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ABSTRACT: Genome association analyses have been successful in identifying quantitative trait 
loci (QTLs) for pig body weights measured at a single age. However, when considering the whole 
weight trajectories over time in the context of genome association analyses, it is important to 
look at the markers that affect growth curve parameters. The easiest way to consider them is 
via the two-step method, in which the growth curve parameters and marker effects are esti-
mated separately, thereby resulting in a reduction of the statistical power and the precision of 
estimates. One efficient solution is to adopt nonlinear mixed models (NMM), which enables a joint 
modeling of the individual growth curves and marker effects. Our aim was to propose a genome 
association analysis for growth curves in pigs based on NMM as well as to compare it with the 
traditional two-step method. In addition, we also aimed to identify the nearest candidate genes 
related to significant SNP (single nucleotide polymorphism) markers. The NMM presented a 
higher number of significant SNPs for adult weight (A) and maturity rate (K), and provided a direct 
way to test SNP significance simultaneously for both the A and K parameters. Furthermore, all 
significant SNPs from the two-step method were also reported in the NMM analysis. The ontology 
of the three candidate genes (SH3BGRL2, MAPK14, and MYL9) derived from significant SNPs 
(simultaneously affecting A and K) allows us to make inferences with regards to their contribution 
to the pig growth process in the population studied.
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Introduction

Differences in individual growth curves reflect 
partly genetic influences, with multiple genes contrib-
uting at different levels to the overall growth trajectory. 
In the current post-genomic era, the understanding of 
the genetic architecture of pig growth cannot be limited 
simply to the detection of QTLs for body weights at 
a specific age (Ai et al., 2012; Yoo et al., 2014). It can 
be extended for a more general purpose by considering 
whole growth trajectories over time as phenotypes. 

Traditionally, the easiest way to consider the 
whole growth trajectory directly in animal breeding 
models is the two-step method, in which fitting the 
individual growth curve (step 1) and genetic analysis 
(step 2) are considered separately. However, the 
growth-curve coefficients and genetic effects are not 
estimated jointly in the same model, and this may 
result in a reduction of statistical power and precision 
of estimates (Varona et al., 1999; Blasco et al., 2003; 
Ibañez-Escriche and Blasco, 2011). One efficient 
solution is to adopt nonlinear mixed models, which 
enables a joint modeling of the individual growth 
curves and genetic effects. Although this class of 
models has already been adopted for the traditional 
(Varona et al., 1999; Blasco et al., 2003) and genomic 
(Ibañez-Escriche and Blasco, 2011) prediction of 
breeding values, there are no reports about their use in 
genome association analyses. 

Another interesting point in these analyses is the 
identification of the candidate genes most closely related 
to significant SNPs. There are studies considering this 
gene identification for growth curve parameters in hu-
mans (Das et al., 2011a) and cattle (Crispim et al., 2015), 
but for pig growth curves, this approach has not been 
employed in previous studies. 

In this context, we aimed to propose a genome 
association analysis for growth curves in pigs based on 
nonlinear mixed models and the traditional two-step 
method. Additionally, we aimed to identify candidate 
genes related to significant SNPs whose biological func-
tions can be useful in explaining the genetic basis of 
postnatal growth in pigs.

Materials and Methods

Experimental population and phenotypic data
The phenotypic data was obtained from an ex-

periment carried out in Viçosa, in the state of Minas 
Gerais, located in the geographic coordinates 20º 45' 
14" S and 42º 52' 55" W, at  648 m altitude. A three-
generation resource population was raised and managed 
as described by Hidalgo et al. (2013) and Verardo et al. 
(2015). Briefly, two naturalized Piau breed grandsires 
were crossed with 18 granddams from a commercial 
line composed of Large White, Landrace, and Pietrain 
breeds to produce the F1 generation, from which 11 F1 
sires and 54 F1 dams were selected. These F1 individu-
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als were crossed to produce the F2 population, of which 
345 animals were weighed at birth and at 21, 42, 63, 77, 
105, and 150 days of age. The use of these animals was 
reviewed and approved by the Bioethics committee of 
the Department of Animal Science (DZO-UFV) in agree-
ment with the Guide to the Care and Use of Experimen-
tal Animals of the Canadian Council on Animal Care.

