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In this article, several studies based on analytical expressions and computational simulations on Hollow
Cylindrical Magnets with an external soft ferromagnetic material (HCM magnets) are presented.
Electromagnetic configurations, as well as permanent-magnet-based structures, are studied in terms of
magnetic field strength and homogeneity. Permanent-magnet-based structures are further analyzed in
terms of the anisotropy of the magnetic permeability. It was found that the HCM magnets produce a
highly homogeneous magnetic field as long as the magnetic material is isotropic. The dependency of
the magnetic field strength and homogeneity in terms of the anisotropy of the magnetic permeability
is also explored here. These magnets can potentially be used in medium-resolution NMR spectrometers
and high-field NMR spectrometers.

� 2017 Elsevier Inc. All rights reserved.
1. Introduction

Permanent magnets were popular in NMR spectroscopy until
the late 1970s. Since then, superconducting magnets have become
the standard NMR magnet [1]. However, in the last decade there
has been a revival of the use of permanent magnets in NMR
[2,3]. This revival was due to the introduction of new magnetic
materials, such as rare-earth magnets and the configuration pro-
posed by Halbach [1]. The main advantage of Halbach’s arrays
made with rare-earth materials was the significant reduction of
the volume and mass of the magnets, in comparison to H and C-
shaped magnets (see Fig. 1) [1,3]. Today, several manufacturers
offer, in addition to low resolution spectrometers, medium resolu-
tion benchtop NMR spectrometers at 1.4 T (60 MHz) based on Hal-
bach configuration [4–6]. These benchtop spectrometers are not as
expensive, bulky, heavy and sensitive instruments as the high field
NMR spectrometers, which are often placed in central analytical
facilities. They can be used for quality control at-line or on-line
in the industry, in laboratory benches or hoods to monitor chemi-
cal reactions ex situ or in situ among many other applications [1–3].

Nonetheless, the homogeneity of the magnetic field produced
by the cylindrical Halbach array is limited by the number of pieces
used, and tends to be better the more pieces are used [7]. This, in
turn, creates a problem, as the individual magnets are never equal
in magnetization strength and orientation, due to the manufactur-
ing process itself. It is not so easy to repeat the same remanent field
within 1% and the same magnetization orientation within 1�. Even
the magnetization uniformity in the same piece has its constraints,
which may increase depending on the shape of the pieces.

In terms of mechanical concerns, the profiles of the pieces, most
commonly of the polar pieces, are assured in few tenths of microm-
eters, which can make the field specification not reachable. Also
parallelism and the orthogonality have their restrictions in the
assemblies. The assemblies always happen in an environment of
strong magnetic forces, demanding many mechanical artifices for
precise placement and orientation of the magnetic pieces.

Aside from the homogeneity of the magnetic field, there are
several reasons for which this configuration is used [8]:

� Halbach arrays have the highest ratio of magnetic field intensity
per magnet mass, which in the ideal case is perfectly homoge-
neous. The theoretical limit of the magnetic field intensity of
the Halbach model is infinity, as will be shown next.

� The magnetic field generated is perpendicular to the longitudi-
nal axis of the cylinder. This permits the use of simple solenoi-
dal radio frequency-coils for NMR sample excitation.
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Fig. 2. Hollow cylinder of permanent magnet (r1 to r2) surrounded by a ferromag-
netic material (r2 to r3) of high permeability (HCM). The black arrows indicate the
magnetization orientation of the permanent magnet. B0 is the resulting magnetic
field.
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� The magnet has no need for yokes. This simplifies its design and
optimization, since no saturation effects have to be taken into
account.

However, the main disadvantage of the Halbach array is that
many pieces of permanent magnets, which can have different mag-
netization orientations, are required in order to obtain a magnetic
field with a high intensity and homogeneity. This poses some chal-
lenges in the assembly of the magnet, as repulsion and attraction
forces between the pieces must be countered by building a strong
and complex structure able to maintain the magnets in their fixed
positions and orientations. Furthermore, even if all magnets
undergo the same magnetization process they may end up with
different remanent fields, which affects the quality of the Halbach
array. This means that more magnets than are actually necessary
must ordered and sorting procedures are required prior to
assembly.

Hollow cylinders of permanent magnet (PM), magnetized in a
direction perpendicular to its longitudinal axis, surrounded by a
ferromagnetic material of high magnetic permeability (HCM),
Fig. 2, has been little explored. Although this geometry is very sim-
ple and creates a perfectly homogeneous field, the first analytical
study was published only in 2003 [9]. For such configuration, pro-
cedures proposing how to change the field profile and its intensity
(tunable field) in the central air gap region [10] and one patent in
NMR area [11] were published as well, however, the present liter-
ature on the subject deals with magnetically isotropic materials
and magnetic permeability equal to one, something which may
not always be the case when ordering magnets from a
manufacturer.

