however, the weight-reducing effects of melatonin
depend on the actions of several mechanisms, including
the circadian clock, energy metabolism and metabolic pro-
cesses [32]. A functional circadian clock and coordinated
metabolic processes are necessary to enhance energy bal-
ance and maintenance [32].
The genes of cytochrome P450, families 2 e 4, subfam-

ily B (CYP4B1, CYP2B6) and UDP glucuronosyltransfer-
ase 2 and 3 families, polypeptide A (UGT3A1 and
UGT2A3), primarily up-regulated in the LRFI group,
were also involved in melatonin degradation. Melatonin
putatively attenuates oxidative stress by decreasing lipid
peroxidation [33]. Peroxidation of lipids produces alde-
hyde products which induce the activation of hepatic
stellate cells [34]; the primary collagen-producing cells
within the liver. Collagen genes were consistently
observed as being up-regulated in the LRFI group. Fur-
thermore, melatonin interactions with reactive species
are effective against oxidative stress by improving the
function of the mitochondrial respiratory chain [35].
Melatonin can increase the levels of several antioxidative
enzymes, including glutathione peroxidase and glutathi-
one reductase [33]. Our findings consistently predict the
activation of functions important to oxidative processes
in the inefficient LRFI group.
The RGS2 gene was found to be DE between high and

low RFI groups in both Nelore and Angus [12] cattle and
may affect feed efficiency via its G protein-coupled signal-
ing activity in different cellular functions including the
regulation of body weight and adiposity [36]. RGS2-knock-
out mice had lower weight than wild-type controls and
exhibited reduced fat deposition, decreased serum
lipids and leptin levels, resulting in a lean phenotype
even when fed the same diet as control animals, however,
food intake and energy expenditure were not altered pos-
sibly due to altered energy balance and defects in meta-
bolic processes and energy storage [36]. We found RGS2
to be up-regulated in the LRFI and in the low ADG groups
in agreement with previous reports [12,36]. Furthermore,
also supporting our findings, RGS2 expression has been
reported to be up-regulated under conditions of oxidative
stress [37].
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Many of the enriched functional categories reported
by DAVID such as ion transport, metal ion binding,
membrane or transmembrane proteins are likely related
to the catalysis and transport of substrates through the
cell membrane [38]. Transport of substances across cell
membranes is required for several vital functions includ-
ing digestion, absorption of nutrients, cellular signaling,
growth, proliferation, cell death and survival which have
previously been reported as influencing feed efficiency
traits in beef cattle [39]. Some of these biological func-
tions were also found to be enriched for DE genes by
the IPA software. Members of the solute carrier group,
which are primarily located in the cell membrane
(SLC10A7, SLC2A5, SLC41A2, SLC45A3 and SLC5A8),
were found to be down-regulated in the HRFI group.
The SLC2A5 gene, which facilitates glucose/fructose
transport, was found to be the top up-regulated gene in
the HRFI group while genes among the most down-
regulated in this group were related to lipid catalysis.
These results suggest that efficient animals may have an
increased ability to absorb glucose, while inefficient indi-
viduals overexpress genes related to the catalysis and
intracellular transport of fatty acids. This may indicate that
the divergent efficiency groups have preferable sources for
obtaining the energy required for maintenance.
Feed intake may influence metabolic activity in liver

and consequently energy utilization [18]. Kuhla et al.
[18] reported a significant down-regulation of FABP1
protein in dairy cows that experienced feed restriction
and suggested that this may provide a mechanism for
limiting fatty acid oxidation and hepatic triacylglyceride
accumulation in the event of negative energy balance.
These results are supported by a study in which FABP1
knockout mice demonstrated considerably reduced triacyl-
glyceride levels in liver after fasting [17]. The pattern of
FADS2 gene expression is known to regulate the synthesis
of polyunsaturated fatty acids. Moreover, FADS2-deficient
mice are resistant to obesity and the dysregulation of lipo-
genesis [20]. This gene may be also important to the perox-
idation susceptibility of lipoproteins and their oxidation
rate [40] and was up-regulated in the animals with the
highest DMI.
The upstream regulatory analysis performed by IPA,

