Fertilidade do solo em sistemas agroflorestais agroecológicos no município de Alto Paraíso, Rondônia⁽¹⁾

Marilia Locatelli⁽²⁾; Jessé Vale Auzier Neto ⁽³⁾

(1)Trabalho executado com recursos da EMBRAPA

⁽²⁾Pesquisadora da Embrapa Rondônia e Professora do Mestrado em Geografia da Universidade Federal de Rondônia; Empresa Brasileira de Pesquisa Agropecuária/Centro de Pesquisa Agroflorestal de Rondônia, Porto Velho, Rondônia, marilia.locatelli@embrapa.br; ⁽³⁾ Professor; Secretaria de Educação do Estado de Rondônia, Porto Velho, Rondônia

RESUMO: A pesquisa apresenta as características propriedades solo em químicas do agroecológicas do Município de Alto Paraíso -Rondônia. A identificação do solo e avaliação do mesmo é fundamental para entender os níveis de produção dos agricultores visitados. As amostras propriedades agroecológicas mostraram que o tipo de solo foi considerado ácido e com fertilidade baixa. A participação da matéria orgânica trouxe benefícios às características físicas da estrutura e pela participação da ciclagem dos nutrientes, controlou a umidade do solo e acompanhado do pH neutralizou níveis de alumínio trocável demonstrando uma qualidade melhorada nos tratos de uso e manejo do solo.

Termos de indexação: atributos químicos; agroecologia, solo ácido

INTRODUÇÃO

O município de Alto Paraíso fruto do Projeto de Assentamento Dirigido – PAD Marechal Dutra apresenta uma agricultura familiar ligada à modelo alternativo denominado agroecologia, este modelo foi auxiliado por práticas de uso e manejo da terra: os Sistemas Agroflorestais – SAFs.

As mudanças de uma agricultura migratória para tal modelo foram caracterizadas por três fatores: problemas de saúde derivados de uso intensivo por agroquímicos nas lavouras, a baixa fertilidade do solo e a falta de recursos financeiros para melhoramento das lavouras.

Uma das soluções para adquirirem renda foi a venda do café *Conilon* no mercado local, o qual se adaptou bem as condições climáticas, cultivado em consórcio com SAFs do tipo silviagrícola na maioria dos casos nas propriedades e formando um mosaico arbóreo.

O objetivo desta pesquisa foi avaliar os atributos químicos dos solo em produtores agroecológicos de Alto Paraíso, Rondônia.

MATERIAL E MÉTODOS

O município de Alto Paraíso localiza-se no estado de Rondônia a uma latitude 09°42'47" sul e

longitude 63°19'15" oeste e distancia-se da Capital do Estado a 250 Km

Foram visitados 6 produtores, distribuídos no município de Alto Paraíso. Em todos eles foi realizada a amostragem para efetuar análise química do solo. Foram retiradas amostras de 0-20, 20-40 e 40-60 cm de profundidade nos sistemas. As amostras foram analisadas conforme Embrapa (1997).

Todas as áreas foram georeferenciadas. A classe de solo das áreas foi definida conforme RONDÔNIA (2001) Foram verificadas quais espécies foram plantadas nestas áreas.

RESULTADOS E DISCUSSÃO

Ocorre na maior parte do município de Alto Paraíso/RO, Latossolo Vermelho Amarelo distrófico (RONDÔNIA, 2001)

Cultivam além do café em sistema agroflorestal com várias espécies, o guaraná e o urucum, sistema agrisilvipastoril, a piscicultura e a apicultura. São estas formas e características que incorporadas ao agroecosistema possibilitam a permanência da agroecologia entre os agricultores familiares.

Na Tabela 1 são apresentados os dados dos atributos químicos das áreas de produtores agroecológicos estudados no município de Alto Rondônia. As seis propriedades apresentam níveis de pH variando de 5,0 a 5,9 sob profundidade de 0-20 cm, indicando nível nulo de alumínio solúvel. Esta relação direta do pH com Al mostrou-se importante para os cultivos de espécies neste sistema agroecológico levando consideração esta profundidade, conforme Gomes Souza; Miranda e Oliveira (2007) o pH varia ao longo do tempo e sofre influência pela precipitação pluvial, manejo do solo e adubação.