The main advantage of the HCM model, when compared to the
Halbach array, is the fact that it consists of a single cylinder of mag-
netic material, one which is uniformly magnetized in a direction
perpendicular to its longitudinal axis, and a soft ferromagnetic
external cylinder, without which the magnetic flux is zero in the
air gap [9], such as carbon steel. Assembly of this type of magnet
is easier than the Halbach as there are less pieces to deal with,
making the final product less prone to mechanical errors.
Fig. 1. Configurations of dipoles made with permanent magnets: (a) C-shape, (b) H-
shape and (c) Halbach array. The magnetization orientations of the permanent
magnets and the resulting magnetic field (B0) are indicated by black and red arrows,
respectively. B0S is the magnetic field generated in the Halbach array due to its
segmentation. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
Another advantage of the HCM model is that it may be cheaper
to build than a Halbach array, due to the lower number of pieces
needed and the number of pieces that must be ordered. Since the
price of a magnet is mostly dependent on the volume of magnetic
material ordered and not on its shape, the main price difference
between the Halbach and HCM models would be associated with
the assembly of the magnets, because Halbach magnets require
much more control of the positioning and magnetization of the
permanent magnets and small deviations in magnetization orien-
tation or modulus of the pieces can lead to very inhomogeneous
magnetic fields.

For NMR applications the HCM magnet could be especially use-
ful as the highly homogeneous magnetic field which can be
obtained may help improve the quality of medium-resolution
spectra.

In this context, the primary aim of this study was to further
explore and describe the HCM model through computational anal-
ysis, mainly by taking into account the effect of the magnetic per-
meability of the permanent magnet (PM), something which has not
been previously done. Expressions for the field intensity and
homogeneity are obtained from fittings over 2D simulation results.
The magnetic field strength and homogeneity of the HCM model is
compared to that of the more traditional Halbach array. A new
electromagnetic cylindrical configuration, equivalent to the PM-
based HCM, is introduced here and initial 2D analyses regarding
its magnetic field intensity and homogeneity are performed.
2. Computational analysis

The 2D simulations were performed for numerical analyses
using the free software FEMM (Finite Element Method Magnetics)
[12] on which several scenarios were generated. In each scenario
different dimensions of the permanent magnet and magnetic per-
meability were tested. The mesh dimensions were chosen in the
following manner: the mesh in the internal air region of the mag-
net was set to 0.0025 mm, the mesh in the magnet itself was set to
0.1 mm, the mesh in the soft magnetic material (such as carbon
steel) region was set to 0.8 mm and the mesh in the exterior air
region was set to 5 mm. These meshes assured the convergence
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of field values, not requiring thinner meshes. For our problem the
ferromagnetic material and the PM were considered to be perfectly
adjacent to each other (without an air gap) - Fig. 2 - and the thick-
ness of the soft magnetic material was set to 50 mm. Furthermore,
the relative magnetic permeability of the soft magnetic material
was set to a very high value (1010), allowing it to be considered
as a perfect magnetic conductor (lr ¼ 1). This permitted the use
of the equation derived by Peng et al. [9] for the intensity of the
magnetic field in the equations derived for the configuration with
permanent magnets.

Different parameters were altered during each simulation. The
inner radius, r1, was maintained constant at 10 mm, but r2 covered
a range of values from 15 mm to 100 mm in steps of 5 mm, thus
the ratio r2/r1 varied from 1.5 to 10. Although r1 was held constant
for the calculations, the geometric scaling of entire drawing does
not change the field values. The magnetic permeability of the per-
manent magnetic material was also changed in each scenario. The
relative permeability in the x and y axis, lr;x and lr;y, ranged from
0.9 to 5. In one situation both values changed from 0.9 to 1.5 in
steps of 0.1 and in a second situation they ranged from 1 to 5 in
steps of 0.5. The remanent magnetization (Br) was also changed
from 0.5 to 2 T. Both the relative permeability and remanent mag-
netization ranges were chosen in such a way to cover most of the
magnetic materials commercially available, as shown in Table 1.

In the FEMM simulator the remanent magnetization of the
materials was defined by inserting the corresponding coercivity,
HC. It was assumed that Br and HC were linearly related by the
equation Br ¼ l HC. Since rotating the magnetization in the xy
plane does not change the magnetic field strength or homogeneity
(i.e. this is equivalent to rotating the magnet) 2D analyses do not
include orthogonality and/or parallelism problems which could
arise in a 3D analysis, such as having the magnetization tilted
out of the xy plane.

All results were analyzed with the software Origin from Origi-
nLab� [13]. Fitting curves were evaluated in their accuracy by look-
ing at the coefficient of determination, R2 [14].

3. Influence of the permanent magnet permeability

In the first analysis that was made, lr;x and lr;y were varied
independently from 0.9 to 1.5 in steps of 0.1 in order to determine
B0 in the central point of the air gap of the magnet. These initial
intervals were chosen as the relative permeabilities of most NdFeB
magnets are situated in that range.