DNA extraction, genotyping, and SNP quality control
Genomic DNA was extracted from the white cells 

of parental, F1, and F2 animals; more details can be 
found in Band et al., 2005b. The low-density customized 
SNPChip with 384 markers was based on the Illumina 
Porcine SNP60 BeadChip (San Diego, CA, USA, Ramos 
et al., 2009). These SNPs were selected according to QTL 
positions that had been previously identified in this pop-
ulation by using meta-analyses (Silva et al., 2011) and 
fine mapping (Hidalgo et al., 2013; Verardo et al., 2015). 
Thus, although a small number of markers have been 
used, the customized SNPchip based on previously iden-
tified QTL positions ensures appropriate coverage of the 
relevant genome regions in this population. From these, 
66 SNPs were discarded because of a low-genotyping 
call rate (< 0.95), and from the remaining 318 SNPs, 81 
were discarded due to a minor allele frequency (MAF) 
< 0.05. Thus, 237 SNP markers were distributed on 
the Sus scrofa chromosomes (SSC) as follows: SSC1 (56), 
SSC4 (54), SSC7 (59), SSC8 (30), SSC17 (25), and SSCX 
(13). The average distance between markers within each 
chromosome was equal to 5.17, 2.37, 2.25, 3.93, 2.68, 
and 11.0 Mb, respectively, for SSC1, SSC4, SSC7, SSC8, 
SSC17, and SSCX. 

Proposed genome association analyses through 
nonlinear mixed models (NMM)

The NMM are based on a mean curve that is fitted 
to the population, so that the individual curves, incor-
porating the random effects of each individual, appear 
as deviations from this mean curve. Similarly, particular 
curves for fixed effects, like SNPs in genome association 
analyses and other systematic effects (contemporary 
groups), can also be directly accessed. 

Five of the most widely used nonlinear regression 
models (Brody, Gompertz, logistic, von Bertalanffy, and 
Richards) to describe animal growth curves were fitted 
to the phenotypic data (345 animals weighed at birth and 
at 21, 42, 63, 77, 105, and 150 days of age) by using 
the nlme (Linear and Nonlinear Mixed Effects Models) R (R 
Development Core Team, 2015) software package. The 
nonlinear logistic mixed model outperformed the oth-
ers in relation to the AIC (Akaike Information Criterion) 
and BIC (Bayesian Information Criterion) criteria and 
was chosen to describe the pig growth curves. The basic 
form of the logistic model (Ratkowsky, 1983) is defined 
as follows: 

1 exp(
i

ij ij
i i ij

A
w e

b K t
= +

 + − 
,                                                                                    (1)

where wij is the weight of the animal i at age (t) j; Ai is 
the mature (adult) weight (kg); Ki is the maturing rate (a 
growth precocity measure, or the general growth rate); 
bi is the integration parameter, which has no biological 
interpretation but is essential to providing the sigmoid 
shape of the curve; and eij is a residual term, assumed to 
be independent and normally distributed, 2(0, )ij ee N σ .

In the context of NMM, the parameters (Ai, bi, and 
Ki) in (1) can be modeled by using a linear mixed model, 
which considers the fixed and random effects of interest. 
In the present study, the contemporary group (combina-
tion of sexes, batches, and halothane gene genotypes), 
five principal components (PC1, PC2, …, PC5) of the geno-
type matrix (M) and SNP were assumed to be fixed ef-
fects, while the individual animal effects were assumed 
to be random effects. The fixed PC effects were used to 
account for population-specific (substructures) variations 
in the distribution of alleles on the SNPs under investiga-
tion. Such population substructures mainly arise as a con-
sequence of varying frequencies in minor alleles due to 
systematic ancestry differences, and the presence of these 
substructures can cause spurious SNP associations (Price 
et al., 2006). Thus, by adding the PCs as fixed covariates in 
the models that were used for genome association analy-
ses, we can point to groups of individuals that differ at the 
level of minor allele frequencies (Patterson et al., 2006). 