Nas amostras de solo apresentadas na **tabela 01**, foram identificados que todas as amostras apresentam baixos teores de fósforo (P) (EMBRAPA, 2006). A pesquisa relacionada aos baixos teores de fósforo na Amazônia apresentada por Brasil & Muraoka (1997) informam que os solos da Amazônia são quimicamente pobres em sua maioria do ponto de vista dos nutrientes e da

fertilidade, mais ainda dentre estes nutrientes o fósforo é o elemento mais limitante ao desenvolvimento vegetal.

A análise da **tabela 1** apresenta que os teores de MOS na profundidade de 0 - 20 cm apresentaram em uma única propriedade (1) alto teor de MOS. Três propriedades (3, 4 e 5) apresentaram médios teores de MOS e duas propriedades (2 e 6) apresentaram baixo teores de MOS. Estes altos e médios teores de MOS indicam grande quantidade de adubação e decomposição do material vegetal dos SAFs e podem indicar a participação na ciclagem dos nutrientes, controle da umidade, temperatura, infiltração, erosão, atividade biológica, reservatório de carbono e energia no ciclo de vida de um ecossistema.

Para Ferrão et al. (2007) níveis de 2,5 cmol_c/dm³ de acidez potencial é considerado baixo, acima de 2,5 e 5,0 cmol_c/dm³ são considerados médios e > 5,0 são considerados altos. Duas propriedades apresentaram níveis de acidez potencial considerados altos (1, 3) e quatro propriedades apresentaram níveis de acidez potencial médios (2, 4, 5 e 6) na profundidade 0-20 cm.

As propriedades (1, 3 e 6) apresentam CTC efetiva considerada alta e as propriedades (2, 4 e 5) apresentam níveis de CTC efetiva considerada média, estes níveis altos e médios correspondem às maiores quantidades de cátions conforme Troeh & Thompson (2007), disponíveis para adsorção e troca nos colóides, quantidades altas de teores de MOS e pH acima de 5,0. Os dados da pesquisa mostram que a CTC efetiva do solo da camada nestas propriedades possuem eficiência na retenção de cátions no colóide do solo. As propriedades (1, 3 e 6) apresentaram níveis de CTC potencial considerados altos e as propriedades (2, 4 e 5) níveis de CTC potencial médios. Conforme Lopes & Guilherme (1992) a CTC potencial é um parâmetro utilizado para avaliação de fertilidade do solo e classificação.

As percentagens de saturação por bases em cinco propriedades (1, 2, 3, 4 e 5) em profundidade 20-40 cm apresentaram valores considerados baixos. A baixa saturação por bases é um valor característico dos Latossolos e sua expressão de distrofia ou eutrofia são relativos a horizonte diagnóstico, ou seja, de subsuperfície B, ou C na ausência de B (Prado, 1991). A única propriedade que apresentou valores de saturação por bases alto nas duas profundidades foi propriedade (6), neste caso as quantidades de cátions bases trocáveis foram altas, níveis de pH alto e média acidez potencial, sendo que o que pode ter proporcionado melhores resultados tenha sido uma aplicação de calcário.

CONCLUSÕES

As amostras químicas das propriedades agroecológicas mostraram que o tipo de solo foi considerado ácido e com fertilidade baixa. Pode-se melhorar a participação do pH na camada arável neutralizando teores de alumínio trocável, maior disponibilização de nutrientes aumentando a saturação de bases através de calagem, adubação e também pelo uso de SAFs, com exceção aos baixos teores de fósforo devido a própria formação da gênese deste solo em regiões tropicais, o forte intemperismo, retenção deste nutriente pelas culturas e a não reposição deste elemento.

