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assification models for the direct
evaluation of the quality of cattle and sheep
leathers using laser-induced breakdown
spectroscopy (LIBS) analysis†
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Sérgio Novita Estevesb and Edenir Rodrigues Pereira-Filho*a

This study proposes classification models for the prediction of the quality parameters of cattle and sheep

leathers. In total, 375 leather samples were directly analyzed by laser-induced breakdown spectroscopy

(LIBS). Exploratory analysis using principal component analysis (PCA) and classification models employing

K-nearest neighbor (KNN), soft independent modeling of class analogy (SIMCA), and partial least squares

– discriminant analysis (PLS-DA) were the chemometric tools used in the multivariate analysis. The goal

was to classify the leather samples according to their quality. The calculated models have satisfactory

results with correct prediction percentages ranging from 75.2 (for SIMCA) to 80.5 (for PLS-DA) for the

calibration dataset and from 71.6 (for SIMCA) to 80.9 (for KNN) for the validation samples. The proposed

method can be used for preliminary leather quality inspection without chemical residues generation.
Introduction

Leather is an important commodity that generates economic
gain for several countries.1 The conversion of animal skins into
leather by tanning processes creates value in these products,
which can be used in different segments, for example, leather
clothes, bags, shoes, artifacts, furniture and car seats.2

In the leather industry, several steps are necessary to convert
the raw material into nished leather, such as pre-tanning,
tanning, post tanning and nishing operations.3 The tanning
of most skins is performed with chromium sulfate, but other
metal sulfates, and vegetable tannins, can be also used. In these
processes, toxic elements that can be incorporated into the
leather are added.4

The quality evaluation of leathers is fundamental to
ensuring their properties. Several physical mechanical tests are
performed according to the official methods.5,6 However, these
tests are laborious, time consuming and destructive; thus, its
application is compromised in cases where there is less sample
or when the sample cannot be destroyed.7 Therefore, alternative
methods to these traditional tests are needed. These methods
need to present also adequate accuracy and precision and high
analytical frequency.
(GAIA), Departamento de Qúımica,
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Leather analysis has been performed using inductively
coupled plasma optical emission spectrometry (ICP OES),8–10

instrumental neutron activation analysis (INAA),11 and thermal
analysis (TA) techniques.12 In addition, direct analysis tech-
niques, such as near-infrared (NIR) spectroscopy,7,13 Fourier
transform infrared (FTIR) spectroscopy,13 and laser-induced
breakdown spectroscopy (LIBS),14 have been used. However,
the use of chemometric tools in leather analysis has still been
little explored. An example is the use of NIR to determine the
date of production of 130 samples of old leather articles. In this
study, the authors employed principal component analysis
(PCA) and partial least squares (PLS) for multivariate data
evaluation. As a result, it was possible to identify the year of
origin of these artifacts.7 In a second study,13 NIR and FTIR were
used to characterize 63 leather samples. The aim of the
mentioned study was to identify the nishing treatment (resin,
wax, or oil) of the samples using PCA, K-nearest neighbor (KNN)
and canonical variate analyses (CVA) as the classication tech-
niques. In a third study,15 12 sheep skin samples were analyzed
by NIR spectroscopy (NIRS) from direct determination of the fat
in leather, and a Soxhlet was used to obtain reference values.
Calibration models employing PLS were prepared using the
obtained spectra and the samples were evaluated before and
aer degreasing.
† Electronic supplementary information (ESI) available. See DOI:
10.1039/c6ra22337k
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The emission spectra obtained by LIBS generate large
amount of data, and the association with chemometric tools is
mandatory in several cases. This combination has been widely
used for classication or discrimination of different types of
samples, such as toys (PCA, KNN, So Independent Modeling of
Class Analogy, SIMCA and PLS for discriminant analysis, PLS-
DA),16 soils (SIMCA and linear discriminant analysis, LDA),17

pharmaceutical tablets (SIMCA and PCA),18 wheat grains (PLS-
DA),19 inks and pigments (PCA, SIMCA and PLS-DA),20 bioma-
terials and chemical warfare simulants (PCA and SIMCA),21

plants (PCA and SIMCA),22 soils and rocks (SIMCA and PCA),23

polymeric fractions of scrap from mobile phones (KNN, SIMCA
and PLS-DA),24,25 powdered uranium concentrate (PCA and
SIMCA).26

