
CROPS AND SOILS RESEARCH PAPER

Applying the generalized additive main effects and multiplicative
interaction model to analysis of maize genotypes resistant to grey
leaf spot

C. R. L. ACORSI1, T. A. GUEDES1, M. M. D. COAN2*, R. J. B. PINTO2, C. A. SCAPIM2,
C. A. P. PACHECO3, P. E. O. GUIMARÃES3 AND C. R. CASELA3

1Departamento de Estatística (DES), Universidade Estadual de Maringá (UEM), Av. Colombo, 5·790 – Zip Code
87020-900 Jd. Universitário, Maringá – Paraná, Brazil
2Departamento de Agronomia (DAG), Universidade Estadual de Maringá (UEM), Av. Colombo, 5·790 – Zip Code
87020-900 Jd. Universitário, Maringá – Paraná, Brazil
3 Embrapa Milho e Sorgo, CNPMS, Rodovia MG 424 km 45, CP 285 – Zip Code 35701-970 – Sete Lagoas, MG, Brazil

(Received 27 May 2014; accepted 22 November 2016)

SUMMARY

Analysing the stability and adaptation of cultivars to different environments is always necessary before recom-
mending them for planting on large areas. Additive main effects and multiplicative interaction (AMMI) models
have been used to analyse genotype-by-environment interactions (G × E). AMMI models require data with homo-
geneous variance, normal errors and additive effects. However, agronomic data do not always conform to these
statistical assumptions. The objective of the present study was to analyse G × E interactions for severity and inci-
dence of grey leaf spot, a foliar disease in maize caused by Cercospora zeae-maydis, using a generalized AMMI
model. Data were collected and evaluated for 36 maize cultivars from experiments carried out in nine Brazilian
regions in 2010/11 by the Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA –Milho e Sorgo). Only two of
three stable genotypes defined by a quasi-likelihood model with a logistic link function could be recommended
for their desirable agronomic characteristics. Four growing locations in which the genotypes were stable were
identified, but in only one of these was stability associated with very severe grey leaf spot disease. Cultivars
adapted to specific locations with low percentage disease severity were also identified.

INTRODUCTION

Optimal maize production depends on genotype (G),
environment (E) and both together when there is sig-
nificant G × E interaction (Allard 1999). Efforts have
been made to quantify, minimize or make use of the
G × E interaction when making strategic decisions
regarding maize breeding (Cruz et al. 2006).
The additive main effects and multiplicative inter-

action (AMMI) models developed by Kempton
(1984); Gauch & Zobel (1988); Zobel et al. (1988)
and Crossa et al. (1991) are important statistical
methods for plant breeding. Although these models
provide easy and simple methods for interpreting

parametric estimators, they require normally distribu-
ted data.

Kempton (1984) discusses the method of principal
components (PC) as a way to summarize the response
of a genotype to different environments. In this
method, the matrix of estimated G × E interaction
effects from the classical analysis of variance
(ANOVA) model is subjected to principal component
analysis (PCA). The G × E interaction is thus decom-
posed into a number of multiplicative terms. The
hypothesis is that most of the G × E interaction can
be explained by the first few terms of the PCA and
that these have some meaningful interpretations.

The AMMI model has been applied since the
1990s to evaluate G × E interactions and allow
breeders to recommend stable cultivars adapted to
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either broad or specific environments. However, the
AMMI model can only be applied when the response
variable Y follows a normal distribution with a
homogeneous variance. If these assumptions are
not met, a methodology based on a generalized
linear model (GLM) is more appropriate.
Algorithms for generalized additive main effects
and multiplicative interaction (GAMMI) developed
by van Eeuwijk (1995) and Gabriel (1998) are
based on the basic concepts for AMMI expanded
by the theories of GLM and the quasi-likelihood
method. These GAMMI models assume that the
response variables have an exponential probability
distribution. Earlier, Wedderburn (1974) established
the quasi-likelihood method to accommodate a
wider range of possible distributions and variances
(Agresti 2002). The quasi-likelihood method is a
generalization of the GLM (Paula 2004) that
assumes a single relationship between the mean
and variance rather than an a priori distribution for
Y. Similar to the GLM, the quasi-likelihood model
assumes a link function that is a linear predictor
instead of a specific distribution of the response vari-
able Y (McCullagh & Nelder 1989). It also assumes
that Var(Y) = ϕ Var(μ), where μ is the mean of Y, V(μ)
is a new function of μ and ϕ is the dispersion
parameter.

Grey leaf spot can severely affect susceptible culti-
vars, resulting in crop losses of greater than 0·80. In
maize, the symptoms of grey leaf spot include irregu-
lar, rectangular grey spots that develop parallel to the
leaf veins (Fantin et al. 2001; Fornasieri Filho 2007).
According to Brito et al. (2007), the pathogen colo-
nizes large areas of foliar tissue, reduces photosyn-
thesis, induces early leaf senescence and decreases
crop yield. Wind or raindrops can disseminate the
pathogen. Because the spores remain on the stover
after harvest, a management strategy must be
adopted to reduce recontamination (Bhatia &
Munkvold 2002).

Thus, a maize variety carrying a large number of
resistance genes is likely to have better yield in envir-
onments in which grey leaf spot is prevalent. Such
genotypes must have stable, high yield with little vari-
ation in different environments (Tarakanovas &
Ruzgas 2006).

The objective of the present study was to evaluate
and quantify the G × E interaction for response to
grey leaf spot in maize using GAMMI models to iden-
tify genotypes that are resistant to grey leaf spot,
adapted to specific environments, or both.

