

GIRASSOL SAFRINHA NA BACIA DO JEQUITINHONHA, MINAS GERAIS

SUNFLOWER IN THE JEQUITINHONHA BASIN, MINAS GERAIS

CLÁUDIO G. P. CARVALHO¹, CÂNDIDO A. COSTA², JOSÉ C. F. RESENDE³=

¹Embrapa Soja, Caixa Postal 231, 86001-970, Londrina, PR. e-mail: portela.carvalho@embrapa.br., ²UFMG-ICA, Caixa Postal 135, 39.404-006 Montes Claros, MG. ³Epamig Norte, Caixa Postal 52, 39.404-128 Montes Claros, MG. e-mail: jresende@epamig.br;

Resumo

Com o objetivo de avaliar vinte genótipos de girassol na safrinha de 2010, foi implantado um experimento no Campo Experimental de Acauã, área da Epamig, em Leme do Prado, na Bacia do Jequitinhonha, Minas Gerais. Os caracteres avaliados foram os seguintes: floração inicial, maturidade fisiológica, altura de plantas, diâmetro do capítulo, produtividade e peso de mil aquênios. O delineamento adotado foi o de blocos ao acaso, com quatro repetições, utilizando-se duas linhas centrais de 6,0 m como área útil, descartando-se 0,5 m nas bordaduras e as duas linhas externas. A adubação foi realizada conforme recomendação técnica, após a análise de solo, e os tratos culturais foi conforme recomendação técnica para a cultura. Para a comparação das médias foi empregado o teste de Scott-Knott a 5 % de significância. Verificou--se que não houve diferença significativa entre os genótipos para floração inicial, maturidade fisiológica e diâmetro de capítulo. Foram formadas duas categorias de genótipos para altura de plantas, produtividade e peso de mil aquênios. No período de avaliação observou-se que as plantas de modo geral tiveram porte baixo, e que baixos rendimentos foram alcançados. A maioria dos genótipos (67%) formou uma categoria com baixo peso de aquênios, em relação aquela com peso superior.

Palavras-chave: girassol, produtividade, ciclo.

Abstract

With the objective of evaluating twenty sunflower genotypes in the second season of 2010, an experiment was carried out at the Experimental Field of Acauã, Epamig area, in Leme do Prado, in the Jequitinhonha Basin, Minas Gerais. The characters evaluated were follows: initial flowering, physiological maturity, plant height, head productivity and weight of a thousand achenes. The experimental design was a randomized complete block design, with four replications, using two central rows of 6.0 m as a useful area, discarding 0.5 m in the borders and the two external lines. Fertilization was carried

out according to technical recommendation, after the soil analysis, and the cultural treatments were according to the technical recommendation for the crop. The Scott-Knott test at 5% significance was used to compare the means. It was verified that there was no significant difference between the genotypes for initial flowering, physiological maturity and heads diameter. Two categories of genotypes were formed for plant height, yield and weight of a thousand achenes. In the evaluation period it was observed that the plants were generally low in size and that low yields were achieved. Most of the genotypes (67%) formed a category with low weight of achenes, in relation to that with superior weight.

Key-words: sunflower, productivity, cycle

Introdução

O cultivo do girassol (*Helianthus annuus* L.) tem apresentado expansão de área no Brasil ao longo dos últimos 10 anos. Essa cultura vem sendo utilizada para produção de óleo comestível, biodiesel, ornamentação e ração para animais, entre outras (Souza et al., 2015).

O girassol é uma cultura opcional para os sistemas de rotação e sucessão de culturas, por apresentar características agronômicas desejáveis, como ciclo curto, ampla adaptabilidade às diferentes condições edafoclimáticas, alta capacidade de adaptação a variações de latitude, longitude e fotoperíodo (Santos et al., 2015).

