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Chapter 7

Monitoring forest cover and 
deforestation
frédéric Achard, yeda maria malheiros de Oliveira and Danilo mollicone

7.1. inTRODUCTiOn AnD mAin ObJeCTives 

Forests provide a range of goods and services that benefit peoples’ livelihoods and wellbeing and that play an 
important role in economies around the world. It is widely acknowledged that reliable and timely information 
on forest resources are essential to assess the full benefits of forests, as well as facilitate governments and other 
stakeholders in assessing and monitoring the effectiveness of policies and programs related to forestry and other 
land uses (MacDicken, 2015).

Moreover, global demand for agricultural products such as food, feed, and fuel is a major driver of cropland and 
pasture expansion across much of the developing world (DeFries et al., 2010). Whether these new agricultural lands 
replace forests, degraded forests, or grasslands greatly influences the environmental consequences of expansion. 
Across the tropics, between 1980 and 2000, over 55 percent of new agricultural land was obtained at the expense 
of intact forests, and another 28 percent of disturbed forests (Gibbs et al., 2010). Recently, deforestation driven by 
commercial cropland has significantly increased, with hotspots occurring in South America (de Sy et al., 2015).

Poor information and statistics on forest resources may lead to insufficient or inaccurate knowledge of the country’s 
forest resource utilization, impede successful planning and policy decisions regarding forestry and other land uses, 
mislead donors in identifying targeted priorities and projects, and hinder proper assessment of the progress being 
made towards Sustainable Forest Management (MacDicken et al., 2015) and other development goals. 

The Reduction of Emissions from Deforestation and forest Degradation (REDD+) activities held under the United 
Nations Framework Convention on Climate Change (UNFCCC) are expected to offer results-based payments to 
developing countries for reducing greenhouse gas emissions from forested lands (UNFCCC, 2014). It is necessary 
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to determine reference data on forest carbon losses against which future rates of change can be evaluated, and to 
establish reliable methods for monitoring, reporting and verifying such changes. Most developing countries must 
yet develop forest monitoring systems at national level in the framework of REDD+. 

Although some national agencies (in particular, those of Brazil, India and Mexico) are making great progress at 
country level from, in the past, several tropical countries had limited capacity to implement such monitoring systems. 
Capacity-building efforts are now being made to strengthen the technical skillsets necessary to implement national 
forest monitoring at institutional levels (Romijn et al., 2015). It is highly desirable to help developing countries to 
foster and enhance their own statistical capacity to produce statistics on forest resources. 

The last few decades have seen great progress in producing and disseminating information on global forest cover 
resources among major international agencies such as the Food and Agriculture Organization of the United Nations 
(FAO; see FAO, 2015a) or the World Resources Institute. Robust examples advancing such approaches, applied 
on the full tropical belt, and examples of good practices adopted at national scale are also included in this review. 

Advances in measuring approaches and techniques based on satellite remote sensing are of tremendous interest 
(Achard and Hansen, 2012). Data and methods are no longer an obstacle to the implementation of REDD+ within the 
Paris Agreement (UNFCCC, 2016). Moreover, the global community of Earth Observation and carbon experts have 
prepared technical guidelines on methodological issues relating to the integration of remote sensing and ground-
based observations to estimate emissions and removals of greenhouse gases in forests: the GOFC-GOLD REDD 
sourcebook (GOFC-GOLD, 2016), and the GFOI Methods and Guidance Documentation (GFOI, 2014). These 
guidelines are intended to be instruments to assist countries in identifying data gaps in their national forest inventory 
systems and to provide operational guidance on developing national forest monitoring systems. Countries are 
encouraged to incorporate the international standards into their forest monitoring program to promote international 
comparability. 

Improvements in national monitoring capacities to produce forest area estimates ultimately benefit policy-makers, 
economic entities and the livelihoods of forest-dependent people, enhancing the availability and quality of data on 
forest resources, and thus ensuring better policy and investment decisions. 

The purpose of this chapter is to provide guidelines on the use of remote sensing for forest cover statistics and to 
present the existing approaches to the use of remote sensing for assessing forest cover and evolution, from global 
to national scales. This review seeks to support the development of national REDD+ interventions and forest 
monitoring systems.