This study presents a combination of LIBS emission spectra
with classication models. Reference values obtained via
physical mechanical testing of leather were used to calculate the
classication models. These models were established using 3
different chemometric techniques: (1) in the KNN model, the
Euclidean distance among samples is used to classify nearest
neighbors;27 (2) in SIMCA, a PCA is calculated for each class;27

and in (3) PLS-DA, the model must dene the dependent vari-
ables, and a model is calculated using PLS-factors.27,28

Thus, the goal of this study is to evaluate the use of LIBS
spectra combined with classication models, KNN, SIMCA and
PLS-DA as an alternative to physical and mechanical tests for
evaluation the quality of leather.

Experimental
Samples and physical mechanical tests

In the experiments, 375 leather samples were used with 60 from
sheep and 315 from cattle. These samples were tanned with
chromium (semi-nished and nished leather) and obtained
Table 1 Descriptions of the leather samples used in this study

Remarks Sheep leather Cattle leather

Intended
application

Shoes Shoes and car seats

Color Brown (60 samples) Hazel (17), dark hazel (57),
light hazel (112), green (112)
and black (17 samples)

Manufacture stage Finished leather Semi-nished and
nished leather

Year of slaughter 2006 2010 and 2011
Genetic groupsa DOR, SIN and SUF CANE, CASN, CATA,

HNE, HSN, and HTA
Age of the animals
(days)

104–201 342–725

Weight of the
animals (kg)

28.7–41.7 292–579

a DOR: Dorper; SIN: Santa Inês; SUF: Suffolk; CANE: father Canchin and
mother Nelore; CASN: father Canchin and mother 1/2Senepol + 1/
2Nelore; CATA: father Canchin and mother 1/2Angus + 1/2Nelore;
HNE: father Hereford and mother Nelore; HSN: father Hereford and
mother 1/2Senepol + 1/2Nelore; HTA: father Hereford and mother 1/
2Angus + 1/2Nelore.

104828 | RSC Adv., 2016, 6, 104827–104838
from animals bred at Embrapa Pecuária Sudeste. These animals
presented different characteristics, such as genetic group, sex,
weight, and age. The experiment was approved by the Animal
Research Ethics Committee of Embrapa Pecuária Sudeste
(CEUA/CPPSE, Protocol No. 04/2011). This committee follows
the law number 11794 (October, 08, 2008) that regulates the
incise VII of rst paragraph of article 225 from the Brazilian
Federal Constitution. This law establishes procedures for
experiments with live subjects (http://www.mct.gov.br/
upd_blob/0238/238343.pdf). Other characteristics including
the place and year of slaughter were also observed in the data
evaluation. A complete description (the intended application
purpose, color, process step, etc.) of the analyzed samples can
be seen in Table 1.

To perform LIBS analysis, each animal leather sample was
cut into a rectangle (3.00 cm � 4.00 cm) using a hydraulic press
(Metalúrgica Aço real, P-23) with cutting knives.

To obtain reference values for the classication models, all
samples were submitted to 18 physical and mechanical tests.
These tests were divided in two directions: 9 longitudinal (L)
and 9 transversal (T). Samples from L and T directions were
obtained parallel to the cranial–caudal axis of the animal,
according to ABNT NBR ISO 2418:2015.6 The tests comprise
samples intended to be used in car seats or shoes.

Aer slaughtering, the skins were subjected to the tanning
process and tanned with chromium(III) sulfate. Aer tanning,
six leather test specimens of each skin were collected with
razors in a hydraulic press with 3 in the L and 3 in the T
directions (ABNT NBR ISO 2418:2015).6 Before performing the
tests, the leather test specimens were conditioned for 48 hours
at 23 � 2 �C and relative humidity of 50 � 5% (ABNT NBR
10455:2014).29 Then, the thicknesses of the leather test speci-
mens were measured (ABNT NBR ISO 2589:2014).30 Finally, the
physical and mechanical tests were performed using a dyna-
mometer (Maqtest), and four different tests were performed:
determination of the tensile strength (ABNT NBR ISO
3376:2014);31 percentage extension or elongation of leather
(ABNT NBR ISO 3376:2014);31 determination of tear strength,
tongue tear of leather (ABNT NBR ISO 3377-1:2014);32 and tear
strength of leather, double hole (ABNT NBR ISO 3377-2:2014).33