É empregada frequentemente em rotações de culturas, em virtude de seu grande potencial como reciclador de nutrientes, além de apresentar alelopatia às plantas invasoras, melhorando as características físicas do solo (Coutinho et al., 2015). Esta versatilidade torna a cultura adequada para pequenos produtores, pois a cultura também apresenta outros produtos secundários que constituem fonte de renda alternativa, como produção de mel (Ungaro et al., 2009).

O objetivo deste trabalho foi avaliar algumas características de vinte genótipos de girassol em experimento semeados na safrinha de 2010 na Bacia do Jequitinhonha, Minas Gerais.

Material e Métodos

O experimento foi conduzido em condições de sequeiro na safrinha em 2010, na Empresa de Pesquisa Agropecuária de Minas Gerais - Epamig, Campo Experimental de Acauã, em Leme do Prado-MG, com a semeadura realizada em 11/02/2010.

A área experimental está fisiograficamente situada na Bacia do Jequitinhonha, à altitude de 812 m, paralelo de 17º 03', latitude sul e meridiano de 42º 48', longitude oeste de Greenwich. A temperatura média é de 24 ° C, e a pluviosidade média está em torno de 950 mm. A precipitação (mm) ocorrida durante a condução do experimento, por decêndio foram respectivamente: fevereiro (41,6; 0; 67,4), março (118,2; 27,0; 15,7), abril (87,6; 0; 0), maio (41,1; 40,4; 2,8), junho (0; 0; 3,6). A precipitação no período de condução do experimento foi de 403,8 mm, entretanto, logo após a semeadura não ocorreram chuvas entre 11 e 20 de fevereiro, prejudicando a emergência de plântulas. Na época de enchimento de grãos as chuvas foram escassas, e certamente o défice hídrico interferiu negativamente no rendimento dos genótipos.

A correção do solo foi feita próxima à implantação do experimento, com adição de 2,4 t ha-1 de calcário dolomítico, PRNT 100%. Na adubação de semeadura foram adicionados 150 kg ha-1 do formulado 8-26-16 + Zn, além de 3 kg ha⁻¹ de ácido bórico. A adubação de cobertura foi composta por 64 kg ha⁻¹ de ureia e 28 kg ha⁻¹ de cloreto de potássio, 35 dias após a emergência. Foram realizadas duas capinas manuais na área experimental, não sendo necessário fazer controle de pragas, embora a presença de mancha de Alternaria (Alternaria spp.) e oídio (Golovinomyces cichoracearum) tenha sido detectada no final do ciclo, próximo à maturidade fisiológica, mas sem causar prejuízos à cultura. Procedeu-se ao ensacamento dos capítulos por ocasião de enchimento de grãos, mas mesmo assim foi observado severo ataque de pássaros em um bloco e moderado em outros três, que culminou em prejuízo à produtividade média dos genótipos.

O experimento foi composto por vinte genótipos, que fazia parte do Ensaio Final de Primeiro Ano, trabalho coordenado pela Embrapa Soja. Os genótipos foram semeados em quatro blocos, contendo quatro linhas de seis metros de comprimento por repetição, espaçadas de 0,70 cm entre si (parcelas de 6,0 m x 2,8 m).

A floração inicial (dias) foi realizada na fase R4, quando 50% das plantas na parcela apresentaram pétalas amarelas, e a maturidade fisiológica (dias) na fase R9, identificando-se 90% das plantas das parcelas com brácteas de coloração entre amarelo e castanho.

Imediatamente antes da colheita, nas duas linhas centrais, descartando-se 0,5 m de bordadura, foram determinados o rendimento (kg ha-1) e o diâmetro do capítulo (cm) na área útil total, utilizando-se dez amostras, correspondentes a dez plantas. A altura de planta (cm), observada do nível do solo até a inserção do capítulo foi avaliada, quando as parcelas apresentavam-se em plena floração. O peso de mil aquênios (g) foi determinado em laboratório, no Campo Experimental de Acauã, logo após a colheita. O delineamento estatístico adotado foi o de blocos ao acaso, separadamente por ensaio, com quatro repetições.