MATERIALS AND METHODS

Data pertaining to grey leaf spot severity in Brazil were
collected from 36 maize cultivars evaluated in nine
different environments in 2010/11. The experimental
design in each environment was a randomized com-
plete block with two replications. Plots consisted of
four 5-m rows spaced 0·70 m apart with experimental
units of 14 m2. Fertilization, liming and other cultural
practices were applied as required in each location
and experimental area. Grey leaf spot severity was
quantified as the percentage of diseased leaf area
within each plot.

The locations in which the 36 genotypes (G1 to G36)
were evaluated by EMBRAPA are shown in Table 1. In
the first stage of the present study, the Shapiro–Wilk
multivariate normality test and the Bartlett test for homo-
geneity of variance were used to determine whether to
apply an AMMI model or a GAMMI model to analyse
the G× E interactions for incidence and severity of
grey leaf spot in maize in these environments.

Additive main effects and multiplicative interaction
model

The AMMI model was composed of additive and
multiplicative components where Y represents a
vector of n independently distributed observations
that can be predicted by the categorical variables for
genotypes and environments. The additive compo-
nent, with fixed main effects for genotype (αi) and
environment (βj), was assumed to be a fixed effect,
and inferences were restricted to the grey leaf spot
response variables, disease incidence and severity
(Searle et al. 1992).

A least-squares method was used to estimate these
effects via a two-way ANOVA using the means
matrix for Y(gxe). The multiplicative component was
estimated by the singular value decomposition (SVD)
of the residual matrix from the two-way ANOVA of
the genotype–environment means Y(gxe). This matrix
will be denoted as R(gxe). Generally, the SVD of a
matrix A is defined as the product of an orthogonal
matrix U by a diagonal matrix S and the transpose of
the orthogonal matrix V; thus, Amn ¼ UmnSmnVT

nn.
Required conditions are that UTU = I and VTV = I; the
columns of U are orthonormal eigenvectors of AAT;
the columns of V are orthonormal eigenvectors of
ATA; S is a diagonal matrix containing the square
roots of eigenvalues from U or V in descending
order; and A = VS2VT (Ientilucci 2003).
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Therefore, the model equation for the ith genotype
in the jth environment in the rth block is (Gauch &
Zobel 1988):

Yijr ¼ μþ αi þ βj þ ρrð jÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
additive terms

þ
Xp

h¼1

λhγihδ jh

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
multiplicative terms

þ εijr

where Yijr is the phenotypic trait (i.e., the proportion of
plants affected by grey leaf spot) of genotype i in envir-
onment j for replicate r; μ is the grand mean; αi is the
fixed effect for genotype i, where i = 1, 2,…, g; βj is the
fixed effect for the environment j, where
j ¼ 1; 2; :::; e; λh is the singular value for the inter-
action principal component (IPC) axis k; γih and δjh
are the IPC scores (i.e., the left and right singular
vectors) for genotype and environment, respectively,
for axis k; ρr(j) is the effect of the rth block in the jth
environment; r is the number of blocks; p is the rank
of the R(gxe) matrix that corresponds to the number of
main effects from the interaction (PCI) retained by
the residual matrix, p¼minðg�1; e�1Þ; ðαβÞij ¼Pp

h¼1 λhγihδjh is the specific interaction of the ith geno-
type with the jth environment and ɛijr is the experimen-
tal error that is assumed to be independently and
normally distributed with a mean of zero and variance
σ2; εijr ∼ Nð0; σ2Þ: The decomposition of the residual
matrix into singular values (SVD) permits the partition-
ing of the least squares from the elements of the R(gxe)

matrix by reducing the number of axes, or K < p such
that the model remains informative, where K is the
number of axes or PC retained by the model, but
with fewer degrees of freedom. This partition is:

Xp

h¼1

λhγihδ jh ¼
XK

h¼1

λhγihδ jh þ
Xp

h¼1þK

λhγihδ jh;

where
Pp

h¼1þK λhγihδjh ¼ φijr quantifies the disturb-

ance and φijr is the residual containing all of the multi-
plicative terms not included in the model.

Therefore, using the least-squares approximation to
the R(gxe) matrix by the first n components of the SVD,
the reduced model ηijr is estimated by:

Ŷijr ¼ μ̂þ α̂i þ β̂j þ ρ̂rð jÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
additive terms

þ
XK

h¼1

λhγihδ jh

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
multiplicative terms

The PCA permits the components from the interaction
to capture the decreasing proportion of the variation
that is present in matrix GE, or λ21 � λ22 � � � � � λ2K . A
sufficient number of components (K) to represent the
target model can be identified using Gollob’s test
(Table 2) (Gollob 1968).

Generalized linear models

When a distribution is non-normal, GLMs expand the
possibilities for statistical modelling. These models
allow fitting of n random variables yi, where i = 1, 2,…,
n, that are independently distributed with mean μi and
an exponential probability density function. These
random variables are associated with the explanatory
variables xj, j = 1, 2,…, p by means of a link function g
(μi) designated as the linear predictor (ηi) that is mono-
tonic and differentiable such that:

ηi ¼ gðμiÞ ¼
Xp

j¼1

xijψj

where ψj represents the coefficients of the linear
predictor.

The maximum-likelihood method is the most useful
method for estimating the vector of the unknown

Table 1. Codes and geographic coordinates for the locations in which maize genotypes were evaluated

Locations Codes Brazilian states* Latitude (S) Longitude (W)

Campo Mourão CM Paraná-PR 24°02′ 52°22′
Goiânia GO Goiás-GO 16°40′ 49°15′
Goianésia GS Goiás-GO 15°19′ 49°07′
Jataí JT Goiás-GO 17°52′ 51°42′
Londrina LD Paraná-PR 23°18′ 51°09′
Ponta Grossa PG Paraná-PR 25°05′ 50°09′
Planaltina PL Goiás-DF 15°27′ 47°36′
Patos de Minas PM Minas Gerais-MG 18°34′ 46°31′
São Sebastião do Paraíso SP Minas Gerais-MG 20°55′ 46°59′

* State name and state abbreviation.
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parameters of the linear predictor ψj. Cordeiro &
Demétrio (2008) explained that the robust and fast
GLM algorithm rarely fails to converge. However,
when this does happen, the fitting procedure must
be restarted using the current estimate as the starting
value for another model.