The equipment measures the strength (N) required to break or
tear the leather, and using this value and the thickness or area,
the resistance is calculated in N mm�1 or N mm�2 according to
the standards mentioned above. The resistance values were
calculated by dividing the strength (N) for tear strength by the
thickness (mm) and the tensile strength was calculated by
dividing the strength (N) by the area (mm2).
LIBS: parameters optimization and analysis

In this study, a J200 LIBS instrument was used (Applied Spectra,
Fremont, CA, USA) with Axiom 2.5 soware. This instrument is
equipped with a Nd:YAG laser emitting at a fundamental
wavelength of 1064 nm delivering a maximum of 100 mJ energy
in a single laser pulse at a frequency of 10 Hz. A 6-channel CCD
spectrometer is used to record the spectral information from
186 to 1042 nm: channel 1: 186 to 309 nm; channel 2: 309 to
This journal is © The Royal Society of Chemistry 2016
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460 nm; channel 3: 460 to 588 nm; channel 4: 588 to 692 nm;
channel 5: 692 to 884 nm; channel 6: 884 to 1042 nm; spectral
resolution <0.1 nm from UV to Vis and <0.12 nm from Vis to NIR
and the spectra are composed of 12 288 variables. In the
experimental setup, three instrumental parameters can be
varied: laser energy from 0 to 100 mJ, delay time from 0 to 2 ms
and spot size from 50 to 250 mm. These three parameters were
evaluated initially using a full factorial design and later
a Doehlert design to establish a commitment condition for all
emission lines evaluated.34

The full factorial design is used in the rst stage of optimi-
zation to identify the inuence or effect of each variable on the
desired response.35 Aer the identication of the most impor-
tant variables, a renement of the data can be done by adding
more levels of the factorial design, using other planning as the
design Doehlert. Using this type of design, the variables can be
tested in different levels and the most important one can be
studied with more details.35

The samples were analyzed directly in the ablation chamber
without any preliminary treatment. Before the experiments,
a cleaning process using several laser pulses was performed.
Aer that, a total of 100 spectra were collected for each sample
in raster mode.

In the beginning, the 3 experimental parameters
mentioned before were evaluated at two levels using a full
factorial design (23 ¼ 8 experiments): laser energy (50 and 80
mJ), delay time (0.5 and 1.0 ms) and spot size (50 and 100 mm).
These analyses were performed on the front and back of 15
previously selected representative samples (sheep and cattle
leathers). The evaluated responses were the signal-to-
background ratio (SBR) for the 5 most intense emission lines
for Cr (283.5, 357.8, 359.3, 425.4 and 427.4 nm). Seven effects
(3 main effects, 3 secondary effects and 1 tertiary effect) were
calculated for each emission line, and their average was
Table 2 Doehlert design performed for optimization of the laser
energy, delay time and spot size conditions and the global desirability
calculated for each experiment at 359.0 nm

Experiment

Laser
energy (mJ)

Delay time
(ms)

Spot size
(mm)

Global
desirability (Dg)

Coded Real Coded Real Coded Real 359 nm

1 0 50 0 1.0 0 75 0.26
2 0 50 0 1.0 0 75 0.33
3 0 50 0 1.0 0 75 0.17
4 1 90 0 1.0 0 75 0.74
5 0.5 70 0.866 1.9 0 75 1.00
6 0.5 70 0.289 1.3 0.817 100 0.71
7 �1 10 0 1.0 0 75 0.00
8 �0.5 30 �0.866 0.1 0 75 0.19
9 �0.5 30 �0.289 0.7 �0.817 50 0.81
10 0.5 70 �0.866 0.1 0 75 0.56
11 0.5 70 �0.289 0.7 �0.817 50 0.74
12 �0.5 30 0.866 1.9 0 75 0.42
13 0 50 0.577 1.6 �0.817 50 0.77
14 �0.5 30 0.289 1.3 0.817 100 0.10
15 0 50 �0.577 0.4 0.817 100 0.33

This journal is © The Royal Society of Chemistry 2016
used to rank the inuence of the variables in the spectral
condition.