7.2.  The Use Of RemOTe sensing TO mOniTOR fOResT COveR – 
bACKgROUnD infORmATiOn

Technically, it became possible to rely upon remote sensing imagery to monitor forest area change from the 1990s. 
The feasibility and accuracy of such monitoring depends largely upon national circumstances (in particular, with 
regard to data availability); that is, potential limitations relate more to definitions, resources and data availability 
than to methodologies (GOFC-GOLD, 2016).
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7.2.1.  Definition of forests, deforestation and degradation
Several terms, definitions and other elements relevant to REDD+ activities are not formally established (including 
terms such as “deforestation” and “forest degradation”). As decisions regarding REDD+ are based on the current 
modalities prescribed by the UNFCCC and the Kyoto Protocol, the definitions provided in those two documents 
will be used in this chapter, and are set out below (see GOFC-GOLD, 2016, for further details).

Forest land – Under the UNFCCC, forest land includes all land with woody vegetation consistent with thresholds 
used to define forest land in the national greenhouse gas inventory. It also includes systems with a vegetation 
structure that does not, but that in situ could potentially reach, the threshold values used by a country to define the 
forest land category. Moreover, the presence of other uses that may be predominant should be taken into account.

Estimations of deforestation are affected by the definitions of ‘forest’ versus ‘non-forest’ land, as these may 
vary widely in terms of tree size, area and canopy density. There are myriad definitions of forest. However, most 
definitions share certain threshold parameters, including for the minimum area, minimum height and minimum level 
of crown cover. In its 2015 forest resource assessment, FAO (FAO, 2015a) uses a minimum cover of 10 percent, a 
minimum height of 5 m and a minimum area of 0.5 ha, adding that forest use should be the predominant use. Most 
remote sensing studies, on the other hand, use a land cover definition (Magdon et al., 2014), because land use cannot 
be determined by remote sensing alone.

For the purposes of the Kyoto Protocol, parties select a single value for crown area, tree height and area to define 
forests within their national boundaries (UNFCCC, 2006). The selection is made from within the following ranges, 
with the understanding that young stands that have not yet reached the necessary cover or height are included as forest:
•	 Minimum forest area: 0.05 to 1 ha
•	 Potential to reach a minimum height at maturity in situ of 2 to 5 m
•	 Minimum tree crown cover (or equivalent stocking level): 10 to 30 percent

The definition of forest allows some flexibility to countries when designing a monitoring plan, because the analysis of 
remote sensing data can adapt to different minimum tree crown cover and minimum forest area thresholds. However, 
consistency in forest classifications for all REDD+ activities is critical for integrating different types of information, 
including remote sensing analysis. The use of different definitions affects the technical requirements for Earth 
Observation and may influence cost, availability of data, and the ability to integrate and compare data through time.

Deforestation – Most definitions characterize deforestation as the long-term or permanent conversion of land from 
forest use to other non-forest uses. Under Decision 16/CMP.1, the UNFCCC defined deforestation as: “the direct, 
human-induced conversion of forested land to non-forested land.” (UNFCCC, 2006).

In practical terms, this definition entails a reduction in crown cover from above to below the threshold for the forest 
definition. Deforestation causes a change in land use, usually in land cover. Common changes include conversion 
of forests to annual cropland, to pasturelands, to perennial plants (such as oil palm or shrubs), and to urban lands 
or other human infrastructure.

Forest degradation – Forest degradation occurs due to various processes, including unsustainable logging, shifting 
cultivation, firewood collection or burning. It leads to a reduction of biomass, opening of forest canopies and changes 
in the structure of forests. It also modifies species composition, thus affecting ecosystem services, including future 
potential for carbon capture and storage.

A report authored by the Intergovernmental Panel on Climate Change (IPCC, 2003) presents five different 
potential definitions for degradation, along with their respective pros and cons. The report suggested the following 
characterization for degradation:
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“A direct, human-induced, long-term loss (persisting for X years or more) or at least Y percent of forest carbon 
stocks [and forest values] since time T and not qualifying as deforestation”.

In practice, it is likely to be difficult to agree upon the values for X, Y and T. Therefore, it is also possible that 
no specific definition is necessary, and that any “degradation of forest” will be reported simply as a net decrease 
of carbon stock in the category of “Forest land remaining forest land” at national or subnational level. The GFOI 
Methods and Guidance Document (GFOI, 2014) does not attempt to formally to define degradation, although it 
does set out steps for estimating degradation using IPCC methods. 