The deviance function derived from the likelihood
ratio statistic tests the significance of the coefficients
of the linear predictor. Therefore, in a sequence of
k nested models (which have the same probability
distribution and link function, but the linear compo-
nent M0 is a special case of the general linear compo-
nent M1) (Dobson 2002), tests of significance are
performed using an analysis of deviance (ANODEV)
table. Thus the deviance function from the GLMs is
analogous to the residual squared sums from least
squares. Standardized Pearson residuals, standar-
dized deviance residuals, and Cook’s distance mea-
sures were used to diagnoses in the quasi-likelihood
models.

Quasi-likelihood models

Quasi-likelihood has been used due to the character-
istics of the data and the model. Although the GLM
represents a great advance in statistical modelling
because it allows the fitting of a large number of
models, in some instances the choice of an exponen-
tial model is not adequate (McCullagh & Nelder
1989), so Wedderburn (1974) proposed quasi-
likelihood estimation. Assuming that Var(μ) is a
known function of the mean, and ϕ is the dispersion
parameter, the quasi-likelihood function for every

observation is

Qi ¼ Qiðy; μÞ ¼ ∫
μi

yi

yi � t
f�VarðtÞdt; yi � t � μi

Inference in quasi-likelihood models is similar to that
in GLM because quasi-likelihood estimates maximize
Q or solve the following system of equations:

Xn

i¼1

ðyi � μiÞ
fVðμiÞ

∂μi
∂ψj

¼ 0; j ¼ 1; . . . ;p

and

Xn

i¼1

ðyi � μiÞxij
fVðμiÞ

∂μi
∂ηi

¼ 0

In the first system, μi ¼ g�1ðηiÞ ¼ g�1ðzTi ψjÞ ¼ hðxTi ψjÞ
and this expression are based on the GLM theory. The
dispersion ϕ is estimated using the method of moments
on the residual vector ðY � μ̂Þ:

f̂ ¼ 1
n� p

Xn

i¼1

ðyi � μ̂iÞ2
Vðμ̂iÞ

¼ χ2

n� p

where χ2 is Pearson’s generalized chi-square statistic
for goodness-of-fit, n is the number of observations,
and p is the number of parameters (ψj). The general-
ized function can be estimated in a similar manner
to the deviance function, using the difference
between the quasi-likelihood logarithm of the
current and the saturated models:

Dðy;μ̂Þ ¼2ffQðy;yÞ �Qðμ̂;yÞg
¼ � 2ffQðμ̂;yÞ �Qðy;yÞg

Because the contribution from the saturated model is
zero, then:

Dðy;μ̂Þ ¼ �2fQ ¼ �2f
X

∫
μi

yi

yi � t
fVðtÞdt

¼ �2
X

∫
μi

yi

yi � t
VðtÞ dt

Thus, the quasi-deviance function does not depend on
the dispersion parameter ϕ. The quasi-deviance func-
tion Dðy;μ̂Þ=f is compared with the percentiles of
the χ2 distribution with (n–p) degrees of freedom,
although the null distribution of f�1Dðy;μ̂Þ is not
usually known (Paula 2004).

Generalized additive main effects and multiplicative
interaction

The GAMMI theory requires the same basic assump-
tions as the GLMs. The response variable Y must be

Table 2. Complete variance analyses of the means
according to Gollob (1968)

Source of variation D.F. (Gollob)
Deviance
(Gollob)

Blocks/environment (E) e(j–1) Deviance (R|E)
Genotype (G) g–1 DevianceG
Environment (E) e–1 DevianceE
G × E interaction (g–1)(e–1) DevianceGE

Axis1 g + e–1–(2 × 1) λ21
Axis2 g + e–1–(2 × 2) λ22
… … …

Axisk g + e–1–(2 × j) λ2k
Plot error e(g–1)(j–1) DeviancePlot error

Total gej–1 DevianceTotal
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independently distributed and have a known expo-
nential family distribution, and p associated explana-
tory variables Xj, where j = 1, 2, …, p are determined
by a link function g(μi) that designates a linear pre-
dictor ηi that is monotonic and differentiable such that:

ηi ¼ gðμiÞ ¼
Xp

j¼1

Xijψj

These linear predictors have been useful to estimate
the mean severity of grey leaf spot. Because the link
function was the logit in which η = g(μ) = log(μ/1− μ),
the mean proportion of disease was estimated by the
relationship

g�1ðηijrÞ ¼
expðμþ αi þ βj þ ρrð jÞ þ

PK
h¼1

λhγihδ jhÞ

1þ expðμþ αi þ βj þ ρrð jÞ þ
PK
h¼1

λhγihδ jhÞ

where K is the number of axes considered.
The GAMMI model is applied using van Eeuwijk’s

algorithm adapted from Sumertajaya (2007) in R soft-
ware version 3.0·2 (R Development Core Team 2013)
using the R package gnm (generalized nonlinear
models) (Turner & Firth 2009). This algorithm uses itera-
tive alternating generalized regression of rows and
columns to estimate the parameters. The first step in
determining the appropriate model is to identify the dis-
tribution and handling of the experimental data. An
error plot should be used to visualize whether the
data have, for example, a Poisson or binomial distribu-
tion instead of a normal distribution. The second step is
to fit the GAMMI model, in which each regression
includes a GLM class that is arrived at iteratively. This
algorithm involves convergence in row regression, in
column regression, and in alternating regression (Hadi
et al. 2010). If the model converges, then ANODEV
may then be performed. Finally, the data matrix is
represented as a biplot. Figure 1 shows the algorithm
necessary for applying the GAMMI model.
To determine the number of axes or the number

of multiplicative terms in a GAMMI model, a general-
ization of the AMMI method via the tests described
below may be used. The F test does not require a
special table and is easy to calculate. The statistic
used is F = (Dev. restricted/D.F. sv restricted)−
ðDev: full= D:F: fullÞ=f̂ , which approximates the
F(D.F.source of variation; D.F.error) distribution. Where:

Dev: : deviance; f̂ is the dispersion parameter from
quasi-likelihood estimation, D.F..sv: degrees of
freedom from source of variation that is being tested.

The test proposed by Gollob (1968) allocates
(g− 1)(e− 1)− (2k− 1) = g + e− 1− 2k degrees of
freedom to the eigenvalues associated with the kth
axis, where k= 1, 2,…, n and n =minimum (g–1, e–1),
which corresponds to the difference between the
number of parameters to be estimated and the number
of factors applied. Thus, the mean deviance is tested
against the estimated error.

Stability is the maintenance or predictability of the
response variable in various environments
(Annicchiarico et al. 2005; Cruz et al. 2006). For the
incidence or severity of disease, a genotype is consid-
ered to be stable when its disease severity percentage
is low and constant with respect to environmental
variation under both specific and broad conditions.
Stability is estimated by analysing the magnitude and
sign of the biplot scores corresponding to the selected
GAMMI model. Genotypes and environments with
low (near zero) scores are considered stable, which
is expected for genotypes and environments that
have a small contribution to the overall interaction
(Duarte & Vencovsky 1999).

The adaptability of a genotype indicates its ability to
take advantage of environmental effects to ensure a
high level of productivity. Adaptability is predicted
as a function of the responses for each combination
of genotype and environment in the model selected
by GAMMI IPCAk (axis k: axis of interaction PCA).
The correlation between cultivars and the environ-
ment is based on the angles between vectors deter-
mined by coordinates of the interaction (axis 1, axis 2)
and the vertex. The cosine of the two vectors indicates
the level of correlation between two corresponding vari-
ables (Rencher 2002). Therefore, a small angle indicates
highly positively correlated variables, perpendicular
vectors indicate non-correlated variables, and an
angle greater than 90° indicates a negative correlation.

RESULTS

Box plots of grey leaf spot incidence showed strong
evidence of asymmetric disease severity and discrep-
ancies in the data for the distribution of disease by
location and genotype (Fig. 2).

The results of the Shapiro–Wilk test (W) indicated
that the data were not normally distributed (W =
0·4974, P < 2·2 × 10−16). Similarly, the hypothesis of
homogeneous variance was rejected based on
results of the Bartlett test, both for genotype (D.F. =
35; χ2 = 520·30; P < 2·2 × 10−16) and location (D.F. =
8; χ2 = 682·88; P < 2·2 × 10−16).
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Thereafter, the first step in applying the GAMMI
methodology was to determine the means, variances
and coefficients of variation (CV) for the severity of
grey leaf spot. Some discrepant values for location
and genotype were detected. The highest disease
severity levels were detected in Campo Mourão
(36·85%) and Patos de Minas (6·67%), and the
lowest levels were detected in Goianésia (0·61%)
and Londrina (1·45%). Campo Mourão had the
lowest coefficient of variation (70·6%) for disease
severity, while those for Planaltina (329·5%) and São
Sebastião do Paraíso (260·9%) were very high.

Coefficient of variation values for other locations
ranged from 83·4 to 250·7%. Moreover, there was
large variability in disease severity among genotypes.
Means for grey leaf spot severity ranged from 0·9 (G15

and G10) to 34·5% (G29) and the CV values ranged
from 81·6 to 283·9% (Table 3).

The models were fit using quasi-likelihood with the
logit link function. The first model (model 1) has the
variance function (μ) = μ(1 − μ) . The second model
(model 2) was based on Wedderburn (1974), in
which the variance function is equal to the square of
the variance of the binomial distribution, Var(μ) = [μ

Fig. 1. van Eeuwijk’s algorithm for modelling GAMMI, adapted from Sumertajaya (2007). *Analysis of Deviance (ANODEV).
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(1− μ)]2. The logit link function is the linear predictor
model.
The quasi-likelihood models are depicted in Fig. 3.

Graphs of the standardized deviance residuals, linear
predictor, index and normal QQ plot for model 1 are
depicted in the first column, and those representing
model 2 are depicted in the second column. Model
2 fit the data better with a more normal distribution
of residuals (Fig. 3).
The ANODEV with the logit link function and vari-

ance function Var(μ) = [μ(1− μ)]2 was significant for
genotype and environment and also for the two first
axes of the G × E interaction (Table 4). The relative
contribution of genotype and environment to the inter-
action is shown in Fig. 4, and the genotypes with desir-
able low mean disease severity are shown in Fig. 5.
Figure 4 describes the variability associated with the
first two axes and Fig. 5 shows the relationship
between the average severity of grey leaf spot and
the first term of the interaction.
The first two components of the GAMMI graphic

that contain the average severity of grey leaf spot
and the first term of the G × E interaction identified

Campo Mourão, Goianésia, Londrina and São
Sebastião do Paraíso as locations in which the
average disease severity of genotypes is less variable.
The scores from these environments are close to the
vertex, which indicates minimal variation between
genotypes within each environment. However, the
disease severity responses of these locations were dis-
tinct. For example, genotypes in Campo Mourão had
low variability and high severity of grey leaf spot
(36·8%).