Eq. (1), through which the magnetic field in ideal HCM magnets
can be calculated was first obtained by Peng et al. [9] Thus, it is
known that when approaching ideal conditions, in which the per-
manent magnet is isotropic and lr ¼ 1, the magnetic field strength,
B0, must be dependent only on the thickness of the permanent
magnet and its remanent magnetization, Br , (Fig. 2).

B0 ¼ Br

2
� 1� r1

r2

� �2
" #

ð1Þ

However, this equation gives us little information when dealing
with real magnetic materials, which are not isotropic and lr – 1.
Table 1
Data of commercially available materials as retrieved from Eclipse Magnetics
datasheets (Chinese standards).

Br(T) Hc(kA/m) lr

NdFeB 1.03–1.43 793–1035 1.01–1.43
Ferrite 0.20–0.46 125–354 0.97–2.36
SmCo 0.30–1.15 199–845 0.78–1.77
AlNiCo 0.31–1.35 38–150 3.12–19.89
For this reason, we set out to find how the magnetic permeability
affects the magnetic field in the central air gap region. From the
above equation we know in advance that as the ratio r2=r1 grows
to infinity, the magnetic field will reach a limit equal to Br=2.

Thus, the first step in determining the effect of the relative per-
meability in the intensity of B0 was to find how the upper limit,
Br=2, of Eq. (1) is affected by the relative permeabilities, knowing
that when they are equal to 1, the limit Br=2 must be obtained.
For this reason, initially, r2=r1 was set to 10, since from this point
on it can considered that B0 has reached its maximum intensity,
and either lr;x or lr;y set to 1. It was found for these cases that
when relative permeability of each one of the axis is higher than
1 then the maximum magnetic field at the central air gap region
is decreased. The dependency of B0 with each of the permeabilities
has a logarithm behavior (Eqs. (2) and (3)). All the fitting curves
had an R2 equal to 1.

B0ðlr;xÞ ¼ Br
1
2
� 0:125 lnlr;x

� �
ð2Þ

B0ðlr;yÞ ¼ Br
1
2
� 0:122 lnlr;y

� �
ð3Þ

Next it was necessary to find what effect the ratio r2=r1 would
have on Eqs. (2) and (3). In this step of the computations r2=r1
was changed from 1.5 to 10 while also changing either lr;x or lr;y

from 0.9 to 1.5 while the other was maintained equal to 1. Since
both equations must be obtained when r2=r1 ! 1, it was assumed
that the resulting term to be added to both equations must have
the form:

vðlr;iÞðjlr;i � 1jÞ exp � r2
r1

� �
i ¼ x; y ð4Þ

wherevðlr;iÞ is a functionoflr;x orlr;y. The term jlr;i � 1j ensures that
the dependency onlr;x orlr;y equals zero if the permeability equals 1
and the exponential term guarantees that Eqs. (2) and (3) are
obtained when r2=r1 ! 1. As it turns out the functions vðlr;xÞ and
vðlr;yÞ are of logarithmic nature and so Eqs. (2) and (3) become Eqs.
(5) and (6). The R2 of the fitting curves was always higher than 0.997.
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So far only equations linking two of the three variables, either
r2=r1 and lr;x or r2=r1 and lr;y had been found, since one of the rel-
ative permeability was always set to 1. After analyzing the data
from the scenarios in which all three variables (r2=r1;lr;x;lr;y) were
changed at once, a cross term which accounts for the combined
influence of these three parameters had to be included in the equa-
tion. This term should approach 0 either when r2=r1 ! 1, or when
lr;x ¼ 1 or when lr;y ¼ 1. Therefore, it should have the form:

1ðlr;x;lr;yÞðjlr;x � 1jÞðjlr;y � 1jÞ exp � r2
r1

� �
ð7Þ



Fig. 4. Comparison between several Halbach array magnets and the HCM model
where the magnetic material area needed (in a 2D simulation) is plotted against the
maximum magnetic field output. The HCM Br was considered to be 1.23 T and the
magnetic material was isotropic, with lr ¼ 1. The internal air gap of all magnets
had a radius of 15 mm and the Halbach magnets were simulated in such a way that
the homogeneity was better than 10 ppm within a 10 mm radius in the air gap, as
calculated through the equations presented in [7].
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where 1ðlr;x;lr;yÞ is a function of lr;x and lr;y. It was found that
function 1 possessed an exponential decay term, dependent on both
lr;x and lr;y, as well as the sum of two negative logarithmic terms,
dependent on lr;i � 1, which finally yielded the equation of the
magnetic field in the central air gap region, Eq. (8). The R2 of the fit-
ting curves was always greater than 0.9994.
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It is important to note that while the logarithm term in function
1 tends to infinity when lr;i ¼ 1 and the term jlr;i � 1j tends to zero
at this point, there is no indetermination in the equation because:
limlr;i!1 � lnðlr;i � 1Þ � ðlr;i � 1Þ ¼ 0.