A análise de variância foi realizada para os caracteres indicados, considerando os dados amostrais por característica. A comparação dos híbridos foi feita por meio do teste de Scott-Knott, a 5% de probabilidade. As análises estatísticas foram realizadas usando-se o programa Genes (Cruz, 2006).

Resultados e Discussão

Os coeficientes de variação (CV) das análises de variância para todos os caracteres na Tabelas 1 podem ser classificados como alto para produtividade, médio para peso de mil aquênios a baixos (demais variáveis), de acordo com Pimentel Gomes (1985) e Carvalho et al. (2003), indicando razoável precisão experimental. Certamente não apresentou melhor precisão devido a perdas de produtividade e no peso de aquênios dos capítulos, devido ao ataque severo de pássaros, pois um dos blocos foi altamente prejudicado na fase de colheita.

Na Tabela 1 estão apresentados os resultados para as características avaliadas no experimento. Observou-se que não houve diferenças significativas entre os tratamentos para as características 'floração inicial', 'maturidade fisiológica' e 'diâmetro do capítulo'. Já para altura de plantas, produtividade e peso de mil aquênios foi verificada a formação apenas duas categorias entre os genótipos estudados.

Para a floração inicial e maturidade fisiológica (Tabela 1), percebe-se que a semeadura em safrinha na região tende a alongar o ciclo de todos os genótipos do experimento. A redução da temperatura e do fotoperíodo na safrinha, provavelmente foram os fatores que influenciaram este alongamento de ciclo. Na mesma tabela verificou-se que os dados de diâmetro de capítulo para todos os genótipos não apresentaram diferenças, e os valores para este caráter foi superior ao encontrado por Silva et al. (2011), que obtiveram média de 13,5 cm. Rigon et al. (2013) encontraram valores superiores para o diâmetro do capítulo, em relação aos apresentados neste trabalho, com médias de 19 cm e 20 cm, e destacaram que os maiores valores estavam intrinsecamente ligados a rendimentos superiores. Nesta região não é recomendável cultivares de ciclo longo, tendo em vista o baixo índice pluviométrico, e principalmente a má distribuição de chuvas.

Verificou-se a média de altura de plantas (Tabela 1) de todos os genótipos foram muito semelhantes, mesmo tendo sido observado diferenças entre os materiais. As plantas mais altas, em média alcançaram 176 cm (HLH 08) e a de menor porte, 140 cm (CF 101), diferença de apenas 36 cm. Ribeiro et al. (2012) encontraram resultados em torno de 142 cm a 165 cm para altura média das plantas em ensaios realizados entre 2008 e 2011. Os resultados de Ribeiro et al. (2014) também corroboraram com as médias acima citadas. Alguns autores obtiveram médias bem próximas às encontradas neste ensaio, superando 150 cm (SALA et al., 2015), e até de 166 cm (SILVA et al., 2011).

A média de produtividades dos materiais testados (Tabela 1) ficou bem aquém do esperado para a região, se comparado com resultados em ensaios anteriores. As causas prováveis podem ter sido a época de semeadura, em que o défice hídrico por ocasião da floração e enchimento de grãos e a presença de pássaros se alimentando de aquênios reduziram o rendimento dos materiais testados. Nenhum dos genótipos obteve rendimentos próximos de 2000 kg ha⁻¹, e a grande maioria mostraram rendimentos inferiores à média nacional projetada para o ano agrícola 2016/17, que é de 1648 kg ha⁻¹ (CONAB, 2017).

Em estudo conduzido por Silva et al. (2011), nas condições do Município de Maringá, PR, onde estavam presentes alguns poucos dos genótipos aqui estudados, a produtividade média foi de 1.648 kg ha⁻¹, apresentando mínimos de 622 kg ha⁻¹ e máximos de 2.485 kg ha⁻¹.