Aer the identication of the order of the most important
variables, a Doehlert design was also performed. In this
experiment, the variables can be studied at different levels.
Table 2 shows the 15 experiments performed for the two
samples chosen for optimization, i.e., one cattle leather
sample and one sheep leather sample. In this new design, the
SBRs and analytical signal intensities were considered for the
5 most intense emission lines for Cr. These data were con-
verted into desirability, and the lower and higher values were
coded as 0 and 1, respectively. The 3 rst experiments
described in Table 2 represent the central point, and they were
performed to calculate the sum of the square of the pure error
(SSPE). In these 3 experiments, the variables are coded as 0,
and the laser energy, delay time and spot size are 50 mJ, 1.0 ms
and 75 mm, respectively. All experiments were performed in
aleatory order.

In the optimization, 15 models were calculated (5 for cattle, 5
for sheep and 5 for both) using the 5 most intense Cr emission
lines. The parameters of the models were evaluated using an
ANOVA (analysis of variance) table. Surface plots were obtained
for the calculated models allowing identication of the most
adequate conditions for all samples simultaneously.
Data analysis and classication models

The raw data were normalized by the individual area,36 averaged
over 100 pulses and mean centered. The dataset was organized
using Microso Excel, and a routine was developed for data
normalization using Matlab 2009 (The Math Works, Natick,
USA). Aurora soware (Applied Spectra) was employed for
emission lines identication, and Pirouette 4.5 (Infometrix,
Bothell, USA) was used for the data classication models
calculation.

The dataset consisted of a matrix with 375 rows � 12 288
columns, in which the rows represented the leather samples
and the columns represented the emission lines (from 186 to
1042 nm). An initial exploratory analysis using PCA was per-
formed to evaluate whether LIBS could differentiate several
sample characteristics: colors, type of animal, nished or semi-
nished leather, among others. Later, three classication
models were proposed for predicting the quality of the leathers:
KNN,27 SIMCA37 and PLS-DA.38 Classication and validation
datasets were separated using the Kennard–Stone algorithm.39

The classication set was composed of 80% of the samples, and
the validation set was composed of 20% (see details in Table S1,
in the ESI†). These classication models combine emission
signals that reect the quality of leather analyzed.
Results and discussion
Optimization of LIBS experimental conditions

Initially, three experimental parameters for the LIBS tech-
nique were evaluated by full factorial design. Fig. S1 (in the
ESI†) shows a probability plot of the seven effects calculated.
Using this plot, the most important effects were ranked: delay
RSC Adv., 2016, 6, 104827–104838 | 104829

http://dx.doi.org/10.1039/C6RA22337K


Fig. 1 Surface plots obtained for Dg from responses obtained at 359 nm: delay time versus laser energy (a), laser energy versus spot size (b) and
delay time versus spot size (c).
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time (2), laser energy (1), the interactions between laser energy
and delay time (12) and the laser energy and spot size (13).
High laser energy and low delay time produces positive
104830 | RSC Adv., 2016, 6, 104827–104838
effects. The spot size (3) did not have a signicant inuence,
but there are interactions between this variable and the
others.
This journal is © The Royal Society of Chemistry 2016
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Fig. 2 Emission signals for the 5 most intense Cr lines for leather
samples (cattle and sheep) after and before experiments for LIBS
parameter optimization.
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Given these results, a renement of the data was performed
by varying the most important variables with more levels using
a Doehlert design (see Table 2). Laser energy was varied across 5
levels (10, 50, 65, 80 and 90 mJ), delay time (the most important
variable) across 7 (0, 0.25, 0.5, 0.75, 1.0, 1.5 and 2.0 ms) and spot
size (the least important) across 3 (50, 75 and 100 mm); the
monitored responses were converted to desirability. In this
case, the lowest and the highest SBR and intensity were con-
verted to 0 and 1, respectively. In the beginning, calculating
a global model was attempted by combining the 5 emission
lines monitored in both types of leathers (cattle and sheep), but
it was not possible to obtain a valid model. Then, individual
models were calculated for each emission line in each type of
leather, and only the emission line at 359.0 in cattle leather
presented a regression model without a lack of t.

Table 2 also shows the global desirability (Dg) calculated at
359.0 nm for each experiment. The generated model (only the
valid coefficients) is represented by eqn (1):

Dgð359 nm; cattleÞ ¼
0:31
�0:11

þ 0:37
�0:13

LEþ 0:16
�0:13

DT� 0:24
�0:13

SSþ 0:29
�0:22

DT2

þ 0:32
�0:21

SS2 þ 0:41
�0:31

LE� SS (1)

where LE, DT and SS are the laser energy, delay time and spot
size, respectively.