Eq. (8) can be safely used to determine the magnetic field in the
bore of magnets whose relative magnetic permeability lies
between 0.9 and 1.6 and the error of this equation in relation to
the simulated value will not exceed 3.4%.

As can be seen in Fig. 3, the average difference between the
magnetic field calculated from Eq. (8) and the values found
through the simulations is on average below 1.5% and rises to
1.79% when r2=r1 is close to 1.5 and when lr;x � lr;y ¼ �0:5. This
shouldn’t be a problem since the HCM magnets have an optimum
r2=r1 ratio around 6, above which increasing the magnetic material
does not significantly increase the magnetic field intensity. The
average difference between the simulated magnetic field and Eq.
(8) is less than 0.6% in most situations, but starts rising as r2=r1
comes closer to 1.5, and the difference lr;x � lr;y closer to �0.5.
This difference comes to its biggest value when lr;x � lr;y ¼ �0:5,
but nevertheless does not exceed 3.5%. A hypothesis for this is that
after each curve fit the constants determined by the fitting soft-
ware were rounded to 3 decimal places, this could be a source of
propagated errors which could affect the result of the equation,
Fig. 3. Difference, in percentage, between the magnetic field intensity calculated
from Eq. (8) and the magnetic field intensity found through simulation. The x axis
shows lr;x � lr;y and the y axis shows r2=r1.
when compared to the simulation, at the limits of its operation.
At the optimum ratio (r2=r1 ¼ 6) the average difference between
simulation and the equation will be lower than 1.4%.

By comparison, it was shown by Halbach in 1980 [15] that the
magnetic field strength of the ideal Halbach array is given by

B0 ¼ Br � ln router
rinner

� �
. Although the real Halbach is segmented (which

changes the way the magnetic field is related to the thickness of
the material by introducing segmentation effects) the theoretical
limit of the magnetic field is infinity, as it increases with the mag-
net thickness. Fig. 4 shows that for low magnetic field applications
the HCM model requires less magnetic material to achieve a given
field than a Halbach array of 16 pieces. Compared to a 32 piece Hal-
bach array the amount of magnetic material is nearly the same (for
low field applications) but taking into account that working with
32 magnetic pieces is much more challenging, it is possible to
see the advantage of working with the HCM model. The HCM mag-
net is, however, limited when working with higher magnetic field
intensities, since, as mentioned before, the magnetic field has an
upper limit of Br/2.

The second analysis extended the range of variation of lr;x and
lr;y to 0.9 to 5 to include many other commercially available mag-
netic materials. An equation was sought for the magnetic field in
these situations. In this case, however, even though the limit of
the magnetic field intensity is easily determined, the functions
vðlr;iÞ and 1ðlr;x;lr;yÞ become much more complex and the result-
ing equation would be less likely to be used by someone designing
one of these magnets. Nevertheless, should anyone be interested in
designing a magnet using materials with relative permeabilities
larger than 1.5 and lower than 1, the maximum magnetic field
which can be obtained in the limit of a perfectly isotropic material
and very large r2=r1 ratio (r2=r1 P 9) can be safely determined
using the first line of Eq. (8):

B0 lr;x;lr;y;
r2
r1

� �
¼Br

1
2
�0:125lnlr;x�0:122lnlr;y

� �
� 1� r1

r2

� �2
" #

ð9Þ
4. Homogeneity

An important feature of magnets, especially those used for
nuclear magnetic resonance purposes, is the magnetic field homo-
geneity. The homogeneity of the HCMmagnet was evaluated when
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the relative permeability changed from 0.9 to 5 in circular regions
in the air varying from 0:1r1 to 0:9r1.

Homogeneity (H) was defined here, in ppm, as the average
absolute deviation between the magnetic field at n points (Bi)
within the central air gap region and the magnetic field intensity
at the center of the magnet (B0), as shown by the following
equation:

H ¼ 1
n

Pn
i¼1jBi � B0j
B0 � 10�6 ð10Þ

Previous studies by Peng et al. showed that in ideal conditions
this type of magnets produces a perfectly homogeneous magnetic
field. Simulations with a precision of 10�10 showed that these mag-
nets produce a quasi perfect homogeneous magnetic field (homo-
geneity below 0.075 ppm) as long as lr;x and lr;y are equal
(Fig. 5a and e), regardless of the value. The homogeneity worsens
as the difference jlr;x � lr;yj becomes larger (Figs. 5a and b and
Fig. 5. Magnetic field distribution in
5c and d) and as the ratio r2=r1 becomes smaller (Fig. 5b, c and
f). Furthermore, we found that the homogeneity within the air bore
varies exponentially with r2=r1 (Fig. 6).