Quanto ao peso de mil aquênios (Tabela 1), foram formados dois grupos de genótipos, sendo que os genótipos M 734, CF 101, BRS G29, HLA 1126 e Neon apresentaram superioridade para este caráter em relação aos demais. Podese observar que não houve nenhuma relação com peso de mil aquênios e produtividade, ou seja, os genótipos de produtividades superiores necessariamente não apresentaram o maior valor de peso de mil aquênios.

Conclusão

Não foram observadas diferenças significativas para floração inicial, maturidade fisiológica e diâmetro de capítulo entre os genótipos. Foram observadas baixas produtividades em todo o experimento, devido ao défice hídrico por ocasião de enchimento de grãos e por ataque severo de pássaros. Os genótipos estudados apresentaram ciclo longo para esta época de semeadura. Os tratamentos para altura de plantas, produtividade e peso de mil aquênios foram distribuídos em duas categorias pelo teste de média utilizado.

Agradecimentos

Aos técnicos da Epamig, à Embrapa Soja que possibilitou a avaliação de Ensaio da Rede de Avaliação de Genótipos, e à Fapemig por dar suporte financeiro ao projeto, cujos dados experimentais foram necessários para a elaboração deste trabalho.

Referências

CARVALHO, C. G. P. de; OLIVEIRA, M. F. de; ARIAS, C. A. A.; CASTIGLIONI, V. B. R.; VIEIRA, O. V. V.; TOLEDO, J. F. F. Categorizing coefficients of variation in sunflower trials. **Crop Breeding and Applied Biotechnology**, v. 3, p.69-76, 2003.

CONAB. Acompanhamento da safra brasileira de grãos 2016/2017, décimo primeiro levantamento, agosto/2017. Disponível em http://www.conab.gov.br/OlalaCMS/uploads/arquivos/1,boletim_graos-agosto_20127.pdf. Acesso em: 25 ago. 2017.

COUTINHO, P. W. R.; SOUSA, R. F. B. de; TSUTSUMI, C. Y. Métodos de melhoramento genético no girassol. **Nucleus**, v. 12, n. 1, p.119-128, 2015.

CRUZ, C.D. **Programa Genes**: aplicativo computacional em genética e estatística. Viçosa: Editora da UFV, 2006.

PIMENTEL GOMES, F. Curso de estatística experimental. São Paulo: Nobel, 1985. 468p.

RIBEIRO, J. L.; RIBEIRO, V. Q.; CARVALHO, C. G. P.; GONÇALVES, S. L. Comportamento de genótipos de girassol no município de Mata Roma, MA, no período de 2008 a 2011. Teresina: Embrapa Meio Norte, 2012. 9 p. (Embrapa Meio Norte. Comunicado técnico, 231).

RIBEIRO, J. L.; RIBEIRO, V. Q.; CARVALHO, C. G. P.; GONÇALVES, S. L. Comportamento produtivo da cultura do girassol no município de Colinas, MA, no período de 2010 a 2012. Teresina: Embrapa Meio Norte, 2014. 20 p. (Embrapa Meio Norte. Boletim de pesquisa e desenvolvimento, 108).

RIGON, C. A. G.; RIGON, J. P. G.; CAPUANI, S. Parâmetros genéticos entre caracteres quantitativos no girassol como critério de seleção para produtividade de aquênios. **Bioscience Journal**, v. 29, n. 5, p. 1120-1125, 2013.

SALA, P. I. A. L.; MONTALVÃO, A. P. L.; AMABILE, R. F.; SAYD, R. M.; CARVALHO, C. G. P. de; FAGIOLI, M. Caracterização morfoagronômica e avaliação de parâmetros genéticos de girassol em três núcleos rurais do Distrito Federal. In: REUNIÃO NACIONAL DE PESQUISA DE GIRASSOL, 21.; SIMPÓSIO NACIONAL SOBRE A CULTURA DO GIRASSOL, 9., 2015, Londrina. Anais... Londrina: Embrapa Soja, 2015. p. 165-168, 2015.