which seeks to identify the upstream transcriptional
regulatory cascades that are likely to elucidate the ob-
served changes in gene expression [41], may shed some
light on the biological activities that occur in the hepatic
tissue of animals that are genetically divergent for RFI.
This analysis predicted the top upstream regulators to
include APOE which was predicted to be inhibited in the
LRFI group. The APOE protein functions in lipid trans-
port in liver by assisting in the secretion of very low
density lipoprotein (VLDL) [42,43]. Takahashi et al. [43]
proposed that serum APOE contents of triglyceride-rich
lipoproteins must be controlled by dietary handling in
cattle. Wilcox & Heimberg [44] have shown that fasting
rats had lower secretions of both VLDL and APOE,
therefore having a reduced uptake of VLDL by the liver
as compared to fed animals. The inhibition of APOE
predicted in the LRFI group may be related to the accu-
mulation of lipoproteins in the liver under conditions of
oxidative stress. In a previously performed GWAS study
in this population [8], the candidate gene Apolipoprotein
A2 (APOA2) which functions to stabilize HDL was de-
tected as being associated with RFI.
EDN1 was also predicted by IPA to be a top upstream

regulator of RFI and our results suggest that it is acti-
vated in the LRFI group since nine of the eleven DE
genes regulated by EDN1 were found to be coactivated.
EDN1 was inferred by IPA to be a potential regulator of
connective tissue growth factor and early growth re-
sponse genes such as CTGF and EGR1. Additionally,
seven DE genes had expression profiles that were con-
sistent with the activation of arachidonic acid in the
LRFI group. These include FABP1 [45], UCP2 [46] and
RGS2 [47] which must now be investigated as targets for
manipulation through diets containing arachidonic acid.
Furthermore, the relative proportion of dietary arachi-
donic acid to docosahexaenoic acid has been shown to
be a determinant of FADS2 expression and consequently
influences polyunsaturated fatty acids metabolism in
suckling piglets [48].
Despite the fact that genes found to be DE in this

study were not detected in the QTL regions found in a
previous GWAS study using the same Nelore population
[8]; several common biological mechanisms and key
drivers were detected. The majority of QTLs identified
in the GWAS lies within gene deserts and may affect
feed efficiency via regulatory elements that are yet to be
identified involved in the modulation of expression of
genes. Non-coding functional elements are poorly
understood in cattle and can consist of distal enhancers
or transcription factor binding sites. The challenge to
interpreting the roles of these QTLs lies in the diversity
of function of non-coding variants, poor annotation of
regulatory elements and potentially unrecognized con-
trol mechanisms [49]. However, candidate genes identi-
fied in GWAS are known to cause the DE of genes;
when an integrated analysis including both GWAS QTLs
and RNA-Seq DE genes was performed using IPA, the
differentially expressed transcription factors EGR1 and
FOS were suggested to be regulating the candidate gene
Plasminogen Activator, Urokinase (PLAU) located within
a QTL region identified by the GWAS. On the other
hand, this gene seems to also coregulate the VIM [50]
and CYR61 [51] genes. EGR1 and FOS, found to be up-
regulated in the LRFI, are key regulators of genes that
are related to cellular growth and differentiation and are
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also known to be activated in response to oxidative stress
[52,53]. Studies targeting the identification of regulatory
mutations within the promoters and enhancers/repressors
of these genes may be important for understanding the
biology of feed efficiency and may have utility for the im-
plementation of genomic selection for feed efficiency in
livestock.
Although QTL regions do not have to harbor DE genes,

since they can be created by mutations in genes that cause
post-translational disruptions affecting the functionality of
proteins. The differences in candidate regions/genes found
by the GWAS and RNA-Seq may also be explained by the
tissue-specific modulation of messenger RNAs (mRNAs).
For example, the HRH4 and ADAM12 candidate genes
located within a QTL region detected by the GWAS could
not be tested for expression differences in this study due
to their low expression in liver. This finding does not
exclude the implication of the DE for these genes in other
tissues on feed efficiency.

Conclusions
We conducted a genome-wide transcriptome profiling
study of hepatic tissue from Nelore cattle selected to be
genetically divergent for RFI to reveal key metabolic and
cell signaling networks. Some previously known mecha-
nisms related to feed efficiency such as xenobiotic me-
tabolism were found; however, new pathways including
melatonin degradation were also identified as controlling
RFI in Nelore cattle. Overall, our findings demonstrate
that changes in gene expression between efficient and
inefficient cattle primarily appear to be related to meta-
bolic processes underlying oxidative stress and lipid ca-
tabolism. We have potentially identified genes involved
in antioxidant mechanisms that play key roles in hepatic
metabolic adaptation to oxidative stress. Previous studies
have suggested that oxidative stress is increased in ineffi-
cient broilers and that this may be related to differences
in mitochondrial function [54]. Metabolic response to
negative energy balance depends on the availability of
fatty acids and ketones as energy sources as well as to
the mitochondrial capacity for fatty acid oxidation in tis-
sues with high oxidative energy demands such as liver
[55]. The upstream regulators found here guide the future
investigation of these molecules to enable the develop-
ment of intervention strategies such as diet formulation
and contribute to the understanding of the physiology and
improvement of RFI.