The contributions of Goianésia, Londrina and São
Sebastião do Paraíso to the G × E interaction were
relatively low, as indicated by average disease sever-
ities of 0·6, 1·4 and 2·3%, respectively, in these
regions (Fig. 4 and Table 3). The genotypes G9, G1

and G17 had average disease severities of 1·4, 1·9
and 7·0%, respectively, which were close to the
vertex. Therefore, these genotypes can be considered
stable because of their low variability for disease
severity.

Although genotype G17 is stable, it had greater grey
leaf spot severity than did G9 and G1 (Fig. 5 and
Table 3); thus, only G9 and G1 can be recommended

Fig. 2. Box plot of environments and genotypes showing the distribution of grey leaf spot severity. Locations: Campo Mourão
(CM), Goiânia (GO), Goianésia (GS), Jataí (JT), Londrina (LD), Ponta Grossa (PG), Planaltina (PL), Patos de Minas (PM) and São
Sebastião do Paraíso (SP).
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Table 3. Mean values of grey leaf spot severity estimated from two replications of 36 maize cultivars grown in nine locations during the 2010/11 growing
season

Genotypes

Locations

Mean Variance CV%CM GO GS JT LD PG PL PM SP

G1 0·150 0·000 0·005 0·000 0·000 0·010 0·000 0·005 0·005 0·019 0·0024 251·6
G2 0·150 0·000 0·000 0·000 0·005 0·010 0·005 0·005 0·005 0·020 0·0024 244·2
G3 0·250 0·005 0·005 0·000 0·005 0·010 0·000 0·055 0·000 0·037 0·0067 223·0
G4 0·100 0·000 0·000 0·000 0·005 0·055 0·000 0·005 0·000 0·018 0·0013 192·5
G5 0·200 0·000 0·005 0·000 0·000 0·055 0·000 0·055 0·000 0·035 0·0044 188·5
G6 0·350 0·000 0·005 0·000 0·000 0·055 0·000 0·055 0·005 0·052 0·0130 218·0
G7 0·150 0·005 0·005 0·005 0·010 0·010 0·000 0·055 0·010 0·028 0·0024 175·1
G8 0·100 0·000 0·010 0·005 0·005 0·010 0·000 0·010 0·000 0·016 0·0010 204·8
G9 0·100 0·000 0·000 0·000 0·005 0·010 0·000 0·010 0·005 0·014 0·0010 223·0
G10 0·010 0·000 0·005 0·000 0·005 0·050 0·000 0·010 0·000 0·009 0·0003 179·1
G11 0·100 0·005 0·005 0·000 0·005 0·005 0·000 0·010 0·000 0·014 0·0010 222·3
G12 0·100 0·000 0·000 0·000 0·000 0·055 0·000 0·010 0·000 0·018 0·0013 192·9
G13 0·600 0·000 0·010 0·055 0·055 0·100 0·005 0·100 0·010 0·104 0·0361 183·0
G14 0·300 0·000 0·000 0·000 0·000 0·055 0·000 0·005 0·000 0·040 0·0098 247·2
G15 0·055 0·000 0·005 0·005 0·000 0·010 0·000 0·005 0·000 0·009 0·0003 197·9
G16 0·100 0·000 0·000 0·005 0·000 0·010 0·005 0·055 0·005 0·020 0·0012 173·1
G17 0·600 0·005 0·005 0·010 0·000 0·005 0·000 0·005 0·000 0·070 0·0395 283·9
G18 0·350 0·000 0·005 0·005 0·000 0·100 0·000 0·010 0·010 0·053 0·0134 216·7
G19 0·700 0·000 0·055 0·010 0·005 0·010 0·150 0·250 0·005 0·132 0·0528 174·4
G20 0·500 0·005 0·005 0·005 0·005 0·055 0·000 0·055 0·000 0·070 0·0265 232·6
G21 0·350 0·000 0·005 0·010 0·000 0·055 0·000 0·010 0·005 0·048 0·0131 236·4
G22 0·400 0·000 0·000 0·050 0·050 0·005 0·005 0·010 0·005 0·058 0·0168 222·0
G23 0·700 0·000 0·005 0·055 0·005 0·055 0·005 0·005 0·005 0·093 0·0523 246·5
G24 0·600 0·000 0·005 0·010 0·005 0·100 0·005 0·055 0·005 0·087 0·0381 223·8
G25 0·250 0·055 0·000 0·005 0·005 0·010 0·000 0·010 0·010 0·038 0·0066 211·2
G26 0·350 0·005 0·005 0·010 0·000 0·010 0·005 0·010 0·005 0·044 0·0131 257·6
G27 0·600 0·005 0·010 0·005 0·005 0·005 0·010 0·010 0·005 0·073 0·0391 271·6
G28 0·800 0·100 0·005 0·200 0·005 0·055 0·300 0·100 0·200 0·196 0·0609 125·8
G29 0·950 0·350 0·005 0·500 0·100 0·100 0·400 0·400 0·300 0·345 0·0792 81·6
G30 0·600 0·055 0·010 0·010 0·010 0·055 0·000 0·055 0·005 0·089 0·0373 217·2
G31 0·700 0·200 0·005 0·005 0·050 0·055 0·010 0·105 0·055 0·132 0·0492 168·4
G32 0·100 0·050 0·010 0·005 0·010 0·005 0·000 0·155 0·010 0·038 0·0030 141·9
G33 0·500 0·050 0·000 0·200 0·005 0·005 0·005 0·100 0·005 0·097 0·0273 170·9
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for use in maize breeding programmes. The genotypes
shown in Fig. 4 that appear in the upper or lower
quadrants on the left showed the lowest severity of
grey leaf spot. The decreasing rank order of disease
severity for genotypes in the upper quadrant was
G12 (6ª) > G14 (17ª) > G4 (7ª) > G10 (1ª) > G5 (13ª) >
G20 (23ª) > G3 (14ª) > G11 (3ª) > G6 (20ª) > G7 (12ª) >
and G9 (4ª). The decreasing rank order of disease
severity for genotypes in the lower quadrant was G34