The signicance of this model was evaluated using an
ANOVA, and the statistical parameters are presented in Table S2
(in the ESI†).

In this model, it is possible to see that there is a strong
synergism (this is the highest coefficient in eqn (1)) between the
laser energy (LE) and the spot size (SS). The calculated model
did not show lack of t because when themean of the squares of
the lack of t and the pure error are statistically the same, the
calculated F value (2.26) is lower than the tabulated one (19.3)
with a 95% condence level (see Table S2, in the ESI†). The
correlation coefficient (R2) was 0.927.

The surface responses obtained from this model are pre-
sented in Fig. 1. The laser energy (x-axis), delay time (y-axis), and
Dg (z-axis) are shown in Fig. 1a. The best working conditions are
obtained with a laser energy of 90 mJ and a delay time of 1.9 ms
(the predicted Dg is approximately 1). Fig. 1b and c shows the
other combinations of the variables (laser energy and spot size
and delay time and spot size). Analyzing these gures, it is
possible to see that high Dg is observed when the spot size is 100
or 50 mm.

Thus, a new experiment was performed by keeping the
variables already optimized at 90 mJ and 1.9 ms and varying only
the spot size to 50 or 100 mm. The spot size of 50 mm showed the
best desirability results. Thus, to validate the model, the opti-
mized conditions were also tested for the other 4 Cr emission
lines in both types of leather. This condition was compared with
the most intense signal previously obtained in the Doehlert
design before optimization. In all cases, the signal intensity
signicantly improved aer optimization (see Fig. 2).

In addition, aer laser pulse and visual inspection none
unusual damage was noted in the samples (see Fig. S2 at ESI†).
This journal is © The Royal Society of Chemistry 2016 RSC Adv., 2016, 6, 104827–104838 | 104831

http://dx.doi.org/10.1039/C6RA22337K


Fig. 3 Typical emission spectra obtained for a leather sample.
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It is also important to mention that it is hard to perform
a fair comparison among the published paper because
different instrumental setups are described. In a paper pub-
lished in 2011,18 for example, the energy was 25 mJ, but the
laser wavelength was 532 nm. Yet in 2011 Nasr et al.14 pub-
lished a paper dedicated to the analysis of leather and the laser
energy and wavelength were 100 mJ and 1064 nm, respectively.
The main advantage of the present study is the fact that now
exactly the same experimental conditions can be reproduced
worldwide, because a commercial system is used. The calcu-
lated irradiance for the operational conditions used was
765 GW cm�2.
Analysis of the leathers

Fig. 3 presents a general description of a representative LIBS
spectra obtained from a leather sample (sheep). This spectrum
is an average of 100 spectra. The identied and most intense
signals are highlighted and numbered from 1 to 29, and their
corresponding emission lines are listed in Table 3. The majority
of the emission lines identied are from Cr as expected due to
Table 3 Emission lines (I atomic and II ionic) identified in the analyzed l

Identication Elements Wavelength (nm)

1 C I 247.8
2 Cr II 267.7
3 Mg I 279.8
4 Mg I 280.1
5 Cr I 357.8
6 Cr I 359.3
7 Cr I 360.5
8 Ca II 393.3
9 Ca II 396.8
10 Ca I 422.6
11 Cr I 425.4
12 Cr I 427.4
13 Cr I 428.9
14 Cr I 464.6
15 Cr I 465.2

104832 | RSC Adv., 2016, 6, 104827–104838
the leather tanning process with chromium(III) sulphate. The
most intense emission lines were observed for Cr and Na at
520.8 (peak 17) nm and 588.9 (peak 21), respectively. These two
chemical species, as well as others found in the leather samples,
are from several chemical reagents added in the tanning
processes.8–11

In order to evaluate the spectrum reproducibility, several
calculations using 100 spectra obtained in raster mode (a line) in
a sample were performed. Aer that, signal height for the
following emission lines were calculated (5Cr emission lines):
267.7, 357.8, 359.3, 425.4 and 427.4 nm. Then, 10 ratios were
evaluated (267/357, 267/359, 357/359, 425/427, 267/425, 267/427,
359/425, 357/427, 359/427 and 357/425). Fig. S3 (at ESI†) shows
box plot graphics for the 10 calculated ratios. As can observe the
values are constant and follow a normal distribution.
Exploratory analysis using PCA