The contemporary group (CG) effects were con-
sidered to correct the phenotype for non-genetic effects 
that can influence the significance of SNP effects, and 
the individual random effects are included to correct 
for the influence of observational units (in this case, the 
animals) associated with the sampled phenotype. In fact, 
these random effects work like a special residual term 
that is specific to each growth curve parameter. In sum-
mary, NMM account simultaneously for both fixed and 
random effects of the growth curve parameters, which 
support the joint estimation of these parameters of in-
terest (for example, adult weight and maturity rate) to-
gether with SNP effects. 

In view of these considerations, the genome asso-
ciation analysis model for growth curve parameters was 
proposed by accommodating fixed and random effects 
for the parameters A and K. This corresponds to a linear 
model to explain variations in these parameters, within 
a general nonlinear model that describes the growth be-
havior of the animals over time. The null model (i.e., 
without SNP effects) was defined as follows:

( ){ }1 exp
i

i

A A
ij ij

b K K ij

CG PC
w e

CG PC t

µ + + + ξ
= +

 + µ − µ + + + ξ 
.  (2)

The model in (2) assumes that the parameters A 
(adult weight), b (integration parameter), and K (matu-
rity rate) can be modeled, respectively, by the following 
linear models: Ai = µA + CG + PC + ξAi; bi = µb; and 
Ki = µK + CG + PC + ξKi. In these models, the term μ 
represents the general mean of each parameter; CG and 
PC indicate the fixed effects of the contemporary group 
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and principal components (as a covariate), respectively; 
and ξAi 

and ξKi are the specific residual terms (random 
individual effects) for the parameters A and K. These are 
assumed to be jointly distributed as 

( )0,i

i

A

K

N
ξ 

Σ 
ξ  

 , 

where 0 is a vector of zero means and Σ is a residual 
covariance between these parameters:
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where 
2
Aσ  and 2

Kσ  are the specific residual variances of 
each parameter, and σA,K is the residual covariance be-
tween them. 

At this point, it is worth emphasizing that another 
advantage of NMM over the traditional two-step method 
is this joint modeling of residual effects, since the cor-
relation between growth curve parameters exists and 
must be incorporated, when modeling, into the genetic 
models (Varona et al., 1999; Blasco et al., 2003; Ibañez-
Escriche and Blasco, 2011). Note that for parameter b, 
it was assumed that the model contained only a general 
mean (µb) since this parameter showed no variation be-
tween individuals, contributing to several convergence 
problems. Furthermore, this parameter does not have 
biological interpretations like the A and K parameters.

The full model that was contrasted with the null 
model presented in (2) was defined as follows:

( ){ }
µ + + + + ξ

= +
 + µ − µ + + + + ξ 1 exp

i

i

A A
ij ij

b K K ij

SNP CG PC
W e

SNP CG PC t
. (3)

This model assumes that the parameters A and K 
are also affected by SNP effects, in addition to the fixed 
and random effects described in (2). It is important to 
note that this model suggests that the same SNP marker 
simultaneously affects both the adult weight (A) and ma-
turity rate (K) parameters. Thus, due to this significance, 
one given SNP can be characterized as a relevant marker 
which explains the growth process in pigs. On the other 
hand, intermediary models that assume the SNP marker 
separately affect A (model in 4) or K (model in 5) and can 
also be proposed as follows: 

( ){ }1 exp

µ + + + + ξ
= +

 + µ − µ + + + ξ 

i
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W e

CG PC t
,   (4)
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A A
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W e
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 + µ − µ + + + + ξ 
,  (5)

To draw conclusions regarding the statistical sig-
nificance of each SNP, the models in (3), (4), and (5) were 
compared with the null model in (2) by using the like-
lihood ratio test (LRT) under a general null hypothesis 
(H0: there is no effect of the SNP marker), contrasted 
with specific alternative hypotheses (H1AK: SNP effect si-

multaneously on A and K parameters; H1A: SNP effect 
only on A parameter; H1K: SNP effect only on K param-
eter). The testing of hypotheses H1AK, H1A, and H1K can be 
performed, respectively, by the assessment of the follow-
ing LRT statistics:

     2
21

     3AK

max of the likelihood of model
LRT n

max of the likelihood of model
 = −  
 

,

     2
21

     4A

max of the likelihood of model
LRT n

max of the likelihood of model
 = −  
 

, and

     2
21

     5K

max of the likelihood of model
LRT n

max of the likelihood of model
 = −  
 

These LRT values are assumed to be chi-squared 
(χ2) distributed with D degrees of freedom, where D is 
the difference between the number of parameters of the 
two models compared.