The three parameters, y0; A and C1 of the homogeneity expo-
nential decay, H ¼ y0 þ A1 � expð�1=C1 � r2=r1Þ, are dependent
on the radius of the region on which the homogeneity is being cal-
culated, q, given in fractions of r1. Through curve fitting we found
that parameters y0 and A are proportional to the second power of q,
while C1 remains constant (all fitting curves had an R2 bigger than
0.99999). The final equation of the homogeneity as a function of
both r2=r1 and q is given by:

H ¼ A � q2 þ B � q2 � exp � 1
C
� r2
r1

� �
ð11Þ

The parameters A, B and C are dependent on lr;x and lr;y. An
equation for parameters A, B and C was sought but could not be
found. However, for a magnet designer it should be possible to
different simulated scenarios.



Fig. 9. Parameter C to be used in Eq. (11). Each line type and symbol represents one
fixed value of lr;x . lr;y can be calculated by using the x axis which shows the
difference lr;x � lr;y .

Fig. 6. Example graph of the homogeneity within the air gap of an HCM magnet
with r1 ¼ 10 mm, calculated at the inner radius of 5 mm. lr;x was 1.5 and R2 of all
fitting curves was higher than 0.9991.
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determine the homogeneity in a certain region of the magnet by
analyzing Figs. 7–9, which show the various parameters on the dif-
ferent cases. These graphs were plotted from the data of the com-
putational simulations.

To find the homogeneity of an HCM magnet one must deter-
mine the values of parameters A, B and C from Figs. 7–9 by finding
Fig. 7. Parameter A to be used in Eq. (11). Each line type represents one fixed value
of lr;x . lr;y can be calculated by using the x axis which shows the difference
lr;x � lr;y .

Fig. 8. Parameter B to be used in Eq. (11). Each line type represents one fixed value
of lr;x . lr;y can be calculated by using the x axis which shows the difference
lr;x � lr;y .
the line which represents the desired lr;x. The relative permeabil-
ity, lr;y, can be determined by looking at the x axis, which shows
lr;x � lr;y. The values of the three parameters must be input in
Eq. (11) to find the homogeneity of the magnet.

As an example of the use of Eq. (11) together with the data in
Figs. 7–9 consider the case of the HCM magnet presented in
Fig. 5e, where r2 ¼ 50 mm, r1 ¼ 10 mm (r2=r1 ¼ 5), lr;x ¼ 1:5 and
lr;y ¼ 1. The magnet designer wants to find the homogeneity
within a radius of 5 mm. In this case q = 0.5 and lr;x � lr;y ¼ 0:5.
Using this information we can find that parameter A equals
approximately 25, parameter B is close to 38,000 and parameter
C has the value of 0.62. Plugging all of this values in Eq. (11) we
find that the homogeneity of this magnet will be of 9.4 ppm in
the region of interest.

By comparison, the homogeneity of the magnetic field produced
by a Halbach array is strongly dependent on the number of seg-
ments which constitute the array. Turek and Liszkowski showed
that the homogeneity of the magnetic field increases as the num-
ber of segments increases and as the thickness of the PM increase
[7].

Because the magnetic field that is generated by the HCM mag-
nets is highly homogeneous when the permanent magnet is isotro-
pic it is not necessary to build magnets with bores much bigger
than the desired usable region. For measuring samples in 5 mm
NMR tubes r1 can be 5 mm and r2 can be 30 mm. In the case of lar-
ger samples the ratio r2=r1 may be decreased so that the ordered
magnets need not be too volumous, without great losses in mag-
netic field strength (r2=r1 = 5 or even 4).
5. Electromagnetic cylindrical configuration

It is possible to get a similar cylindrical configuration using
electrical currents instead of a permanent magnet. In order to cal-
culate how the spatial current distribution should be, it is assumed
that the field B0 points in the y direction and is perfectly homoge-
neous in all the central air region. The integral Ampere’s Law is
applied in the closed curve C indicated in Fig. 10, according to
Eq. (12):

I
C

B � dl
l

¼
I
C1

B � dl
l0

þ
I
C2

B � dl
l0

þ
I
C3

B � dl
lf

¼ Ienc ð12Þ

where B is the magnetic field, dl is the infinitesimal element tan-
gent to the curve C, l is the magnetic permeability and Ienc is the
current enclosed by the curve C.



Fig. 10. First quadrant of the cylindrical configuration, where the symmetry
conditions are being applied in the x axis (B0 is perpendicular) and y axis (B0 is
parallel). The electrical current is coming out of the page. The thickness of the
current sheet is dw.