7.2.2.  specifications for monitoring deforestation from remote sensing
Tropical forest mapping and monitoring is a key application domain for Earth Observation (EO) because of the 
need for recurrent and frequent data to produce annual information on forest cover in humid and seasonal domains, 
and regular information on forest disturbance processes. It benefits from long-term consistent archives of Landsat 
imagery for forest area change, for instance supporting various mature and operational applications such as the 
Global Forest Watch (GFW) platform1 of the World Resources Institute and the PRODES project2 of the Brazilian 
National Space Agency. Previous attempts to integrate moderate to fine-resolution EO imagery into operational 
forest degradation mapping and monitoring have largely failed because of inadequate technical parameters, high 
costs and uncertain long-term prospects. Currently, the EO community mostly uses Landsat sensors (30 m), with 
products having global coverage and an annual frequency. Today, the use of such imagery (approximately 30 m) 
leads mainly to the creation of tree cover percentages or forest/non-forest binary maps, which are released at yearly 
intervals (Hansen et al., 2013). 

The remote sensing techniques to monitor changes in forest areas (e.g. deforestation) provide high-accuracy area 
estimates and may also allow for the spatial mapping of the main forest ecosystems (GOFC-GOLD, 2016). As 
a minimum requirement, it is recommended to use Landsat-type remote sensing data (30-m resolution) or finer-
resolution imagery (e.g. Sentinel-2 data at 10 m resolution) to monitor forest cover changes, with the Minimum 
Mapping Unit (MMU) measuring between 1 to 5 ha. These data will allow to assess changes in forest areas (in 
particular, to derive the area deforested and forest regrowth for the period considered). A hybrid approach combining 
automated digital segmentation and classification techniques with visual interpretation and/or validation of the 
resulting classes/polygons should be preferred, as this constitutes a simple, robust and cost-effective method.

Different spatial units may be used to detect forest and forest change. Current national and regional remote sensing 
monitoring systems provide several examples of MMU: Brazil’s PRODES system3 for monitoring deforestation 
in the Brazilian Legal Amazon region (initially 6.25 ha, today 1 ha for digital processing); India’s national forest 
monitoring system (1 ha); the EU-wide CORINE land cover/land use change monitoring system (5 ha); the Peruvian 
Ministry of Environment’s deforestation monitoring programme (0.1 ha); and the Global Forest Watch deforestation 
monitoring system (0.1 ha).

Currently, there are two main sources of free global mid-resolution (30 m × 30 m to 10 m × 10 m) remote sensing 
imagery: NASA (Landsat satellites), for data acquired since the early 1980s; and the European Space Agency, or 
ESA (Sentinel satellites, through Copernicus programme) for data acquired since the mid-2010s, although some 
quality issues arise with respect to certain parts of the tropics (resulting from clouds, seasonality, etc.). All Landsat 

1   http://www.globalforestwatch.org/.
2   http://www.obt.inpe.br/prodes/index.php.
3    The PRODES project of the Brazilian Space Agency (INPE) has been producing annual rates of gross deforestation since 1988. PRODES 

has quantified approximately 750 000 km2 of deforestation in the Brazilian Amazon through 2010, a total that accounts for approximately 
17 percent of the original extent of the forest.
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data from archives of the United States of America (in particular, the United States Geological Service, or USGS) 
are available for free. Brazilian/Chinese remote sensing imagery from the CBERS satellites is also freely available. 
CBERS-4 is part of the second phase of this Sino-Brazilian cooperation. The imagery is now used in important 
projects involving deforestation control and environmental monitoring in the Amazon Region. Other areas, such 
as water resources monitoring, urban growth, soil occupation and education, are also benefitting from CBERS-4 
imagery. In fact, it is currently fundamental for large-scale national and strategic projects. Two important examples 
are the aforementioned PRODES4 project and CANASAT5 (monitoring of sugar-cane areas). Data fusion between 
CBERS-4 and Sentinel-2 are already being considered. 

TAble 1. ChARACTeRisTiCs Of lAnDsAT-8 Oli AnD senTinel-2 sensORs.