Following the general philosophy of the genome 
association analyses, the models in (2), (3), (4), and (5) 
were fitted (by the Maximum Likelihood Method in 
the package nlme of R) separately for each of the SNP 
markers considered, thus leading to the problem of 
multiple independent statistical tests. Adjustments for 
these multiple comparisons are needed to avoid spuri-
ous SNP associations due to the application of a large 
number of tests. A strategy to correct for the simultane-
ous inference of many tests is the false discovery rate 
(FDR), which provides a practical balance between the 
true and false positive rates that were considered in 
these tests. The FDR control is accomplished by using 
a direct correction of original p-values, which shall be 
called q-values. In the present study, the original p-val-
ues from LRT tests were transformed into q-values (the 
FDR correction) by using the function q-value of the R/
bioconductor software. The 5 % significance level was 
used as a threshold.

Genome association analyses through the tradition-
al two-step method 

In the traditional two-step method, which is differ-
ent from the NMM, there are two distinct analyses; the 
first one is related to individual fitting (independently for 
each animal) of the nonlinear model in (1) and the sec-
ond one to the fitting of traditional genome association 
analysis linear models while assuming the phenotypes 
to be the estimates that were provided by the previous 
analysis. These linear models which were considered in 
the second step were determined as follows:

ˆ
ii A AA SNP CG PC= µ + + + + ξ  and 

ˆ
ii K KK SNP CG PC= µ + + + + ξ , respectively, for adult 

weight (A) and maturity rate (K). Note that the pheno-
types have been denoted by the estimation symbol (hat) 
because they were previously estimated in the first step.
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The significance of each SNP was accessed via a 
simple Student’s t-test. Since these models were also fit-
ted independently for each SNP, the FDR correction was 
also used to address the problem of multiple tests. The 
previously mentioned linear models were implemented 
by using the GWAS (Genome Wide Association Studies) 
function of the package rrBLUP in the R software. The 
original p-values that were reported in the output were 
transformed into q-values (FDR correction) as they had 
been previously done for NMM. Although the poorer 
performance of the two-step method has already been 
reported in the context of other mixed models in animal 
breeding (Varona et al., 1999; Blasco et al., 2003; Ibañez-
Escriche and Blasco, 2011), to date there has been no 
mention of this performance when considering genome 
association analysis models. 

SNP derived candidate gene annotation
We exploited the biological mechanism of the pig 

growth curve by taking into consideration the functions 
of the annotated genes underlying the significant SNP 
markers (q-value < 0.05). To track the genes that were 
within or close to the markers, we used the package Map-
2NCBI (Hanna and Riley, 2014) of the R software based 
on the Sscrofa10.2 assembly of the pig genome sequence. 

Information about the identity and function of an-
notated genes at mapped SNP markers were obtained 
from the chromosomal positions at the Ensembl Genome 
Browser 2015 (http://www.ensembl.org/index.html). Lists 
of the genes that are located closest to the significant SNPs 
were extracted while allowing for a maximum distance of 
1 Mb between the SNP and the annotated genes. Putative 
genes that were identified for pig breeds were established 
by a BLAST Homology search of known, identified human 
gene transcripts, which were downloaded from the ge-
nome databanks of the National Center for Biotechnology 
Information (NCBI) (http://www.ncbi.nlm.nih.gov/books/
NBK143764/). The biological function of these genes and 
their possible relation to growth curve traits were inves-
tigated, and where no information was available for the 
Sus scrofa genes, human, rat, and mouse biological func-
tion annotations were used to proceed with the in-silico 
functional analyses. The Animal QTL database (Hu et al., 
2013) was accessed to verify previous QTL that were re-
ported for growth curve traits in the surrounding regions 
of the significant SNPs. With this approach, it was pos-
sible to identify the biological mechanisms and functions 
involving the identified genes as well as to highlight the 
most relevant genes that are putatively associated with 
growth curve parameters in pigs.