(9ª) > G18 (21ª) > G21 (19ª) > G8 (5ª) > G15 (2ª) > G24

(26ª) > G13 (30ª) > G1 (8ª) > and G17 (24ª). The geno-
types G32 (15ª) > G31 (31ª) > G35 (35ª) > G30 (27ª) >
G25 (16ª) > and G36 (33ª) in the upper right quadrant
were sequentially closest to the vertex of the 1° and
2° axes and had the highest grey leaf spot severity.
The genotypes G28 (34ª) > G29 (36ª) > G19 (32ª) > G23

(28ª) > G33 (29ª) > G22 (22ª) > G2 (11ª) > G27 (25ª) >
G26 (18ª) > and G16 (10ª) in the lower right quadrant
had the highest grey leaf spot severity and are shown
in decreasing order of disease severity.

Model 2 allowed detection of the variance asso-
ciated with the G × E interaction (Fig. 4) and axis 1
and axis 2 accounted for approximately 38·3 and
23·0% of variance associated with this interaction,
respectively.

The genotypes G9 and G1 were nearest to the
vertex, which indicated that they were resistant to
grey leaf spot and that this resistance was relatively
insensitive to environmental effects due to minimal
G × E interactions. However, the remaining genotypes
were sensitive to environmental effects in terms of
their responses to grey leaf spot and exhibited large
G × E interactions.

Genotypes with specific adaptations to particular
environments are generally chosen based on a posi-
tive relationship between that genotype’s position
and the respective environment in the same vectorial
direction, such as for crop yield, for which a
vector with a small angle (coincident straight line)
indicates a positive correlation between genotype
and environment. However, genotypes with specific
adaptation for disease resistance can be identified by
the inverse orientation of the vectors for genotype
and environment. Thus, the best genotypes to
select for adaptation to environmental conditions
should be those with the lowest average grey leaf
spot severity.

Genotypes with specific adaptations were those
with a reverse vectorial orientation relative to the
environment, according to the proposed model.
Figures 4 and 5 show that genotypes G20 (0·1%) andTa
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G10 (0·0%) showed a specific adaptability to São
Sebastião do Paraíso. Similarly, genotype G35

(35·0%), which had the same vectorial direction as
the environment and high average disease severity,
could not be recommended for Goiania, while G24

(0·0%) and G8 (0·0%) were adapted to Goiania.
The genotypes with higher specific adaptability for

Ponta Grossa are G16 and G19, with average disease
severities of 1%. Genotypes G3 and G11 had lower
average disease severities (0·0%) and greater adapt-
ability for Jataí. The most desirable genotypes for the
Planaltina region were G12 and G4, due to their

specific adaptability and disease severities of 0%.
Because of their high disease severity, genotypes
G29 (40·0%) and G28 (30·0%) should not be recom-
mended for use in breeding cultivars to grow in
Planaltina. G33 (0·5%) and G26 (1%) are the most
appropriate genotypes to recommend for use in
Patos de Mina. No genotype was particularly well
adapted to the conditions of Campo Mourão. On the
other hand, two genotypes could be highly recom-
mended for use in Goianésia, G6 (0·5%) and G26

(0·5%); the latter was highly adapted to that
environment.

Fig. 3. Graphical diagnoses for the quasi-likelihood models: Standardized deviance residuals/linear predictor, index, and
Normal QQ plots; index (i), where i is the sequential order in which the values yi were measured (proportion or
percentage leaf area severity affected on plot for genotypes). (Ai) Model 1, link function logit and variance function V(μ) =
μ(1− μ); (Bi) Model 2, logit link function and variance function V(μ) = [μ(1− μ)]2.
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DISCUSSION

Because the current statistical approach is not rou-
tinely applied for the analysis of disease severity
data in maize under field conditions, the data distribu-
tion had to first be characterized, then the model that
best fitted the data had to be determined. The suitabil-
ity of the present data for the proposed model can be
seen in Fig. 3. Note the random distribution of

residuals around zero, which suggests a lack of correl-
ation between the errors; the influence of error was
minor, as can be seen in the Normal QQ plot
(Fig. 3); points far out of alignment were not observed.
Thus, the Wedderburn model with a logistic function
was appropriate to describe the data set.

The ANODEV was significant for genotype and
environment as well as significant for the two first
axes of the interaction (Table 4). In this decomposition,
the singular value represents the level of association
between these factors. Because the variable response

Table 4. Analysis of deviance (ANODEV) for proportion of grey leaf spot severity, using model 2 with logit link
function and variance function Var(μ) = [μ(1−μ)]2]

Source of variation D.F. Qdev. Qdev. mean Quasi-residuals F P > F D.F. Gollob FGollob P > F

Blocks/locations 9 12·3 1·37 2298·1 0·71 0·1005 9 1·92 0·0483
Locations (L) 8 1045·1 130·6 2310·4 68·5 <2·2e−16 8 95·35 0·0E + 00
Genotypes (G) 35 1176·2 33·6 1121·9 17·61 <2·22e−16 35 47·15 0·0E + 00
Axis 1 42 429·6 10·2 692·2 5·4 <2·22e−16 42 12·56 0·0E + 00
Axis 2 40 258·3 6·5 433·9 3·4 <2·22e−16 40 10·95 0·0E + 00
Residual axis 198 433·9 2·19 1·45 0·1650
Error 315 −224·5

Total 647 3355·5

D.F., degrees of freedom; Qdev., quasi-deviance.