PCA is a tool that allows to project high dimensional data set in
a small number of variables (named principal component, PC),
allowing to observe differences and verify relations among
variables.27 Two new matrices are generated in a PCA, a loading
matrix that represents the weight of the original variables and
a score matrix with the projections of the samples.28

A PCA analysis was calculated using the obtained data matrix
(375 samples and 12 288 variables) with the normalized and
mean-centered dataset. Several categories were analyzed, but
differences were only observed when the leather color was
considered. The scores and loadings for rst three principal
components were evaluated, and Fig. 4a presents the scores
values plot for PC1 for different samples, with 74% of the
explained variance, while Fig. 4b presents the loadings plot for
PC1 at different wavelengths. The main distinction of the
samples as the color is due to the C, Cr and Na with positive
values for PC1 and Ca with negative. The other PCs are pre-
sented in the ESI, and Fig. S4 and S6† show scores plots for PC2
and PC3, while Fig. S5 and S7 (all in ESI†) show their respective
loadings, presenting emission lines that can be associated with
the pigments used in the samples.24
eathers

Identication Elements Wavelength (nm)

16 Cr I 520.6
17 Cr I 520.8
18 Cr I 529.8
19 Cr I 534.5
20 Cr I 540.9
21 Na I 588.9
22 Na I 589.5
23 H I 656.2
24 N I 742.3
25 N I 744.2
26 N I 746.8
27 K I 766.4
28 K I 769.8
29 O I 777.4

This journal is © The Royal Society of Chemistry 2016
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Fig. 4 PC1 scores plot (a) and PC1 loading plot (b) for the leather samples in different colors.
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According to Fig. S5 (in the ESI†), Cr and Na have inuences
on the positive values of PC2, and C, Mg, Cr, Ca and O are
responsible for the negative part of PC2. A separation among 6
leather colors can also be seen in Fig. S7 (in the ESI†), where
This journal is © The Royal Society of Chemistry 2016
the elements responsible for the separation are Ca, Na and O
for the positive values of PC3 and C, Cr and K for the negative
values.
RSC Adv., 2016, 6, 104827–104838 | 104833
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Classication models proposition

In this part of the study, the samples were divided into two
classes. Table 4 presents the specications elected for each
test. These specications were organized according to ABNT
NBR 13525:2016 40 that was recently published and shows
orientation values for acceptance of quality leather for
physical and chemical testing. These values were used as
orientation parameters to establish the classes, and attempts
were made to keep 50% of the samples in each class.

For example, tests 1, 5 and 8 are related to the thicknesses of
the samples, and the reference value is 1.2� 0.2 mm. Sheep and
cattle presented values varying from 0.870 to 2.25 mm and 0.890
to 2.17 mm in the longitudinal and transversal directions,
respectively. In this case, samples with thickness lower than
1.91 for L and 1.89 for T mm were grouped in class 1.

These classes were then used to calculate classication
models using the spectral information obtained by LIBS. Table
5 presents the values obtained when KNN was used to predict
class 1 samples. The dataset was divided into calibration and
validation, and 4 gures of merit were calculated: accuracy,
sensitivity, specicity and false alarm rate. The average accuracy
obtained for class 1 in the L direction was 78.8 for calibration
and 76.1% for validation. Accuracy represents the percentage of
correct predictions of the model. In the case of SIMCA and PLS-
DA, the accuracy presented similar results and varied from 71.6
to 80.5% for calibration and validation in the two classes. The
sensitivity for class 1 is the ability of the model to correctly
predict class 2 samples, and the results ranged from 61.6 to
84.6% for all calculated models. The false alarm rate is the
number of incorrect predictions divided by the total number of
samples for a specic class. The false alarm rate for the 3
calculated classication models varied from 14.4 to 36.9% for
all models. The last gure of merit was the specicity, and this
value computes the number of correct predictions for a specic
class divided by the total number of samples from the same
class. In general, the specicity goes from 61.6 to 84.6%. The
ideal situation is accuracy, sensitivity and specicity equal to
100% and false alarm rate equal to 0%.