Results

To determine the nonlinear model that best de-
scribes the growth curve of the studied pig population, 
the AIC and BIC goodness of fit measures were used. The 
following values were obtained for these criteria: Brody 
(AIC = 1297.36 and BIC = 1313.16), Gompertz (AIC = 

1291.42 and BIC = 1309.11), logistic (AIC = 1282.18 
and BIC = 1301.01), von Bertalanffy (AIC = 1293.42 
and BIC = 1310.00), and Richards (AIC = 1284.56 and 
BIC = 1304.88). These results revealed the superiority 
of the logistic model, which was chosen to describe the 
pig growth curves in the subsequent analyses.

The list of significant SNPs based on nonlinear 
mixed models (NMM) and the traditional two-step meth-
od that affect the adult weight (A) and maturity rate (K) in 
pigs, as well as their genome positions and related genes, 
(using the NCBI nomenclature) is shown in Table 1. 

The NMM provided significant SNPs for param-
eter A, which were located on SSC1 and SSC7, whereas 
for parameter K the SNPs were located on SSC1, SSC4, 
SSC7, SSC8, and SSC17 (Table 1). On the other hand, 
when using the two-step method, the significant SNP 
for parameter A was located only on chromosome SSC1, 
whereas for parameter K, the SNPs were located on 
chromosomes SSC1 and SSC7 (Table 1). The number of 
significant SNPs from NMM was higher than the num-
ber from the two-step approach, and the identification 
of markers simultaneously affecting parameters A and 
K (model in 3) provided extra information about chro-
mosome regions governing the growth trajectory in pigs.

Of the significant SNPs simultaneously affecting 
A and K parameter estimates (i.e. using the NMM view-
point), we found the three genes SH3BGRL2, MAPK14, 
and MYL9 in the chromosome regions of these SNPS. 
In the same context, two SNPs (ALGA0026242 and 
ALGA0047895) were identified from significant SNPs 
that affected only the maturing rate parameter (K). 

With the aim of visualizing the estimated effect 
of each significant SNP on the whole growth trajectory 
in pigs, genotypic curves for these markers were plot-
ted in Figure 1. We opted to show only significant mark-
ers that had simultaneously influenced the adult weight 

Table 1 − Significant SNP associations for adult weight (A) and 
maturity rate (K) across different genome association analyses 
methods (nonlinear mixed models-NMM and two-step).

Method Trait Marker q-value Chr* Pos (bp) Symbol**
ALGA0004774 0.0013 1 74040611 SH3BGRL2

A ALGA0040318 0.0005 7 35289714 MAPK14
ALGA0004774 0.0017 1 74040611 SH3BGRL2
ALGA0026242 0.0100 4 80196806 DPT

NMM K ALGA0040318 0.0072 7 35289714 MAPK14
ALGA0047895 0.0124 8 25397346 MARCH1
ALGA0095662 0.0016 17 45268700 MYL9
ALGA0004774 0.0052 1 74040611 SH3BGRL2

A, K ALGA0040318 0.0026 7 35289714 MAPK14
ALGA0095662 0.0224 17 45268700 MYL9

A ALGA0040318 0.0085 1 74040611 SH3BGRL2
Two-Step ALGA0004774 0.0092 1 74040611 SH3BGRL2

K ALGA0040318 0.0096 7 35289714 MAPK14
*Chromosome; **The gene names are the following: SH3BGRL2 (SH3 
Domain Binding Glutamate-Rich Protein), MAPK14 (Mitogen-Activated Protein 
Kinase) and MYL9 (Myosin Regulatory Light Chain).
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(A) and maturity rate (K). Thus, we used the markers 
ALGA0004774, ALGA0040318, and ALGA0095662 from 
genome association analyses based on NMM as present-

ed in Table 1 (trait A,K). Each estimated curve was ob-
tained by using the following: 

( ){ }
ˆˆˆ

ˆˆ ˆ1 exp

A g
gj

b k g j

SNP X
W

SNP X t

µ + ×
=

 + µ − µ + × 

, 

where the estimated SNP effect was reported by the fit-
ting of NMM and Xg, which represents each possible 
genotype (0, 1, and 2; respectively for the genotypes 
AA, AB, and BB according to A-B notation from Illumina 
Porcine SNP60 BeadChip). This equation was applied 
to each significant SNP, thus generating three different 
curves, one for each genotype. The larger the difference 
between these three curves, the larger the marker effect 
on the growth curve of the animals.