Methods
Animals and sampling
All experimental procedures were approved by the Institu-
tional Animal Care and Use Committee Guidelines of the
Brazilian Agricultural Research Corporation – EMBRAPA
and were sanctioned by the president, Dr. Rui Machado.
These steers comprised half-sib families produced by
the artificial insemination of commercial and purebred
Nelore dams, derived from 18 sires representing the
main breeding lineages commercialized in Brazil. The 83
calves used in this expression study were allocated to
feedlots in Embrapa Southeast Research at about
21 months of age. Within the feedlots, animals were
maintained either in individual or collective pens and
allowed ad libitum access to feed and water as described
by Oliveira et al. [8]. Briefly, animals were fed twice
daily, with diets formulated to contain 40% dry matter
(DM) in the form of corn silage; crude protein at 13.5%
and energy densities of 2.8. The remaining 60% of DM
was concentrate, which comprised ground corn, soybean
meal, cotton seed, soybean hulls, limestone, mineral
mixture, urea and monensin (Rumensin®). Measures of
daily feed intake were collected for at least 70 days and
body weight was measured every 14 days.
BLUP estimates of genetic merit for RFI were gener-

ated for 585 Nelore steers. Liver samples were available
for only 83 of the animals which were ranked according
to their additive genetic merit for RFI to select 20 ani-
mals that were genetically divergent for RFI, as described
below. A relationship matrix computed using pedigree
information was used in this analysis. Nelore steers that
were genetically divergent for RFI (kg/d) were selected
based on BLUP estimates of their additive genetic merits
produced using the following model:

y ¼ Xβ þ Za þ ε

Where, y is the vector for average daily feed intake, β
is the vector of fixed effects of contemporary group, de-
fined as the combination of season, animal origin and
pen type (individual or collective), and partial regres-
sions on age of the animal at entrance to the feedlot,
metabolic mid-weight (BW0.75) and average daily gain, a
is the additive genetic merit of the animal for RFI as-
sumed to be normally distributed with E[a] = 0 and Var
(a) = Aσ2a where A is the pedigree numerator relationship
matrix, and ε is the vector of residual effects inherent to
each observation which was assumed to be normally and
independently distributed (0, σ2e ), X and Z are design
matrices for fixed and random effects, respectively. The
model was fit by the MIXED procedure of SAS® software;
version 9.3 (SAS Institute Inc.) and selected animals were
ranked in the most extreme values for additive genetic
merit. Where possible, animals that had common sires
were sampled from each end of the BLUP distribution.
Dry matter intake and average daily gain described else-

where [8] were used to decompose RFI via the regrouping
of the animals based on these traits for additional gene ex-
pression analyses.
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RNA sequencing
Preparation of the mRNA samples for sequencing was
performed by ESALQ Genomics Center (Piracicaba, São
Paulo, Brazil), using the TruSeq RNA Sample Preparation
Kit® (Illumina, San Diego, CA) according to manufacturer’s
instructions. Briefly, 100 mg of frozen liver was used to
extract RNA using the TRIzol® reagent (Life Technologies,
Carlsbad, CA) and 2 μg of total RNA from each liver sam-
ple was used for library preparation. The concentration
and purity of RNA was measured using NanoDrop™
(Thermos Scientific, Waltham, MA) and then sample in-
tegrity was assessed by Bioanalyzer (Agilent, Santa Clara,
CA). The mRNA was first enriched from the total RNA by
using oligo dT magnetic beads, then the poly(A) RNA was
fragmented and cDNA was synthesized. Next, the cDNA
underwent end repair, the 3’ ends were adenylated and
universal bar-coded adapters were ligated to the cDNA
fragments to perform a solid phase PCR to produce the
sequencing library. Following library construction, the se-
quencing library was evaluated and quantified using both
an Agilent 2100 Bioanalyzer® and quantitative PCR with
the KAPA Library Quantification kit® (KAPA Biosystems,
Foster City, CA, USA). Finally, libraries were pooled to
perform multiplexing sequencing. Cluster generation and
sequencing were performed on the Illumina HiSeq 2000®.
Paired-end reads of 2 × 100 bp were produced.