Tables 5 and 6 show the results for KNN for classes 1 and 2,
respectively. Individual models were calculated for each test in
the two evaluated directions. The number of selected neighbors
varied from 3 to 5. Tables S3–S6 (all in the ESI†) shows the
results for SIMCA and PLS-DA. In general, the models proposed
with PLS-DA were slightly better. Fig. 5 shows a receiver oper-
ating characteristics (ROC)41 curve for test 1 (measuring thick-
ness in tensile tests, see Table 4) in class 1 samples (0.87–1.91
for L and 0.89–1.89 for T) for PLS-DA calibration (Fig. 5a) and
validation (Fig. 5b) data sets. The calculated area under the
curves varied from 0.74 to 0.76, and the models can be
considered fair.

ROC curves for the other tests (from 2 to 9) are shown in
Fig. S8–S11 at ESI.† In general the area under the curve varied
from 0.6 (poor) to 0.9 (good).

Although classication models achieved around 80% correct
classication, we believe that the models developed, will be useful
for practical applications, because they are easy to implement in
This journal is © The Royal Society of Chemistry 2016
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Table 6 Accuracy, sensitivity, false alarm rate and specificity obtained for class 2 of KNN model

Test Direction

Calibration class 2 Validation class 2

Number
of
samples

Number
of
neighbors

Accuracy
(%)

Sensitivity
(%)

False
alarm
rate (%)

Specicity
(%)

Number
of
samples

Accuracy
(%)

Sensitivity
(%)

False
alarm
rate (%)

Specicity
(%)

1 L 142 3 78.0 81.0 25.4 74.6 42 81.3 90.9 26.2 73.8
2 L 151 4 65.3 58.4 27.8 72.2 36 61.3 61.5 38.9 61.1
3 L 137 5 68.7 68.1 30.7 69.3 48 62.7 55.6 33.3 66.7
4 L 146 5 77.3 77.9 23.3 76.7 41 73.3 58.8 14.6 85.4
5 L 144 5 79.9 81.9 22.2 77.8 42 73.3 69.7 23.8 76.2
6 L 147 5 83.6 88.2 21.1 78.9 39 81.3 86.1 23.1 76.9
7 L 146 3 84.6 85.6 16.4 83.6 40 80.0 77.1 17.5 82.5
8 L 118 5 79.0 85.8 28.8 71.2 38 81.0 88.0 23.7 76.3
9 L 125 3 92.9 96.9 11.2 88.8 32 90.5 93.5 12.5 87.5

Average 78.8 80.4 23.0 77.0 76.1 75.7 23.7 76.3
Median 78.9 81.5 23.1 76.9 78.0 76.4 23.7 76.3
SD 8.24 11.36 6.20 6.20 9.45 14.74 8.49 8.49

1 T 144 5 77.0 83.3 29.9 70.1 41 77.3 79.4 24.4 75.6
2 T 140 3 69.3 67.5 28.6 71.4 46 76.0 72.4 21.7 78.3
3 T 151 5 70.3 71.1 30.5 69.5 36 69.3 71.8 33.3 66.7
4 T 148 6 91.3 90.1 7.4 92.6 38 85.3 83.8 13.2 86.8
5 T 143 5 80.6 84.6 23.8 76.2 43 84.0 87.5 18.6 81.4
6 T 146 3 77.7 80.5 25.3 74.7 41 83.8 90.9 22.0 78.0
7 T 144 3 82.3 83.9 19.4 80.6 42 81.3 90.9 26.2 73.8
8 T 121 5 76.2 79.4 27.3 72.7 38 79.4 88.0 26.3 73.7
9 T 127 5 93.7 97.6 10.2 89.8 30 92.1 97.0 13.3 86.7

Average 79.8 82.0 22.5 77.5 80.9 84.6 22.1 77.9
Median 78.7 82.7 24.6 75.4 81.1 86.1 22.0 78.0
SD 8.33 9.07 8.47 8.47 6.47 8.61 6.47 6.47

Table 5 Accuracy, sensitivity, false alarm rate and specificity obtained for class 1 of KNN model

Test Direction

Calibration class 1 Validation class 1

Number
of samples

Number
of neighbors

Accuracy
(%)

Sensitivity
(%)

False alarm
rate (%)

Specicity
(%)

Number of
samples

Accuracy
(%)

Sensitivity
(%)

False alarm
rate (%)

Specicity
(%)