Based on the functional study of genes underly-
ing the significant SNP markers, a number of candidate 
genes could be identified and these are shown in Table 1. 

Discussion

Genome association analyses through nonlinear 
mixed models and the two-step method

The growth of pigs is a process that depends, 
among others, on genetic effects acting over time. The 
inclusion of a time dimension in the model would al-
low us to address questions related to genetic effects 
throughout the life span of the animals. We presented a 
modeling framework that integrates growth curve analy-
ses and SNP association studies simultaneously under a 
nonlinear mixed model (NMM) approach.

Table 1 shows that, when compared with the tra-
ditional two-step, NMM detected a higher number of sig-
nificant SNP associations for both the adult weight (A) and 
maturity rate (K) traits. Furthermore, NMM also provides 
a direct way to test the SNP significance simultaneously 
for both A and K, and all significant SNPs that were identi-
fied for A and K by using the two-step method were also 
detected in the NMM analysis. Thus, the two-step method 
did not reveal new significant markers in relation to NMM.

In summary, the standard two-step method, when 
considering growth curve analyses, has several drawbacks. 
It depends on how well the fixed nonlinear model fits in 
the first step, since the estimates provided are considered 
to be the phenotypes in the second step (genome associa-
tion study). Thus, a non-satisfactory fit in the first step di-
rectly results in non-reliable phenotypes in the second step, 
and consequently, in inaccurate estimates of SNP effects. 
It does not provide an explicit estimate of individual-level 
variations in the parameter estimates, which can be seen 
as the random individual effect under an NMM approach. 
Thus, ignoring the individual deviation estimates can lead 
to underestimated standard errors of parameter estimates, 
which in this case are the SNP effects.

One of the major advantages of the NMM approach 
is that it can discern the influence of genotypes on rel-
evant loci over the growth curve trajectory, thus revealing 
age-related changes due to genetic influences on body size 

Figure 1 − Effects of significant SNPs (simultaneously on adult weight 
and maturity rate) over the whole growth curve trajectory in pigs 
based on genome association study using nonlinear mixed models. 
The SNPs ALGA0004774, ALGA0040318 and ALGA0095662 are 
presented in Figure 1A, B and C, respectively.
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during post-natal growth development. It can have great 
implications for the design of an efficient marker assisted 
selection (MAS) program in pigs, since the information 
on individual genotypes at relevant loci (Figure 1) can be 
used as an extra-criterion for the estimated breeding val-
ues (EBV) with regards to the selection of the most desir-
able animals from a genetic viewpoint. 

Generally, a marker assisted selection (MAS) strat-
egy can be achieved by ranking the animals by EBVs (or 
one related selection index) for growth performance, and 
the subsequent mating of selected males and females 
can be targeted by using SNP-specific genotypes to fa-
cilitate the fixation of favorable alleles (after identifying 
the gametic linkage disequilibrium phase). For example, 
in Figure 1 it is possible to note the differences in the 
curve shapes when considering the genotypes for each 
one of the significant SNPs. Particularly for the SNPs 
ALGA0004774 (Figure 1A) and ALGA0040318 (Figure 
1B), the growth curve for the genotype AA outperformed 
the other genotypes (AB and BB), while for the SNP 
ALGA0095662, the genotype BB showed better results 
in terms of the growth curve shape in pigs. 

Although this type of interpretation (Figure 1C) is 
valid and relevant for MAS, it has not been exploited in 
the field of animal breeding. On the other hand, in hu-
man genetics, the SNP effect with genotype differentia-
tion trajectories over time has been studied to detect the 
genetic influence on dynamic traits. Das et al. (2011a) 
plotted and interpreted age-specific trajectories of the 
body mass index (BMI) in different sexes for three geno-
types at each significant SNP that was detected from the 
various chromosomes. Analogously, Das et al. (2011b) 
fitted mean curves for different genotypes and comput-
ed the additive and dominant SNP effects over time for 
blood pressure in the different sexes. Both of these stud-
ies exploited the estimation of the SNP effect over time 
by using polynomial random regression models (that are 
theoretically linear) because disease trajectories over 
time do not show a well-known longitudinal behavior. 
In light of the present study, when working with growth 
curves whose longitudinal profiles are proven to be sig-
moidal, the use of nonlinear mixed models can be seen 
as a new insight into genome association analyses. Thus, 
mainly in the field of animal breeding, the use of NMM 
can increase knowledge of the genetic architecture of 
other important economical and longitudinal traits such 
as milk and egg production. 

