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  Abstract 
On tropical soils, liming and balanced nutrient supply are essential to ensure high 
crop yield and quality. An adequate agronomic nutrient management should be a 
balanced nutrition and fertilizers are the key factor on supplying nutrients. Urea is 
the most commonly used fertilizer-N source, despite potential losses by NH3 volatili-
zation. Thus, new fertilizers technologies are needed to support the increasing de-
mand and avoid the low N use efficiency (NUE). The reduction of NH3-N volatiliza-
tion can be achieved by the use of natural aluminosilicates with nitrogenous fertilizer 
materials. This review consolidates the current status on the subject and the expe-
rience with the application of aluminosilicates as a slow release plant-nutrient ferti-
lizer. Volatilization losses of nitrogenous fertilizers on the soil surface could be re-
duced with addition of natural aluminosilicates. Clay minerals (zeolites) are widely 
used in many countries to reduce NH3 volatilization from amide N fertilizers, such as 
urea, besides several organic forms of nitrogenous sources. The reduction in ammo-
nia losses by volatilization and the increased efficiency of N utilization and slow re-
lease nature of urea-zeolite mixtures when urea is used together with aluminosilicates 
was demonstrated in laboratory, greenhouse and field experiments with different 
crops and environments. These results indicate that aluminosilicates minerals used 
with urea mineral fertilizer can enhance the efficiency of this source by improving the 
nitrogen use through the control of retention of ammonium ion, contributing to in-
creasd N uptake and crop yields. 
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1. Introduction 

Building up of soil fertility, managing the availability of mineral nutrients in soil and 
efficient nutrient management are some of the key factors to improve crop productivity 
and sustainability of food security and well-being of humans without harming the en-
vironment [1]. As the tropical soils inherently poor in plant nutrients, liming of soils 
and balanced nutrient supply (N, P, K, Ca, Mg, S, B, Cu, Cl, Mo, Mn and Zn) are 
therefore essential to ensure high crop yield and quality. Best agronomic practices in-
clude balanced nutrient management to supply all essential nutrients for optimum 
yields [2]. An array of strategies can be taken up to enhance the use efficiency of nu-
trients in the plant-soil-atmosphere system. Fertilizers are one of the most important 
inputs of modern agriculture, and the most important sources of nitrogen used in 
large-scale cultivation of various non-legumes crops [3]. 

This review presents research results and discusses the current status on the use of 
urea together with aluminosilicates as a slow release plant-nutrient fertilizer in order to 
reduce ammonia losses by volatilization, increase the N use efficiency and uptake through 
the control of retention of ammonium ion. 

2. Nitrogen Fertilizers 

Nitrogen is part of all living cells and is an essential constituent of amino acids and 
hence the proteins, enzymes and metabolic processes involved in the synthesis and 
transfer of energy, and is part of chlorophyll, the green pigment responsible for photo-
synthesis [4] and so considered as kingpin in agriculture and is the major fertilizer nu-
trient used in farming. Nitrogen’s world consumption in 2010/11 was 104.1 million 
tons, with an average annual growth of 0.015 million tons, which could reach 114.7 mil-
lion tons in 2016/17 [5], since the world annual increase in N fertilizers demand would 
be 1.5% [6].  

Although Fole et al. [7] pointed out that insufficient nutrients are a major agronomic 
problem in many regions, a positive nutrient balance in Brazilian agriculture from 2009 
to 2012 was shown by Cunha et al. [8] since the amount of nitrogen fertilizer applied 
(11 million tons) was greater than exported (7.8 million tons). Excess nutrient applica-
tion had led to environmental problems in some parts of the world too. Brazil is the 
fourth world largest fertilizer consumer and imports approximately 75% of the N ferti-
lizer consumed [9]. Urea is one of the most used nitrogen fertilizer in agriculture [10] 
and also in Brazil [9].  

About 40% - 70% nitrogen losses from the applied fertilizers [11] has been reported 
elsewhere in the world, since nutrient application is not very often in synchrony to crop 
needs [12]. The low nitrogen use efficiency (NUE) of Fertilizer-N occurs as a result of 
leaching, mineralization, erosion and denitrification processes [12]-[15]. These losses 
contribute to the reduction of the agronomic efficiency of N-sources and also increase 
the emissions of greenhouse gases such as nitrous oxide (N2O) [16]. N-use efficiency of 
urea may be enhanced by reducing the volatilization losses from agricultural system 
and is one of the main factors responsible for the low efficiency of the applied urea [14]. 
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Mulch from no-tillage or pasture systems may also increase the amount of N lost by 
volatilization, especially when urea is applied on the soil surface [17]. 