Fig. 12. Homogeneous field generated only by electrical currents.
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As the soft ferromagnetic material of path C3 has its permeabil-
ity much higher than the air (lf � l0), and its length is in the same
order of C1 and C2, this integration can be neglected. The integra-
tion over C2 is null by the orthogonality between B and dl and Eq.
(12) is reduced to:I
C1

B � dl
l0

¼ B0R sin h2 � sin h1ð Þ
l0

¼ Ienc ð13Þ

The current density K in a differential arc of length Rdh can be
determined making the difference h2 � h1 in Eq. (13) to tend to dif-
ferential dh, yielding Eq. (14). This equation shows that K does not
depend on R for the current sheet with thickness approaching zero
(dw? 0):

KðhÞ ¼ B0 cos h
l0

ð14Þ

Tests were made with the 2D FEMMmagnetostatic simulator to
check the validity of Eq. (14) – Fig. 11. The conductor was seg-
mented in several small arcs and their currents calculated by (13).

In order to have an idea of the current densities for typical
applications, a field of 0.2 T was created by coils with 10 turns
Fig. 11. 2D simulation of the electromagnetic cylindrical configuration. The electric
conductor has been fragmented in 10 segments.
per quadrant (9� per segment), with r1 set to 50 mm. Using Eq.
(13), the highest current is 1245 A in the segment from 0� to 9�.
If the thickness of this current sheet is 5 mm, the current density
is about 32 A mm�2, which is too large for conventional conduc-
tors. However, such configuration should be favorable for super-
conducting coils in which current density is higher.

Even in the absence of the soft ferromagnetic external layer, the
same current distribution creates a homogeneous field in the cen-
tral air gap region - Fig. 12 - however, the intensity of the magnetic
field in the absence of the ferromagnetic material will be decreased
by 50%.

It was observed in the simulations that for very thin current
sheets the field B is perpendicular to the circular trajectory in the
mean radius of the current sheet (Rm), which means that the appli-
cation of Ampere’s Law over path C3 in Fig. 13 is null (see Appendix
A).

For the same current distribution as the one given by Eq. (14)
the application of Ampere’s Law on the closed path C1-C2-C3 is
equal to Eq. (13), except that the enclosed current is half of Ienc
(Eq. (15)).I
C1

B � dl
l0

¼ BbRm sin h2 � sin h1ð Þ
l0

¼ Ienc
2

ð15Þ
Fig. 13. Trajectory chosen for Ampere’s Law in the cylindrical geometry only with
the current sheet.
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where Bb is the magnetic field intensity in the bore of the magnet.
Comparing Eqs. (13) and (15), considering the absence of the

soft ferromagnetic external layer and assuming Rm = R, the mag-
netic field in the bore of the electromagnetic HCM magnet, Bb, is
equal to B0/2, oriented in the y direction.

This result was checked against simulation with Rm � dw and
taking a highly segmented current sheet and an analytical proof
of this is found in Appendix B.

Using the results in Appendix B it is possible to determine the
magnetic field in the bore of a permanent magnet cylinder which
is not enclosed in a soft ferromagnetic material. This is done by
replacing the permanent magnet by two current sheets, one in
the inner radius of the magnet and the other on the external radius.
The current density of each of the current sheets is given by:

KinternalðhÞ ¼ B0 cos h
l0

ð16Þ

KexternalðhÞ ¼ �B0 cos h
l0

ð17Þ

The magnetic field generated in the bore by a current sheet with
current density KiðhÞ is equal to B0

2 êy and the magnetic field gener-
ated in the bore by a current sheet with current density KeðhÞ is
equal to � B0

2 êy. Therefore the total magnetic field in the bore of
the magnet is equal to zero. This result is in accord with the theory
developed by Halbach in his 1980 paper [15]. The field outside the
magnet is found by using the equations found in Appendix B.

This electromagnetic configuration could potentially be an alter-
native to current superconducting magnets. However, building this
coil may pose some challenges, as the winding is not as simple as
winding a wire around a tube, as is the case with solenoidal coils.
Furthermore a precise control of the currents in each of the wires
is critical in order to achieve a highly homogeneous magnetic field.

There are advantages to using the electromagnetic HCM. Gener-
ally, superconducting magnets are solenoidal coils, which generate
an axial magnetic field. This requires that the excitation/receiver
coil generates a magnetic field in the XY plane, which can be done
by using saddle-shaped coils, for example. With the use of the elec-
tromagnetic HCM the possibility of using solenoidal coils as excita-
tion/receiver coils is available. This could be advantageous since
solenoids are much easier to build than other more complex coil
geometries. In comparison to saddle-shaped coils, for example,
solenoid coils have a signal-to-noise ratio that is three times as large
as that of saddle-shaped coils, which is translated into 90� pulses
which are three times shorter (with the same radio-frequency
power) in solenoidal coils than in saddle-shaped coils [16]. Another
advantage may be that if the magnet is built with the high perme-
ability external layer the magnetic field may be doubled (or lower
currents can be used) and in addition the magnet will be naturally
shielded, which reduces security issues in the laboratory.