In addition to all of the practical connotations of 
pig breeding plans and MAS from genome association 
analyses through NMM, the identified significant SNPs 
can also be exploited while asking and addressing bio-
logical questions by identifying candidate genes behind 
these SNPs as well as by interpreting their functions in 
the genetics of pig growth.

SNP derived candidate gene annotation
In relation to the SH3BGRL2 (SH3 Domain Bind-

ing Glutamate-Rich Protein) gene located at SSC1 (Table 

1), Mazzocco et al. (2002) mentioned that some proteins 
that are coded from this gene are highly homologous to 
the N-terminal region of the SH3BGR protein and ap-
pear to be related to thioredoxin, one of whose functions 
may be to promote the growth hormone in tissue-cul-
ture cells. In the context of growth related genes, several 
studies have found significant QTL affecting the weight 
and feed efficient traits in this same region of the SH3B-
GRL2 gene. Geldermann et al. (2010) found QTL for car-
cass weights when considering different F2 pig popula-
tions and Beeckmann et al. (2003) reported QTL related 
to feed intake by using F2 families based on crosses of 
Meishan, Pietrain, and Wild Boar.

The protein encoded by the MAPK14 (Mitogen-
Activated Protein Kinase) gene is a member of the MAP 
(Mitogen-Activated Protein) kinase family. MAP kinases 
act as an integration point for multiple biochemical sig-
nals and are involved in a wide variety of cellular pro-
cesses such as proliferation, differentiation, transcrip-
tion, regulation, and development. In this context, Evans 
et al. (2003) identified significant QTL in the region of 
the MAPK14 gene for average daily gain (ADG) when 
considering commercial populations based on Large 
White, Landrace, Hampshire, Pietrain, and Meishan 
pigs. Analogously, Fontanesi et al. (2014) also found sig-
nificant QTL for ADG when considering a population of 
Italian Large White pigs.

Regarding the MYL9 (Myosin Regulatory Light 
Chain) gene, Fan et al. (2011) reported an important role 
of this gene in pathways involving bone and cartilage 
development, muscle growth, and development while 
considering different spatial and temporal stages. In this 
same region, Onteru et al. (2013) reported significant 
QTL for ADG when considering Yorkshire derived lines. 
Similarly, Pierzchala et al. (2003) detected significant 
QTLs for ADG in this region when using purebred pigs 
of the three genetically diverse founder groups: Meis-
han, Pietrain, and European Wild Boar.

In summary, whereas the genome association anal-
yses is an unbiased search of the entire genome without 
any assumptions about the role of a certain gene, the 
candidate gene approach allows researchers to investi-
gate the validity of genes regarding the genetic basis of 
a complex trait. Thus, when combining these two ap-
proaches in the same study, we have the advantage of 
identifying candidate genes from the same population in 
which significant markers were identified for the traits 
of interest. Since the first critical step in conducting can-
didate gene studies is the choice of a suitable gene which 
may plausibly play a relevant role in the traits studied, 
the ontology of the three genes (SH3BGRL2, MAPK14, 
and MYL9) derived from significant SNPs (simultaneous-
ly affecting A and K in Table 1) allows us to make infer-
ences about their contribution to the pig growth process 
in the population that was considered. 

To validate the reported candidate genes, comple-
mentary studies like gene expression analyses and gene 
re-sequencing should be considered in the future. These 
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analyses could be carried out by considering contrasting 
conditions, such as groups of animals that are genetically 
different in relation to their growth curve shapes. These 
groups can be selected, for example, by means of the 
predicted genomic breeding values for the growth curve 
parameter as presented by Silva et al. (2013).
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