1 L 158 3 78.0 74.6 19.0 81.0 33 81.3 73.8 9.1 90.9
2 L 149 4 65.3 72.2 41.6 58.4 39 61.3 61.1 38.5 61.5
3 L 163 5 68.7 69.3 31.9 68.1 27 62.7 66.7 44.4 55.6
4 L 154 5 77.3 76.7 22.1 77.9 34 73.3 85.4 41.2 58.8
5 L 155 5 79.9 77.8 18.1 81.9 33 73.3 76.2 30.3 69.7
6 L 152 5 83.6 78.9 11.8 88.2 36 81.3 76.9 13.9 86.1
7 L 153 3 84.6 83.6 14.4 85.6 35 80.0 82.5 22.9 77.1
8 L 134 5 79.0 71.2 14.2 85.8 25 81.0 76.3 12.0 88.0
9 L 127 3 92.9 88.8 3.1 96.9 31 90.5 87.5 6.5 93.5

Average 78.8 77.0 19.6 80.4 76.1 76.3 24.3 75.7
Median 78.9 76.9 18.5 81.5 78.0 76.3 23.6 76.4
SD 8.24 6.20 11.36 11.36 9.45 8.49 14.74 14.74

1 T 156 5 77.0 70.1 16.7 83.3 34 77.3 75.6 20.6 79.4
2 T 160 3 69.3 71.4 32.5 67.5 29 76.0 78.3 27.6 72.4
3 T 149 5 70.3 69.5 28.9 71.1 39 69.3 66.7 28.2 71.8
4 T 151 6 91.3 92.6 9.9 90.1 37 85.3 86.8 16.2 83.8
5 T 156 5 80.6 76.2 15.4 84.6 32 84.0 81.4 12.5 87.5
6 T 154 3 77.7 74.7 19.5 80.5 33 83.8 78.0 9.1 90.9
7 T 155 3 82.3 80.6 16.1 83.9 33 81.3 73.8 9.1 90.9
8 T 131 5 76.2 72.7 20.6 79.4 25 79.4 73.7 12.0 88.0
9 T 125 5 93.7 89.8 2.4 97.6 33 92.1 86.7 3.0 97.0

Average 79.8 77.5 18.0 82.0 80.9 77.9 15.4 84.6
Median 78.7 75.4 17.3 82.7 81.1 78.0 13.9 86.1
SD 8.33 8.47 9.07 9.07 6.47 6.47 8.61 8.61

This journal is © The Royal Society of Chemistry 2016 RSC Adv., 2016, 6, 104827–104838 | 104835
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Fig. 5 ROC curves for class 1 samples in PLS-DA calibration (a) and validation (b) data sets (see test identification in Table 4). Solid and dotted
lines represents tests performed in transversal (T) and longitudinal (L) directions, respectively.
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industrial eld and can offer preliminary results. In addition,
suspicious values can be further conrmed with standard
methods. Whereas traditional testing to ensure the quality of the
104836 | RSC Adv., 2016, 6, 104827–104838
leather is too laborious, time-consuming and requires large
amount of leather, so the leather used in the tests will be
destroyed and discarded, thus reducing its economical value. In
This journal is © The Royal Society of Chemistry 2016
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addition, generally physical and mechanical tests are performed
in private laboratories, adding higher production costs, thus
prevents a quality control more strictly, because only a small part
of the leathers will be submitted to the tests. In this case, around
80% of correct classication should be enough. Using LIBS
alternatively coupled to a classication model, the analysis could
be made in the tannery itself with a portable LIBS, for example.
This approach can present a high analytical frequency without
damaging the leather, which can be further commercialized
(without it being necessary to cut pieces). Finally, the proposed
method can increase prot at the time of sale, in addition as it
takes only a few seconds for analysis, this way all leathers could be
inspected, and determine the quality of 100% of leather produced
and not just a fraction as is usually done.

Conclusions

Classication models (KNN, SIMCA and PLS-DA) were devel-
oped using LIBS emission spectra and associated with physical
mechanical tests on leather as reference values. The predictive
abilities of the models were similar, showing that three models
can be used to predict leather quality for sheep and cattle
satisfactorily. The models generate concordant predicted
results with the reference values for the physical mechanical
tests in both evaluated directions, demonstrating the potential
of using this tool in combination with LIBS to predict the
quality of sheep and cattle leathers using a single model. The
proposed method is fast, and no chemical residues are
generated.
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