SANTOS, A. M. P. B. dos; PEIXOTO, C. P.; ALMEIDA, A. T.; SANTOS, J. M. da S.dos; MACHADO, G. da S. Tamanho ótimo de parcela para a cultura de girassol em trêsarranjos espaciais de plantas. **Revista Caatinga**, v. 28, n. 4, p. 265-273, 2015.

SILVA, J. A. G. da; SCHWERTNER, D. V.; KRUGER, C. A. M. B.; CARBONERA, R.; MAIXNER, A. R.; GARCIA, D. C.; CRESTANI, M.; GAVIRAGHI, F.; MARTINS, J. A. K.; MATTER, E. Estimativas de herdabilidade e correlações para caracteres agronômicos em girassol. Revista Brasileira de Agrociência, v. 17, n. 1, p. 51-59, 2011.

SOUZA, F. R. da; SILVA, I. M. da; PELLIN, D. M. P.; BERGAMIN, A. C.; SILVA, R. P. da. Características agronômicas do cultivo de girassol consorciado com *Brachiaria ruziziensis*. **Revista Ciência Agronômica**, v. 46, n. 1, p. 110-116, 2015.

UNGARO, M. R. G. CASTRO, C. de; FARIAS, J. R. B.; BARNI, N. A.; RAMOS, N. P.; SENTELHAS, P. C. Girassol. In: MONTEIRO, J.E.B.A. (Org.) Agrometeorologia dos cultivos: o fator meteorológico na produção agrícola. Brasília, DF: INMET, 2009. p. 205-221.

Tabela 1. Características de vinte genótipos de girassol no Campo Experimental de Acauã (Leme do Prado – MG) na Bacia do Jequitinhonha, safrinha 2010.

Genótipos	Floração Inicial (dias)	Maturidade Fisiológica (dias)	Altura de plantas (cm)	Diâmetro do Capítulo (cm)	Produtividade (kg ha ⁻¹)	Peso Mil aquênios (g)
M 734 (T)	80a	114a	164a	17,05a	1400a	58,41a
Agrobel 960 (T)	78a	114a	148b	16,57a	1061b	41,47b
V70004	75a	111a	165a	18,37a	1428a	45,64b
CF 101	78a	111a	140b	15,40a	1657a	55,16a
BRS G29	77a	111a	144b	16,12a	1484a	55,12a
EXP 1463	79a	113a	152b	16,27a	1418a	42,80b
HLS 60050	79a	113a	153b	16,22a	1007b	48,43b
HLS 60066	77a	112a	160a	15,65a	771b	45,52b
HLA 44-63	77a	114a	146b	15,90a	1393a	40,88b
HLA 44-49	79a	113a	150b	15,92a	1318a	41,97b
HLA 05-62	79a	112a	142b	15,37a	1066b	49,19b
HLA 11-26	79a	113a	153b	16,87a	677b	52,98a
HN 5218	80a	115a	162a	16,62a	782b	41,35b
HLH 08	79a	112a	176a	16,47a	1578a	39,78b
HLH 04	79a	116a	175a	15,00a	1309a	36,84b
TRITON MAX	79a	113a	155b	16,82a	859b	46,64b
GNZ NEON	77a	111a	175a	17,32a	1234a	56,12a
GNZ CIRO	79a	114a	155b	16,02a	1427a	45,59b
QC 6730	78a	114a	159a	16,90a	1546a	42,84b
SULFOSOL	75a	111a	164a	17,45a	952b	46,86b
CV (%)	3,52	2,44	8,46	8,37	31,96	16,62

 $As\ m\'edias\ seguidas\ da\ mesma\ letra\ na\ coluna,\ n\~ao\ diferenciam\ entre\ si\ pelo\ teste\ Scott-Knott\ a\ 5\%\ de\ probabilidade$