Country
satellite and
sensor

Resolution
and coverage

Cost for data 
(archive)

feature

United States of 
America

Landsat-8
OLI

15 m – 30 m
180 × 180 km²

All data archived at
USGS may be 
accessed free of 
charge

Data are systematically 
acquired since June 2013

EU Sentinel-2
10 m- 20 m
Swath 290 km

All data archived at
ESA may be 
accessed free of 
charge

Data are systematically 
acquired since July 2016

Optical mid-resolution data (such as Landsat data) have been the primary tool for deforestation monitoring. Other, 
newer, types of sensors, such as radar (ERS1/2 SAR, JERS-1, ENVISAT-ASAR and ALOS PALSAR 1/2) and 
LiDAR, are potentially useful and appropriate (De Sy et al., 2012). Radar, in particular, alleviates the substantial 
limitations of optical data in persistently cloudy parts of the tropics. Data from LiDAR and radar have proven to 
be useful in project studies; however, to date, they are not widely used operationally for forest monitoring over 
large areas. In the future, the utility of radar may increase depending on data acquisition, access and scientific 
developments.

7.2.3.  specifications for monitoring forest degradation from remote sensing
Most forest degradation can be detected by means of remote sensing methods; however, optimal approaches and 
methodologies for monitoring forest degradation are likely to vary depending on the type and location of the 
degradation, as well as on the forest types concerned. Robust methods to monitor forest degradation (and forest 
regrowth) remain under development. As stated in the GOFC-GOLD REDD+ Sourcebook (2016), measuring forest 
degradation or forest regrowth and related changes in forest carbon stock is more challenging than measuring 
deforestation, because such forest changes are not easily detectable through remote sensing, but require more 
frequent and better imagery and processing. 

4   http://www.obt.inpe.br/prodes/.
5   http://www.dsr.inpe.br/mapdsr/.



Handbook on remote sensing for agricultural statistics190

Monitoring forest degradation is limited by the technical capacity to sense and record the change in canopy cover: 
small changes are unlikely to be apparent unless they produce a systematic pattern in the satellite imagery. Many 
activities cause the degradation of carbon stocks in forests; however, not all of them can be monitored well with a 
high degree of certainty, and not all of them must be monitored using remote sensing data (Miettinen et al., 2014). 
To develop a monitoring system for degradation, it is first necessary to identify the causes of degradation and assess 
their likely impact on carbon stocks:
•	 The areas of forests undergoing selective logging – with the presence of gaps, roads, and log decks – are likely to 

be observable in remote sensing imagery, especially the network of roads and log decks. Gaps in canopy caused 
by harvesting of trees have been detected in imagery such as that captured by Landsat, using more sophisticated 
analytical techniques to process frequently collected imagery (Grecchi et al., 2017).

•	 The degradation of carbon stocks caused by forest fires may be more difficult to monitor with existing satellite 
imagery (Miettinen et al., 2016). Almost all fires in tropical forests have anthropogenic causes.

•	 Degradation resulting from over-exploitation for fuelwood or other local uses of wood is often followed by 
animal grazing, that prevents regeneration – a situation more common in drier forest areas. This situation is 
unlikely to be detectable from satellite image interpretation unless the rate of degradation was intense, thus 
causing larger changes in the canopy.

7.2.4.  Availability of landsat data
In 1972, NASA launched the first Landsat satellite with a mid-resolution sensor that was capable of collecting land 
information at a landscape scale. This satellite was the first in a series of (seven, to date) Earth-observing satellites 
that have enabled continuous coverage since 1972. Subsequent satellites were launched every two to three years. 
Still in operation, Landsat 7 covers the same ground track repeatedly every 16 days. To continue the series, the 
Landsat Data Continuity Mission (Landsat 8) was launched in 2013.

Almost complete global coverage captured by these Landsat satellites since the early 1990s may be downloaded 
free of charge from the USGS web portals6: in particular, such imagery consists in the Global Land Survey (GLS) 
data sets. These data serve a key role in establishing historical deforestation rates, although in some parts of the 
humid tropics (such as Central Africa), persistent cloudiness is a major limitation to using them. The full Landsat 
8 OLI (since June 2013) and Landsat 7 ETM+ (since 1999) USGS archives, and all USGS archived Landsat 5 TM 
data (since 1984), Landsat 4 TM (1982-1985) and Landsat 1-5 MSS (1972-1994) may be ordered at no charge from 
the USGS.

To date, given its low cost and unrestricted license use, Landsat has been the workhorse source for mid-resolution 
(10–50 m) data analysis. Key limitations in the use of Landsat sensors consist in the mixed nature of the measured 
signal, and the difficulties in identifying forest cover disturbances. The latter aspect is especially important in areas 
where small-scale processes are significant. Alternative sources of data include ASTER, SPOT, IRS, CBERS, DMC, 
AVNIR-2 or Sentinel-2.