Fig. 4. The G × E interaction for grey leaf spot severity using
the GAMMI model 2 with the link function logit and
variance V(μ) = [μ(1− μ)]2. The quasi-deviance proportion
of the axis 1 accounts for 38·30% of the G × E interaction
and that of axis 2 accounts for 23·0% of the G × E
interaction. Locations: Campo Mourão (CM), Goiânia
(GO), Goianésia (GS), Jataí (JT), Londrina (LD), Ponta
Grossa (PG), Planaltina (PL), Patos de Minas (PM) and São
Sebastião do Paraíso (SP).

Fig. 5. GAMMI graphic that shows the relationship between
the average severity of grey leaf spot and the first term of the
G × E interaction. Locations: Campo Mourão (CM), Goiânia
(GO), Goianésia (GS), Jataí (JT), Londrina (LD), Ponta Grossa
(PG), Planaltina (PL), Patos de Minas (PM) and São Sebastião
do Paraíso (SP).
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was within the interval [0, 1] the logistic link function
was used. Thus, the quasi-likelihood models were
evaluated with the logit link and the variance functions
Var(μ) = μ(1− μ) and Var(μ) = [μ(1− μ)]2. Therefore, the
Wedderburn model, model 2, more reliably described
the data (Fig. 3).

Among the adjusted models, model 2 showed fewer
discrepant values, did not violate the initial assump-
tions, and presented significant coefficients, so it was
the most suitable model to describe the responses in
these data. The cumulative proportion of quasi-devi-
ance of the two first axes relative to the total quasi-
deviance was high (61·3%) (Table 5). However, at
least 75% of the total variance could be attributed to
the first two PC axes (Ferreira 2008). This indicates
that these components could replace the n original
variables without excessive loss of information.
These axes measured methodological efficiency, but
they could also be used to quantify the G × E
interaction.

Although the basic assumptions necessary to estimate
the stability and adaptability of genotypes in various
environments are usually violated, the GAMMImethod-
ology is a step forward in detecting interaction effects.
Previously, the required computational methods hin-
dered application of the GAMMI method, but specific
routines are now available in R (these commands are
shownAppendix A) to fit thesemultiplicative interaction
models using van Eeuwijk’s algorithm (1995). The SVD
of the residual matrix used to obtain the coefficients for
the main effects is shown in Table 6 together with the
environment and genotype scores.

Duarte & Vencovsky (1999) stated that favourable
combinations of genotypes and environments have
coordinates with the same sign and are graphically
distant from the vertex. The positive or negative inter-
actions depicted by the biplot, principally those of
high magnitude, can be useful in plant breeding
programmes. For disease severity, combinations
with opposite signs were of interest because they indi-
cated genotypes suited to particular environments.
Graphical representation as a biplot also permits the
quick identification of more productive environments
with scores of approximately zero that contribute less
to the G × E interaction. Such environments could also
be favourable locations for the preliminary steps of a
plant breeding programme (Pacheco et al. 2003).
Therefore, genotypes and environments with low
scores for the interaction axes contribute less to
model variance and are considered stable. These gen-
otypes could be recommended for growing on large

crop acreage due to their high mean crop yields and
disease resistance.

In the analyses of the stability and adaptability of
genotypes using multiplicative models, the interaction
effects can be evaluated using graphical representa-
tions that approximate the SVD residual matrix of
the model with another low rank matrix. The biplot
facilitates identification and understanding of the
components of the G × E interaction. Rencher (2002)
defined the biplot as a two-dimensional representation
of the data matrix that defines the SVD produced by
the SVD method. Here, the data matrix is the R(gxe),
which identifies an element for every g vector of
observations (g lines in the R(gxe) matrix, or genotypes)
simultaneously with an element for every e variable
(e columns in the R(gxe) matrix, or locations).
Therefore, with this technique, one can readily identify
productive genotypes with wide adaptability for mega-
environments, limit genotypes with specific adaptabil-
ity to determined agronomic zones, and identify the
environments that should be tested (Kempton 1984;
Gauch & Zobel 1996; Ferreira et al. 2006).

The graphic interpretation in Fig. 5 depicts the vari-
ation caused by the main additive effects of genotype
and environment and the multiplicative effect of the
G × E interaction (Gauch & Zobel 1996; Smith et al.
2005). The abscissa represents the main effects (i.e.,
the overall averages of the variables for the genotypes
evaluated) and the ordinate is the first interaction axis
(axis 1). In this case, the lower the absolute value of
axis 1, the lower its contribution to the G× E interaction;
therefore, the more stable the genotype. The ideal geno-
type is one with high productivity and an axis 1 value
near zero. An undesirable genotype has low stability
associated with low productivity (Kempton 1984;
Gauch & Zobel 1996; Ferreira et al. 2006).

In the biplot analysis shown in Fig. 4, the cosine of
the angle between a vector and an axis indicates the
contribution of that variable to the axis dimension.
Also, the cosine of the angle between the vectors for

Table 5. Quasi-deviance proportion in relation to the
proposed axes for the mean values of grey leaf spot
severity

Axes Quasi-deviance
Quasi-deviance
proportion

Cumulative
proportion

Axis 1 429·6 0·383 0·383
Axis 2 258·3 0·230 0·613
Residuals 433·9 0·387 1·000
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two environments approximates their correlation.
Therefore, when vectors are perpendicular, the
cosine of the angles between them equals zero and
the variables are independent. But if the vectors for
two variables are at very close angles or at a 180°
angle, they are highly positively or negatively corre-
lated (Gower 1995; Kroonenberg 1997). The angles
between the vectors for sites and genotypes, and the
positions of the vectors, permitted us to identify geno-
types positively or negatively correlated with particu-
lar environments (Table 7).