6. Conclusions

From these studies it is possible to conclude that the HCM mag-
nets, whether electromagnetic or using permanent magnets,
should produce a highly homogeneous magnetic field (below
0.075 ppm in simulations), which is useful for applications where
high magnetic homogeneity is important, as is the case with
NMR. In the case of anisotropic magnetic materials the homogene-
ity of the magnetic field in different regions of the bore can be
determined using Eq. (11) and the data of Figs. 7–9. The magnetic
field intensity can be determined through Eq. (8) when the relative
permeability of the material lies between 1 and 1.6. For materials
whose relative permeability is outside this region only the maxi-
mum magnetic field output in ideal conditions (isotropic material
and r2=r1 P 9) can be determined.
Because the magnetic field that is generated is highly homoge-
neous when the permanent magnet is isotropic it is not necessary
to build magnets with bores much bigger than the desired usable
region. For measuring samples in 5 mm NMR tubes r1 can be
5 mm and r2 can be 30 mm. In the case of larger samples the ratio
r2=r1 may be decreased so that the ordered magnets need not be
too volumous, without great losses in magnetic field strength. It
is worth pointing out that the information regarding magnetic per-
meability is usually given by the magnet manufacturers, through
BH curves. On another practical note, one way to ensure that mag-
nets have the specified characteristics for building the HCM mag-
net is to ask the manufacturer to guarantee that specifications
are met, which can increase the cost of the permanent magnet
or; to buy several magnets and, through trial and error, select the
best one.

The electromagnetic HCM can potentially be used in high-field
NMR superconducting spectrometers for generating the static B0

field, since the generated B0 should be more homogeneous than
the one produced by a simple solenoid and does not require com-
plex techniques to improve its homogeneity (as is the case with
solenoidal coils).

While the topic that has been studied has, by no means, been
fully explored, especially because other problems that may be
encountered while building these magnets have not been analysed
(non-homogeneous magnetization of the permanent magnets and
further investigations on the electromagnetic HCM) it is believed
that this study may serve to increase the interest in HCM magnets
enough to justify exploring all the other challenges surrounding
this configuration.
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Appendix A. Magnetic field orientation in the mean radius of
the current sheet

To calculate the magnetic field orientation in the mean radius of
the current sheet first consider a pair of concentric cylindrical con-
ductors, I and II, with the same current density (given by (14)), as
shown in Fig. A.14. Conductors I and II are placed at Rm � d and
Rm þ d, respectively. They are separated by a distance 2d and are
symmetrical in relationship to r ¼ Rm.

From Eq. (B.17), we find that the total magnetic field at r ¼ Rm

is:

B�
TðRm;/Þ ¼ i

B0

2
� i

B0e�i2/ðRm � dÞ2
2R2

m

ðA:1Þ

If Rm � d:

B�
TðRm;/Þ ¼ i

B0

2
ð1� e�i2/Þ ðA:2Þ

Using Euler’s equation, eix ¼ cos xþ i sin x, in Eq. (A.2) and going
back to the vectorial notation B ¼ Bxêx þ Byêy:

BT ¼ B0

2
f� sinð2/Þêx þ ½cosð2/Þ � 1�êyg ðA:3Þ

If vt ¼ � sin/ êx þ cos/ êy represents the unit vector tangent to the
circumference at the point ðRm;/Þ, then:

BT � vt ¼ B0

2
fsinð2/Þ sin/þ ½cosð2/Þ � 1�cos/g ¼ 0 ðA:4Þ



Fig. A.15. Illustration of a conductor of thickness 2d formed by piling several
symmetric cylindrical conductors around the mean radius, Rm .

Fig. A.14. Geometry of a pair of conductors (blue lines) used to calculate the
magnetic field orientation in the mean radius (red dashed line). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Eq. (A.4) shows that vector BT is perpendicular to the circumference
of radius Rm. If pairs of concentric cylindrical conductors are piled
symmetrically around r ¼ Rm in such away that a conductor of thick-
ness 2d is formed (see Fig. A.15), then the magnetic field of this con-
ductor will be perpendicular to the circumference at r ¼ Rm, as long
as Rm � d. Therefore, the integration over path C3 in Fig. 13 is null.

Appendix B. Magnetic field generated by electromagnetic HCM
(without ferromagnetic material)

The magnetic field generated in the bore of an electromagnetic
HCMwithout a surrounding soft ferromagnetic material can be cal-
culated in the following way.