7.2.5.  Availability of sentinel-2 data
Sentinel-2A (S2A) was launched in 2015 and provides wide-area optical imagery with resolutions of 10 m (visible 
and near-infrared, or NIR), 20 m (red-edge, NIR and short-wave infrared, or SWIR) and 60 m (visual to short-wave 
infrared for atmospheric correction) from October 2015 onwards. 

6   http://glovis.usgs.gov/.
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The S2A has a wide swath width (290 km) and a 10-day revisit frequency. S2A coverage is global (capturing land 
masses). The launching of the S2’s identical B unit is scheduled for 2017, and will increase the S2’s revisit capacity 
to five days. The Copernicus programme already envisages C and D versions of these Sentinels to guarantee data 
availability until at least 2027.

The Sentinel 2 sensors – together with Landsat 8 – will provide core capacity upon which a viable set of globally 
consistent services in the forestry domain can be based, thus setting the stage for a number of innovative and 
challenging applications, and for the redesign of monitoring systems for a more accurate monitoring of forest 
degradation.

Sentinel-2 Product Level 2A is the standard level for which a processing tool will be made available through 
the Copernicus program (on the ESA Sentinel-2 Toolbox)7. Level-1C products contain applied radiometric and 
geometric corrections (including orthorectification and spatial registration in a fixed cartographic geometry). Level-
2A products are at the bottom of atmosphere reflectance in cartographic geometry. Currently, Level-2A products 
must be processed by the user. A higher level of processing of satellite imagery data (Level 3) would be required 
for REDD+ countries. Level 3 should consist in adequate image mosaics (that minimize cloud coverage) from 
the Sentinel-2 satellite time series, composed every 30 days or every three months over the tropical belt. The 
specifications for a standard Sentinel-2 Level 3 core product, to be made systematically and freely available through 
a free and open distribution platform, were prepared by the Copernicus programme in 2017.  

The technical quality of the Sentinel sensors significantly enhances the separation of land cover classes in forest land 
use, both for forest land (that is, forest types) and the complex domain of mosaics of agriculture and forest (including 
shifting cultivation). The 10 to 20 m spatial resolution of S2A (and S2B), combined with a ten-day (or five days with 
both S2A and S2B) revisit frequency will resolve the forest cover status and small-scale disturbances delineation 
at plot and log level detail. Slower forest conversion changes – in particular, the progressive removal of fuel wood 
or agricultural land abandonment leading to forest regrowth – will benefit from the high level of spatial details and 
the possibility to select the most relevant seasonal acquisitions. The complementarity of visible, NIR and SWIR 
channels (from S2) is unique in this respect too. Furthermore, the spectral compatibility of S2 with Landsat-8 and 
much improved atmospheric correction will greatly expand intersensor consistency and the potential for data fusion.

The finer spatial resolution (10 m) and the higher temporal frequency (a revisit time of five to ten days) of Sentinel-2 
acquisition will enable more accurate and regular detection and quantification of forest degradation in tropical 
countries than is possible from current medium-resolution satellite imagery. Consequently, in the near future, 
satellite imagery from the Sentinel-2 satellite sensor will provide potential for incremental change in the assessment 
of forest conditions.

The introduction of Sentinel-2 will potentially lead to a diffusion of forest monitoring capacities to national and 
regional government levels in the next five to ten years, for instance, as an extension or a component of National 
Forest Inventory (NFI) systems. This will require significant capacity building efforts, which should be, insofar as 
possible, directed towards anchoring a robust methodological framework. To the greatest extent possible, this should 
lead to standardized forest area estimates and map products at national level with an agreed level of accuracy and 
quality that can be integrated into regional and global applications. 

In summary, Landsat-type data are most suitable for assessing historical rates and patterns of deforestation. The 
availability of free and open Landsat-8 and Sentinel-2 data has increased for recent years; therefore, more detailed 
assessments of coverage periods lesser than five years may be possible in several parts of the world.

7   http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-2/Data_products.
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7.3.  The fAO glObAl fOResT ResOURCes AssessmenT’s RemOTe 
sensing sURvey

7.3.1.   background on statistical sampling designed to estimate deforestation 
from optical sensors having moderate spatial resolution 

It would be ideal to conduct an analysis that covers the full spatial extent of the forested areas with imagery having 
moderate spatial resolution (Landsat-type), termed “wall-to-wall” coverage; however, this may not be practical over 
large and heterogeneous areas. In addition, it would place commensurate constraints on the resources available for 
analysis. For digital analysis with moderate-resolution satellite images at pan-tropical or continental levels, several 
approaches have been successfully applied by sampling within the total forest area, to reduce the costs and time 
required to conduct the analysis.