Processing and alignment of sequence reads
Computations were performed on the HPC resources at
the University of Missouri Bioinformatics Consortium
(UMBC). Low-quality reads were filtered and adapter se-
quences trimmed using SeqClean software. TopHat
v2.0.6 [13,14] was then used to align the reads to the Bos
taurus virtual transcriptome internally built by Tophat
using the UMD3.1 reference genome. TopHat first ex-
tracted the transcript sequences and used Bowtie to
align reads to the virtual transcriptome using a provided
reference annotation file. The reads that could not be
fully mapped to the virtual transcriptome were then
mapped to the UMD3.1 reference genome. These reads
were converted into genomic mappings and merged with
the novel transcriptome mappings and splice junctions
in the final output file. A total of 2 mismatches per read
were allowed in alignment.

Transcript assembly and quantification
Cufflinks v2.0.2 [15] was initially used to assemble the
aligned reads for each sample individually. Cufflinks as-
sembles the aligned reads and provides a parsimonious
set of transcripts as a file. Cufflinks also estimates tran-
script abundances in Fragments Per Kilobase of exon
per Million fragments mapped (FPKM), which normalizes
transcript expression for transcript length and the total
number of sequence reads per sample. The reference
annotation supplied to Cufflinks was used to perform a
reference annotation-based transcript assembly. The out-
put for each sample included all reference transcripts as
well as novel assembled genes and isoforms. Cufflinks
assemblies for all samples were then merged using
Cuffmerge v2.0.2 which also runs Cuffcompare internally
to classify the transcripts. The available annotation file
was provided to this analysis to classify the assembled con-
tigs into novel and known transcripts and to maximize the
overall quality of the assembly.
Testing for differential expression
Cuffdiff2 software was run to test for DE genes between
the RFI groups with geometric normalization used to esti-
mate transcript abundance. Correction for multiple testing
(q value) was performed using the Benjamini-Hochberg
methodology. Cuffdiff2 calculated the FPKM for each
transcript, primary transcript, and gene in each sample. A
false discovery rate ≤ 0.05 was adopted to consider a gene
as being DE.
Data exploration and visualization was performed using

the CummeRbund package [14] implemented in the R
programming environment.
Annotation of differentially expressed genes
DAVID v6.7 [23] was used to annotate and interpret the
DE gene lists. DAVID software identifies enriched bio-
logical themes and gene ontology (GO) terms, clusters
functionally related genes and annotation terms for gene
lists with EASE scores < 0.1. The Functional Annotation
Tool was used to determine the most relevant GO terms
within each list of DE genes. The Functional Annotation
Clustering algorithm was used to generate a report of re-
lated annotation terms and groups of annotation clusters.
Finally, DAVID Pathway was used to map the enriched
pathways in which DE genes are involved, using the KEGG
database.
The IPA (www.qiagen.com/ingenuity) was also used to

discover and explore biological processes and the roles
of DE genes. The Ingenuity Pathways Knowledge Base
comprises relationships such as between genes, mRNAs
and proteins to test for significantly overrepresented net-
works and pathways. We provided the fold changes and
q-values of DE among genes from the Cuffdiff analysis
to the IPA to perform the statistical analysis for the rep-
resentation of each network and to visualize the results.
Availability of supporting data
The RNA-seq data sets supporting the results of this
study are available in the ENA repository (EMBL-EBI),
under accession PRJEB7696.

http://www.qiagen.com/ingenuity
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Additional file 1: Figure S1. Boxplot of the log10 of FPKM (Fragments
Per Kilobase of exon per Million fragments mapped) expression values for
both RFI groups.

Additional file 2: Figure S2. Principal Component Analysis (PCA) between
the RFI treatments for all gene-level features.

Additional file 3: Table S1. Enriched GO terms from DAVID software
for differentially expressed genes.

Additional file 4: Table S2. Upstream regulators identified by QIAGEN’s
Ingenuity® Pathway Analysis.

Additional file 5: Table S3. Mechanistic network of the inferred upstream
regulator APOE.

Additional file 6: Table S4. Mechanistic network of the inferred upstream
regulator EDN1.

Additional file 7: Table S5. Mechanistic network of the inferred upstream
regulator arachidonic acid.
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