In general, some changes in agricultural management can increase the N use effi-
ciency such as: removal of physical, chemical and biological limiting factors to plant 
growth; balanced fertilization; adequate water supply; synchrony of fertilizer applica-
tion and plant demand; optimization of rate and timing of fertilizer application; split 
application of fertilizers; soil incorporation of fertilizers-; use of crop rotation, green 
manuring; and, using slow or controlled release fertilizers and nitrification inhibitors 
with Fertilizer-Ns [14] [15]. For the integrated N management strategies, in addition to 
soil and crop management practices, use of enhanced efficiency fertilizers and stabilized 
fertilizers is considered as an important step [16]. 

About 75% of fertilizers and fertilizers technology used today in the world around 
have been developed and improved during 1950 to 1970 by the Tennessee Valley Au-
thority (TVA) [18]. High concentration products (urea, DAP, triple super phosphate, 
urea coated and liquid fertilizers) and also more efficient manufacturing processes 
(such as ammonium nitrate, ammonium salts granulated formulations and mixtures 
technologies) were developed and improved. But with the end of the program in the 
early 1990s a gap opened up. So some new initiatives have been carried out by Embrapa 
and partners through Fert Brasil Network focusing on fertilizers research & develop-
ment and evaluation of new products based on nutrient alternatives sources, minerals 
use and new process technologies, accessing the agronomic and environmental impact 
and promoting the technology transfer to the fertilizer industry and farmers [19]. 
Among the led studies, the use of natural aluminosilicates together with fertilizers has 
been considered of strategic importance contributing to the N-losses reduction, in-
crease of NUE, and also reduction of negative impacts of fertilizers on soil resources. 

Among the natural zeolites, clinoptilolite [20] is most commonly used in agriculture. 
Zeolites contain micropores of molecular dimensions of <1 nm [21], play an important 
role in modifying the physics, chemistry and biology of soils [22], and the Scanning 
Electron Mircroscope microimages exhibited crystals with tubular [23], cuboid struc-
ture [24], and amorphous foliated crystals [25] for various types of zeolites. 

They are becoming the subject of interesting investigation in various agricultural is-
sues [20] [26] particularly the ion-exchange properties as they can serve the dual role of 
carrier and dispenser of plant nutrients.  

3. Enhanced Efficiency Fertilizers 

An alternative to enhance the efficiency of N fertilizer is the use of modified sources 
with lower or controlled release of nutrients. Fertilizers with agronomic, economic or 
environmental benefits over the conventional forms are called as enhanced efficiency 
fertilizers (EEF) [12] [27] [28]. Trenkel [28] proposed that slow release is associated 
with the delay of the release mechanism, and controlled release has a change in the type 
of delivery mechanism with a delay in nutrient liberation. Controlled- and slow-release 
fertilizers are prepared to release their nutrient content gradually, and if possible, match 
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their release with the crop nutritional requirements, or to extend their availability more 
than high solubility fertilizers. The advantages of these nutrient sources are the elimi-
nation of the use of topdressing fertilization, labor and fuel saving, soil compaction and 
root damage minimizing, and preventing crop damage, as well as reducing environ-
mental contamination [15] [27] [28]. Independent of the fertilizer tecnology used, Ti-
milsena et al. [12] after reviewing several agronomic studies concluded that EEFs were 
superior to conventional fertilizers. Besides on the studies on new technologies for the 
slow or controlled release fertilizer production have been widely diffused, further stu-
dies are required regarding new materials, alternative routes and more economical 
preparation involved.  

4. Nitrogen Management through Zeolite Based Interventions  

An example of this is that Urea-N losses could be minimized using zeolites as additives 
in the fertilizers to control the retention and release of NH4

+ and convert it as an EEF.  
Two processes viz. particle diffusion and film diffusion have been reported in the li-

terature as the kinetics of ion-exchange process in zeolites. Probably the process starts 
with diffusion within the zeolite in the former and diffusion transport through the liq-
uid film surrounding the particle in the latter have been assumed. However, the prefe-
rence of a zeolite for a particular cation in a multicomponent system depends on vari-
ous factors, viz. Si/Al ratio, the exchangeable cation in the zeolite which should be ana-
lyzed for a better understanding of the ion-exchange mechanism [29]. 