A sampling procedure that adequately represents deforestation events can capture deforestation trends (Achard et al., 
2002; Richards et al., 2000). Since deforestation events are not randomly distributed in space, particular attention 
is required to ensure that the statistical design is adequately sampled within areas of potential deforestation (figure 
1), for example through a high-density systematic sampling when resources are available (Mayaux et al., 2005).

figURe 1. lOCATiOn Of sAmple UniTs Of The TRees-ii sURvey        

Achard et al., 2002; Richards et al., 2000

For its global Forest Resources Assessment 2010 programme (FRA 2010), FAO continued to develop its monitoring 
of forest cover changes at global to continental scales to complement national reporting. Technological improvements 
and better access to remote sensing data made it possible to expand the scope of the survey, compared to FRA 2000. 
The findings of the FRA 2000 tropical Remote Sensing Survey (RSS) (figure 2) were included as a chapter in the 
FRA 2000 Main Report (FAO, 2001) and reported upon in Drigo et al. (2009).
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figURe 2.  lOCATiOn Of sAmple UniTs Of The fOResT ResOURCes AssessmenT 2000 
pROgRAmme        

FAO, 2001; Drigo et al., 2009

7.3.2.  general sample approach selected for the global Remote sensing survey
The remote sensing surveys of FRA 2010 and FRA 2015 have been extended to all lands (not only the pan-tropical 
zone). These surveys aimed to estimate forest change based on a sample of moderate-resolution satellite imagery, 
and were designed to provide consistent and comparable estimates of tree cover and forest land-use changes over 
two decades at global and regional scales, to complement the increasing number of national statistics in FRA main 
reports that are based on national remote sensing surveys. 

In a coordinated effort, FAO and the Joint Research Centre (JRC) of the European Commission produced estimates 
of forest land use change from 1990 to 2005 for RSS 2010 (FAO and JRC, 2012). This global survey was then 
extended to the year 2010 (to cover the period from 1990 to 2010) for the FRA-2015 (Achard et al., 2014; Keenan 
et al., 2015).

The FRA 2010 RSS is based on a much higher number of smaller sample units than the previous FRA exercises, 
with a systematic grid – sample units are located at each intersection of the 1° × 1° lines of latitude and longitude 
that falls over land. This global systematic sampling scheme was developed jointly by FAO and the JRC to estimate 
the rates of deforestation at global or continental levels at intervals of five to ten years (Mayaux et al., 2005). 

Each sample unit has a core size of 10 km × 10 km with an external 5-km buffer for forest cover contextual 
information (that is, the full size of sample units is 20 km × 20 km for land cover information). These dimensions 
were chosen to allow for spatially explicit monitoring at a scale relevant to land management. 

This sampling scheme leads to approximately 13 500 sample units for the terrestrial part of the globe, or 
approximately 9 000 sample units when excluding desert areas, and represents approximately 1 percent of the land 
surface (0.8 percent along the Equator) with the geographical grid (figure 3). 
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figURe 3.  lOCATiOn Of sAmple UniTs Of The RemOTe sensing sURvey (Rss) Of The 
fRA-2010 OveR The TROpiCs.        

7.3.3.  selection and preprocessing of satellite imagery 
The FAO FRA RSS 2010 is a global study with consistent methods and time series that can be extended to include 
more recent periods. Time series of moderate-resolution remote sensing data are attached to each sampling location 
through a quality-controlled, standardized and decentralized process. The following paragraphs briefly describe the 
satellite data set and preprocessing steps used for the FAO FRA RSS 2010 over the tropical regions. 

For each sample unit, orthorectified Landsat (E)TM Landsat images were acquired at no cost from the GLS archives, 
which are created and made available by the USGS (Gutman et al., 2013). For each sample unit, four images were 
selected with the lowest possible cloud cover and as close as possible to the target dates of 30 June for the years 
1990, 2000, 2005 and 2010. Where GLS data was unavailable, of bad quality (such as Landsat 7 SLC-off data) or 
cloudy for the area of the sample units (Potapov et al., 2010), alternative satellite scenes were acquired from the 
Landsat archives of the USGS or of other space agencies, such as Brazil’s INPE (Beuchle et al., 2011). The range 
of image acquisition dates was 1986–1993, 1999–2003, 2004–2007, and 2009–2011 for the years 1990, 2000, 2005 
and 2010 respectively. 