A participação da matéria orgânica trouxe benefícios às características físicas da estrutura e pela participação da ciclagem dos nutrientes, controlou a umidade do solo e acompanhado do pH neutralizou níveis de alumínio trocável demonstrando uma qualidade melhorada nos tratos de uso e manejo do solo.

REFERÊNCIAS

BRASIL, E. C. & MURAOKA, T. Extratores de Fósforo em Solos da Amazônia Tratados com Fertilizantes Fosfatados. Revista Brasileira de Ciência do Solo, Viçosa, v.21, p.599-606, 1997.

EMBRAPA. Manual de Métodos de Análise de Solo. 2. ed. Rio de Janeiro: Centro Nacional de Pesquisa de Solos, 1997.

EMBRAPA. Sistema Brasileiro de Classificação de Solos. 2ª ed. Centro Nacional de pesquisa de solos. Rio de Janeiro, EMBRAPA: 2006.

FERRÂO, R. G. et. al. (ed). Café Conilon. Espírito Santo, INCAPER: 2007

GOMES SOUSA, D. M; MIRANDA, L. N de; OLIVEIRA, S. A. Acidez do Solo e sua Correção. In: NOVAIS et al. Fertilidade do solo. Viçosa, MG: Sociedade Brasileira de Ciência do Solo, 2007.

LOPES A. F. & GUILHERME, L.R.G. Interpretação de análise de solo: conceitos e aplicações. 3ª ed. Associação Nacional para difusão de adubos – AND, Boletim Técnico nº 2, São Paulo: 1992.

PRADO, H. do. Manejo dos Solos: descrições pedológicas e suas implicações. São Paulo. Nobel:1991. RONDÔNIA. Plano Agropecuário e Florestal de Rondônia-PLANAFLORO. Porto Velho; Tecnosolos, 2001.

TROEH, F. R. & THOMPSON, L. M. Solos e Fertilidade dos Solos. 6ª. ed. Tradução por DOURADO NETO, D e DOURADO, M. N. Andrei Editora, 2007.

Tabela 1 - Análise química das amostras de solo nas propriedades agroecológicas em Alto Paraíso/RO, 2010.

Propried ade	Prof. (cm)	pH em Água	P mg/ dm ³	K	Ca	Mg	Al+H	Al	MO g/Kg		СТС	V %
										mmol _c /dm³		
				3 mmol _c /dm					•	Efa Dat		
	0 00		4	2.20		_			20.4	Efe	Pot	<u> </u>
1	0 – 20	5,2	4	2,28	61,4	11,9	64,4	0,0	39,1	75,5	140,0	54,0
	20 – 40	4,6	1	0,77	4,4	2,0	49,5	7,3	6,7	14,5	56,7	13,0
2	0 – 20	5,6	2	3,21	23,0	8,2	26,4	0,0	10,0	34,4	60,9	57,0
	20 – 40	4,9	1	1,56	11,8	4.0	34,7	1,4	7,6	18,8	52,6	33,0
3	0 – 20	5,2	3	1,28	50,6	8,8	54,5	0,0	26,7	60,7	115,1	53,0
	20 – 40	4,8	1	0,62	9,5	2,1	51,2	5,0	11,4	17,2	63,4	19,0
4	0 – 20	5,3	1	0,74	14,4	6,3	36,3	0,0	21,3	21,4	57,6	37,0
	20 – 40	4,8	1	0,41	5,6	1,1	31,4	5,6	16,3	12,7	38,5	18,5
5	0 – 20	5,0	2	1,03	30,2	8,2	49,5	0,0	22,4	39,4	89,0	44,0
	20 – 40	4,7	1	0,38	8,0	4,5	38,0	3,2	10,5	16,0	50,9	25,0
6	0 – 20	5,9	2	4,92	45,2	24,2	39,6	0,0	16,3	74,3	114,0	65,2
	20 – 40	6,1	1	4,67	39,0	14,9	39,6	0,0	10,9	58,6	95,1	60,0