A decade back itself [30] the use of minerals for agricultural purposes was becoming 
widespread, and zeolite concentrates were known to have a special niche in this catego-
ry [31]. Zeolite minerals are crystalline hydrated aluminosilicates of alkali or alka-
line-earth metals, structured in three-dimensional rigid crystalline network, formed by 
the tetrahedral AlO4 and SiO4, which come together to compose a system of canals, cav-
ities and pores at nanoscale [31]. These minerals are characterized due to the retention 
and release of water and exchange cations without any change in the crystal structure. 
The worldwide number of identified natural zeolites minerals demonstrates both their 
great variety and the present-day interest on their potential applications in the industry 
and the agriculture [30]-[32]. Zeolite structure allows the formation of channels (me-
sopores) of around 78 to 115 Å for clinoptilolite zeolite (Table 1). This mesoporous 
structure provides high surface area (8 to 72 m2∙g−1 for clinoptilolite zeolite,). However, 
the ionic charge of the aluminosilicates are not neutral, and requires cations to stabilize 
it, and the most common ions are Na+ and K+ [31]. These cations, associated with high 
surface area, provides one of the most important properties of these minerals (Table 1): 
the high cation exchange capacity as 2.6 meq∙g−1 (stilbite) and 3.0 meq∙g−1 (clinoptilo-
lite).  

In Brazil there are three regions with sedimentary zeolite which widely varies in the 
depth of occurrence and the stilbite (zeolite) concentration. The largest zeolite reser-
voirs are found in the Parnaiba river valley, where the stilbite form of the heulandite 
group dominates reaching approximately 50% of sediment [32] [35] [36]. 
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Table 1. Physical and chemical characterization of two species of zeolite. 

Physical and chemical characteristics 
Zeolites 

Clinoptilolite Stilbite 

SiO2/Al2O3 0.53 0.09 

CEC (meq∙g−1) 2.96 2.55 

pH (water) 10.0 8.4 

Specific area (m2∙g−1) 72.2 8.8 

Pore volume (×10−3 cm3∙g−1) 25.6 1.0 

Pore diameter (Å) 77.5 115.1 

SiO2 (%) 71.1 62.5 

Al2O3 (%) 14.6 16.3 

CaO (%) 7.3 9.5 

K2O (%) 2.4 2.5 

SO3 (%) 1.9 2.1 

Fe2O3 (%) 2.2 6.0 

Source: Adapted from Monte et al. [33] and Batista-Filho et al. [34]. 

 
Zeolites also improve the efficiency of nutrient use by increasing the availability of P 

from phosphate rock [37] [38], the utilization of N- 4NH+  and N- 3NO−  and reduced 
losses by leaching of exchangeable cations [30] [31] [36]. 

5. Results of Field and Laboratory Studies 

The main action of zeolite in partial reduction of NH3 loss by volatilization occurs by 
the control of retention of ammonium ion, formed by urea hydrolysis in the soil, due to 
zeolite high cation exchange capacity and ammonium retention from soil solution [36] 
[39] [40]. N inputs from fertilizers increase 4NH+  and 3NO−  soil concentrations and 
may increase the soil emission of the greenhouse gas (GHG) as N2O [14] [16]. Howev-
er, information on how urea-aluminosilicate slow-release nanocomposites might affect 
volatilization, nitrification and denitrification processes in the soil still need more stu-
dies. Besides retaining large quantities of ammonium ion, these minerals also interfere 
in the process of nitrification [41]. 

Studies with zeolites in Brazil have begun a few years ago and are advanced. The 
benefit of the Brazilian zeolites use in fertilizers formulations have been demonstrated 
in several studies. In laboratory tests, Baptista-Filho et al. [42] demonstrated the am-
monia retention by zeolite using a photoacoustic set-up, which simulated tropical 
weather temperature. The positive effect of zeolite was confirmed in a field experiment 
with rose buds.  

In a field experiment Bernardi et al. [43] evaluated dry matter yield and nutritional 
levels of nitrogen of silage corn fertilized with urea + zeolite. Treatments comprised 
two types of stilbite zeolite (natural and concentrated), four levels of nitrogen (0, 50, 
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100 and 200 kg∙ha−1) and three ratios of zeolite (25%, 50% and 100% of N level). Treat-
ments were applied 60 days after planting in the topdressing fertilization. The use of 
concentrated (650 g∙kg−1 of stilbite) or natural (470 g∙kg−1 of stilbite) zeolite with urea 
increased, respectively 5.5% and 3.6% the silage corn dry matter production and N leaf 
concentrations.  