The selected images underwent an extensive preprocessing, including an image geolocation check, conversion 
to top-of-atmosphere reflectance, cloud-masking, de-hazing and image normalization on the basis of pseudo-
invariant features (Bodart et al., 2011). For multitemporal image analysis, a good geometric match of the images is 
fundamental. In this context, the geolocation of some images required enhancement. For this purpose, the Landsat 
ETM image (from the year 2000) was determined to be the “master image”. Consequently, the “slave image”, 
consisting mostly in Landsat 5 imagery, was shifted until a correct overlay with the master image was achieved.
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7.3.4.  processing and analysis of satellite imagery 
This section describes the analysis carried out over the tropical regions. 

After preprocessing, the satellite imagery was used in an automated multidate image segmentation to subdivide the 
sample unit (10 000 ha) into delineated areas (polygons) with similar spectral and structural attributes. The target 
MMU was 5 ha. On the segmented imagery, a supervised automated land cover classification was carried out, which 
was later converted to a land use classification with the help of expert human interpretation.

For each sample unit, the preprocessed images from the four “epochs” (that is, the years 1990, 2000, 2005 and 2010) 
were subjected to a multistep segmentation using eCognition software (Trimble©), followed by an object-based 
classification process based on membership functions defined by a collection of spectral signatures taken from 
across the tropical belt (Raši et al., 2011 and 2013). An MMU of 5 ha (or 50 pixels at 30 m × 30 m resolution) is 
considered for the interpretation of the satellite imagery to identify the forest cover changes. A finer “detection unit 
level” at approximately 1 ha was used in a first automated segmentation and labelling step before aggregation to 
5-ha objects for the interpretation phase.

Objects were classified into five land cover classes: Tree Cover, Tree Cover Mosaics, Other Wooded Land, Other 
Land Cover and Water (see table 2 for a description of each class). The Tree Cover class was defined in compatibility 
with the FAO definition of forest (FAO, 2010). 

TAble 2. lAnD COveR ClAsses UseD by The JRC.

Class name Class description

Tree cover (TC)
Objects covered by 70–100 percent of trees, where trees are defined as plants 
higher than 5 m and with a wooden stem, and tree canopy density is greater 
than 30 percent 

Tree cover mosaic (TCM) Objects covered by 30–70 percent of trees

Other wooded land (OWL) Objects covered with more than 50 percent of plants lower than 5 m with one 
or more wooden stem(s)

Other land cover (OLC)
Land not covered by the TC, TCM or OWL classes, comprising natural 
grassland, agricultural land, built-up areas, bare soil and rock

Water (W) Rivers and lakes

The resulting classified objects, with an MMU of 5 ha, underwent an intensive process of correction of the land 
cover information assigned for each target year (Eva et al., 2012).

The JRC and FAO scientists collaborated with more than 100 remote sensing and forestry experts from tropical 
countries, including largely forested countries such as Brazil, India, Indonesia and the Democratic Republic of Congo. 

It must be noted that for the FRA 2010 RSS reporting (FAO and JRC, 2012), FAO employs a land use classification 
(FAO, 2010b), including a “Forest” land use class8; this is better suited to assessing drivers than a land cover 
classification, such as that used by the JRC (de Sy et al., 2015). A young forest plantation is considered as “Forest” 
in the FAO survey (trees able to reach more than 5 m), but is classified as “Other land cover” according to the JRC 
legend if the trees are not visible or lower than 5 m. 

8    The “Forest” class of the FAO FRA 2010 report is defined as: “Land spanning more than 0.5 hectares with trees higher than 5 meters and 
a canopy cover of more than 10 percent, or trees able to reach these thresholds in situ. It does not include land that is predominantly under 
agricultural or urban land use.”
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7.3.5.  statistical analysis
The land cover and land cover change information available for all sample units is used to produce statistical 
estimates for the entire area of interest. Considering that very few satellite images were acquired at the exact same 
date of their respective epochs, the land cover (change) information of each sample unit is first linearly “normalized” 
(as a best approximation) to the target dates of 30 June for the years 1990, 2000, 2005 and 2010 to produce land 
cover statistics. For this purpose, we assume that the land cover changes detected occurred linearly over time. 