The negative correlation between cultivar and loca-
tion has helped to identify genotypes with specific
adaptations. Genotypes with a highly negative correl-
ation within an environment had the lowest disease
severities (Fig. 4 and Fig. 5), and should therefore be
recommended for use in those locations.

CONCLUSIONS

The GAMMI method efficiently described the data
regarding stability and adaptability of genotypes to
grey leaf spot incidence in various locations in Brazil
using available theories and the computational
resources outlined in the present paper. A pattern of
differential responses to grey leaf spot in different
environments was found, and the GAMMI method
could explain 61·3% of the variance due to the G × E
interaction with only two PC. The two-dimensional
analysis detected the presence of a strong interaction
between genotype and environment.

The GAMMI model could efficiently identify and
quantify the G × E interactions, even though the data
were not normally distributed and variances were het-
erocedastic. The present analyses indicated that the
genotypes G9 and G1 could be recommended
because of their high stability and low severity of

Table 6. GAMMI coefficients for main effects and the
scores from environments and genotypes

Locations and
genotypes

Estimates of
coefficients Axis 1 Axis 2

Intercept −1·642 – –

CM – 0·138 −0·135
GO −5·840 2·270 2·171
GS −5·377 −1·064 0·383
JT −4·224 1·278 −0·458
LD −4·983 0·856 0·971
PG −2·934 −1·054 0·053
PL −6·075 1·022 −2·323
PM −2·478 0·112 0·099
SP −5·039 1·610 −1·198
CM:rep2 −0·109 – –

GO:rep2 0·648 – –

GS:rep2 0·696 – –

JT:rep2 0·164 – –

LD:rep2 0·928 – –

PG:rep2 −0·102 – –

PL:rep2 −0·167 – –

PM:rep2 −0·353 – –

SP:rep2 0·248 – –

G1 – −0·423 −0·570
G2 −0·084 0·229 −0·813
G3 0·530 −0·437 0·892
G4 0·020 −1·103 0·356
G5 0·442 −1·506 0·272
G6 0·789 −0·758 −0·535
G7 0·849 0·326 0·276
G8 0·640 −0·710 0·499
G9 −0·318 0·143 −0·258
G10 0·049 −1·158 0·381
G11 −0·113 −0·237 0·798
G12 −0·288 −1·175 0·162
G13 2·402 −0·180 −0·248
G14 −0·103 −1·210 0·155
G15 −0·203 −0·619 −0·091
G16 0·258 −0·009 −1·060
G17 0·571 −0·077 0·559
G18 1·139 −0·684 −0·817
G19 2·771 −0·751 −1·411
G20 1·259 −0·564 0·980
G21 0·972 −0·630 −0·707
G22 0·907 1·524 0·095
G23 1·808 −0·286 −0·803
G24 1·640 −0·732 −0·814
G25 0·251 1·040 0·628
G26 0·913 0·473 −0·193
G27 1·538 0·110 −0·366
G28 2·938 1·234 −0·830
G29 3·840 1·476 −0·546
G30 1·723 0·175 1·055

Table 6. (Cont.)

Locations and
genotypes

Estimates of
coefficients Axis 1 Axis 2

G31 2·501 0·973 0·322
G32 1·413 0·355 0·817
G33 1·125 1·599 −0·198
G34 0·652 −1·029 0·254
G35 2·963 1·043 0·445
G36 2·566 0·926 0·635

CM, Campo Mourão; GO, Goiânia; GS, Goianésia; JT, Jataí;
LD, Londrina; PG, Ponta Grossa; PL, Planaltina; PM, Patos
de Minas; SP, São Sebastião do Paraíso; Rep2, Repetition 2.
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grey leaf spot. Campo Mourão, Goianésia, Londrina,
and São Sebastião do Paraíso were locations in
which average disease severity was more stable, indi-
cating that these locations made a minor contribution
to the G × E interaction. The scores from these envir-
onments had values close to the vertex in the
figures, which indicated less variability among geno-
types for disease severity. However, the responses to
disease in these locations were distinct. For
example, Campo Mourão exhibited low variability
and high severity of grey leaf spot (36·8%).
Genotypes with specific adaptability and low severity
of grey leaf spot for specific locations were G26 for
Goianésia, G24 and G8 for Goiânia, G3 and G11

for Jataí, G19 and G16 for Ponta Grossa, G12 and G4

for Planaltina, G26 and G33 for Patos de Minas, and
G10 and G20 for São Sebastião do Paraíso. These
results will be useful to guide recommendations of cul-
tivars with stable resistance to grey leaf spot and high
yield in particular environments.
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APPENDIX A

The multiplicative term of this model was estimated
in R software with the generalized nonlinear models
gnm function using the Mult (factor1, factor2, inst =
…) command, which specifies the multiplicative
interactions that are linear or nonlinear predictors.
The subscripts 1 and 2 represent the multiplicative
factors of the interaction and inst is an integer that
specifies the number of interactions (Turner & Firth

2009). The function residSVD (model, fac1, and
fac2, d =…) performed the SVD of the residual
matrix. This residSVD function uses the first d
components of the SVD to approximate a residual
vector from the model by adding d multiplicative
terms (Turner & Firth 2009). Finally, the model is
re-adjusted by the update command (object,
formula … evaluate = TRUE), which assumes the
coefficients from the previous model as starting
values for the new model.
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