In a pot experiment with Italian ryegrass Bernardi et al. [17] observed differences in 
the rate of NH3-N volatilization with addition of 20% of zeolite to urea with a decreas-
ing of accumulated volatilized NH3-N. Results indicated that approximately 21% of ap-
plied N was lost as NH3-N+ when there was no addition of zeolite to urea. And more 
recently Campana et al. [44] carried out a greenhouse pot experiment and a field trial 
with Tanzania-grass pastureand observed that the smallest losses by volatilization oc-
curred at the proportions of 25% of zeolite in Urea-N. The determination coefficients of 
regression equations to ammonia losses by urea volatilization depending on the zeolite 
doses from three trials were low (less than 50%); therefore, the volatilization pattern 
estblishment associated with each zeolite levelswas possible. Considering the point of 
inflection of the curve as the best zeolite level, the lower percentage of NH3-N volati-
lized (17.2%) was obtained with 33% of zeolite in mixture with urea. This partial reduc-
tion on NH3 loss by volatilization occurs by the control of retention of ammonium ion 
by zeolite minerals [39] [40].  

Clinoptilolite is the most known and used zeolite specie for retaining ammonium ca-
tion [31]. Werneck et al. [45] achieved reduction of losses by ammonia volatilization 
when urea was applied with clinoptilolite. The natural zeolites recovering or fully in the 
urea granule decrease on average the losses of NH3-N volatilization by 20%, and also 
increased the amount of the N absorbed by plants of sorghum. Comparing both zeolite 
species (clinoptilolite and stiltibe), Baptista et al. [34] showed that the Brazilian zeolite 
stilbite has the ability to retain half of the quantity of ammonium held by the clinoptilo-
lite. These differences in NH3-N volatilization reduction are due the physical and 
chemical characteristics of each mineral [Table 1]. 

However the property of cation exchange is shown by the aluminosilicate, repre- 
sented not only by zeolites, but especially by clay minerals. Clay minerals are crystalline 
hydrated aluminum silicates, structurally oriented as silicate lamellae bonded to alumi-
nate lamellae. These lamellae are spatially arranged by stacks separated by exchange 
able ions and structural water [46] [47]. The crystalline structures are classified into 2 
types: structures 1:1 (kaolinite, serpentine) and structures 2:1 (talc-pyrophyllite, mica, 
smectite, vermiculite, chlorite, attapulgite, sepiolite). Only a small number of clay min-
erals are components of industrial clays: kaolinite (kaolin); montmorillonite (bento-
nite); talc (talc); vermiculite (vermiculite) and chrysotile (asbestos). Just as zeolites, the 
cation exchange capacity in clay minerals is quite pronounced, however, values may 
range from 10−3 meq∙g−1 (phyllites) to 1 meq∙g−1 (montmorillonites and vermiculite). 

Bentonite, a hydrated layered silicates clay mineral, is also able to exchange cations, 
and intercalate neutral molecular species between the interlayer regions by interaction 
with structural water. Pereira et al. [48] demonstrated that a nanocomposite formed 
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from a montmorillonite exfoliation in a urea matrix controlled the solubilization 
process, delaying the N release. The results showed that it was possible to obtain by cold 
extrusion, a high N content and adequate strength compatible to commercial fertilizer. 
Microstructural analysis of composites indicated that the extrusion process generated 
two regions, one comprising the nanocomposite itself (montmorillonite and urea), and 
other regions with urea granules. Thus, the authors attributed the release process not 
only to the clay mineral-urea interaction, but also to the creation of barriers to free urea 
diffusion out of the granule. 

Although the results have showed that the aluminossilicate and urea mixture can re-
duce ammonia volatilization, the utilization of these mineral by farmers will depend on 
their cost. Zeolite natural reserves are present in Brazil, and the cost of this mineral may 
be significantly reduced in the future if these reserves are commercially explored [44]. 
But other zeolite species can be imported from different countries (USGS, 2013), and 
bentonite is a common explored mineral in Brazil. Besides the differences on efective-
ness of using these minerals the availability should be conidered. The dual benefit of 
zeolites viz., carrier and/or medium to free nutrients can be utilized in crop manage-
ment practices (Ramesh et al. 2011). 

6. Conclusion 

The reduction in ammonia losses by volatilization and the increased efficiency of N uti-
lization when urea is used together with aluminosilicates was demonstrated in labora-
tory, greenhouse and field experiments. These results indicate that aluminosilicates 
minerals are able to improve the efficiency of nitrogen use, and contribute to increasing 
N uptake through the control of retention of ammonium ion.  
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