Considering the configuration of Fig. 13 for a current sheet with
thickness approaching zero (dw ! 0) and linear current density
given by Eq. (14). The differential current, dI is given by:
dI ¼ KðhÞdl ¼ KðhÞRdh ¼ B0R cos h
l0

dh ðB:1Þ

Switching to a complex notation, the two-dimensional B field is
given by B ¼ Bx þ iBy and B� is the complex conjugate of B [15].
Using this notation we have the following equation for the field
generated by a current filament dI:

dB�ðz0Þ ¼ l0dI
2pi

1
z0 � z

ðB:2Þ

where z represents the region in space where the current elements
are located and z0 is the point at which the magnetic field will be
calculated. Substituting Eq. (B.1) in (B.2) and taking the integral
on the closed path C which has radius R and with h ranging from
0 to 2p:

B�ðz0Þ ¼
I
C

B0

2pi
R cos h
z0 � z

dh ðB:3Þ

Making the following definition: z ¼ Reih, from which we have:

dh ¼ dz
iz

ðB:4Þ

and

R cos h ¼ zþ z�

2
ðB:5Þ

where z� is the complex conjugate of z. Substituting both of these
equations in (B.3) and developing the following equation is
obtained:

B� ¼
I
C

B0

4p
1þ z�

z

� �
1

z� z0

� �
dz ðB:6Þ

From the property zz� ¼ R2, we get z� ¼ R2=z. Substituting this in
Eq. (B.6):

B� ¼ B0

4p

I
C

dz
z� z0

þ R2
I
C

dz
z2ðz� z0Þ

� �
ðB:7Þ

Let f be an analytic and holomorphic function inside and along a
closed loop L in the complex plane. Then for every a inside L:I
L

f ðzÞ
ðz� aÞnþ1 dz ¼

2pif ðnÞðaÞ
n!

ðB:8Þ

where f ðnÞ is the n-th derivative of f and, by convention, the contour
integral is taken in the counter-clockwise direction. Eq. (B.8) is
known as Cauchy’s Integral Formula [17], and is valid in the follow-
ing conditions:

1. a is inside the closed loop L;
2. f ðzÞ is analytic inside L, that is to say that all the poles of f ðzÞ

must lie outside L.

B.1. Solution for jz0j < jzj

Using Cauchy’s Formula on the first integral of Eq. (B.7) in the
region jz0j < jzj:I
C

dz
z� z0

����
jz0 j<jzj

¼ 2pi ðB:9Þ

Regarding the second integral, the function 1=½z2ðz� z0Þ� has a
pole at the origin and at z ¼ z0, both inside contour C. According
to the Cauchy-Goursat theorem [18], circulation around C may be
split into the circulation of the same function around the pole at
the origin (path C1) added to the circulation around the pole at
z ¼ z0 (path C2). This splitting of the loop C (see Fig. B.16) guaran-
tees that conditions 1 and 2 are satisfied.
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I
C

dz
z2ðz� z0Þ

����
jz0 j<jzj

¼
I
C1

1
z�z0

� �
ðz� 0Þ2

dzþ
I
C2

1
z2

� �
z� z0

dz ðB:10Þ

Applying Cauchy’s Integral Formula:I
C

dz
z2ðz� z0Þ

����
jz0 j<jzj

¼ 2pi d
dz

1
z� z0

� �����
z¼0

þ 2pi 1
z2

� �����
z¼z0

¼ �2pi
z20

þ 2pi
z20

¼ 0 ðB:11Þ

Therefore:

B�jjz0 j<jzj ¼
B0

4p
2piþ 0ð Þ ¼ i

B0

2
ðB:12Þ
Fig. B.16. Illustration of the closed loops C (blue line), C1 (red line) and C2 (green
line) in the complex plane. The origin and the point z ¼ z0 are the poles of the
function 1=½z2ðz� z0Þ�, and lie inside C. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. B.17. Illustration of the positioning of the poles at the origin and at z ¼ z0 in the
complex plane. Since jz0j > jzj, the point z0 lies outside the closed loop C.
B.2. Solution for jz0j > jzj

Since z0 is outside C for jz0j > jzj, the first integral of Eq. (B.7) is
null.I
C

dz
z� z0

����
jz0 j>jzj

¼ 0 ðB:13Þ

For the second integral of Eq. (B.7), the pole at the origin lies
inside C, while the pole at z ¼ z0 lies outside (Fig. B.17). Thus we
have:

I
C

dz
z2ðz� z0Þ

����
jz0 j>jzj

¼
I
C

1
z�z0

� �
ðz� 0Þ2

dz ¼ �2pi
z20

ðB:14Þ

Therefore:

B�jjz0 j>jzj ¼
B0

4p
0� 2pi

z20

� �
ðB:15Þ

Defining z0 ¼ rei/, we get:

B�jjz0 j>jzj ¼ �i
B0e�i2/R2

2r2
ðB:16Þ
B.3. General solution of B�

By the following definitions, jz0j ¼ r e jzj ¼ R, and taking into
account all that has been presented so far, the general solution of
B� can be written as:

B�ðr;/Þ ¼
i B02 ; r < R

�i B0e
�i2/R2

2r2 ; r > R

(
ðB:17Þ
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