Areas lacking data due to clouds, poor satellite coverage or low-quality imagery in any of the reference years were 
considered as an unbiased loss of data, and assumed to have the same proportions of land cover as non-cloudy areas 
within the same site. This is achieved by converting the 1990–2000 and 2000–2010 land-cover change matrices 
to area proportions relative to the total cloud-free land area of the sample units. For the missing sample units (4, 
39 and 3 for 1990–2000 and 3, 39 and 3 for 2000–2010, from totals of 1 230, 2 045, and 741 sample units, for 
South America, Africa and Southeast Asia, respectively) a local average was used from surrounding sample sites as 
surrogate	results.	The	following	weights	(δjj’) were applied to obtain the local average of missing sites:

where d(j,j’) is the distance between two sites.

For the statistical estimation phase, the sample units are weighted in relation to their statistical probability of 
selection. Indeed, although the sampling frame is systematic, it does not give equal probability to all sample units 
because the distance between sample units along a parallel is not the same as the distance along a meridian. All 
sample units are given a weight, which is equal to the cosine of the latitude to account for this unequal probability. 
The impact of these weights is moderate in tropical areas. The selected sample units that contain a proportion of sea 
compensate for those non-selected sample units that contain a proportion of land (when the centre of the sample 
unit is located in the sea), because they were considered as full sites. 

The proportions of land cover changes were then extrapolated to the study area using the Horvitz-Thompson Direct 
Expansion Estimator (Särndal et al., 1992). The estimator for each land cover class transition is the mean proportion 
of that change per sample unit, given by Equation 2:

where yic is the proportion of land cover change for a particular class transition in the ith sample unit. The weight 
of the sample unit is wi and m is the sum of the sample weights.

In case of systematic sampling, the usual “random case” estimator is positively biased (Stehman et al., 2011). 
Alternative estimators based on a local estimation of the variance enable a partial solution of the problem, that is, 
to reduce the bias. Here, an estimator of the standard error based on local variance estimation is used: 
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70 The “Forest” class of the FAO FRA 2010 report is defined as: “Land spanning more than 0.5 hectares with 
trees higher than 5 meters and a canopy cover of more than 10 percent, or trees able to reach these thresholds in 
situ. It does not include land that is predominantly under agricultural or urban land use.” 
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where f is the sampling rate, the weight wjj’ is an average of the weights wj  and  wj’ and δjj’  is 
a decreasing function [1] of the distance between j and j’ (note that if it is determined to set δjj’ 
= 0, the usual variance estimator is obtained). The standard error (se) is then calculated as: 
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where n is the total number of available sample sites (that is, not accounting for the missing 
sites even if these are replaced by a local average). 
Land cover changes were estimated by assessing the matrices of change (see table 3), for the 
decades 1990–2000 and 2000–2010. An object labelled as Tree Cover Mosaic (TCM) was 
considered as 50 percent forest cover, defined by the average of the upper and lower percent 
limit. Consequently, forest cover loss was calculated as being 100 percent of the tree cover 
converted to Other Wooded Land (OWL), Other Land Cover (OLC) or Water (W) plus 50 
percent of the tree cover converted to TCM and 50 percent of the TCM converted to OL, OWL 
or W. 
 
7.3.6.	Accuracy/consistency	assessment	of	estimates	of	forest	cover	changes	
The observations (source data sets) used to produce the results given in this chapter are derived 
from satellite interpretations. These surrogates to ground observations may be subject to error 
or uncertainty (bias) (Foody, 2010); however, these issues were not addressed in this 
assessment. The use of such surrogate data for assessing area change is inevitable in many 
areas of the tropics where no ground observations exist and where large areas of inaccessible 
forests can only be monitored at affordable costs by exploiting satellite data. However, an 
independent assessment was performed over 1 185, 1 552 and 830 points (for a total of 3 567 
points) distributed systematically within a random subsample of 240, 338 and 166 sample units 
in South America, Africa and Southeast Asia, respectively (a central point plus four points in 
the corners taken in each sample unit). In addition, from a 9 x 9 systematic grid (81 points taken 
at a distance of 1 km in each sample unit), all points identified as change in land cover during 
the decade from 1990 to 2000 were selected, resulting in 1 663, 1 194 and 1 425 points (for a 
total of 4 282) respectively for the three subregions. The corresponding polygons were 
carefully visually reinterpreted by independent experts using any available ancillary 
information (such as imagery from Google Earth, with due attention to the date of image 
capture). This enables an assessment of the “consistency” of the results of the interpretation.  
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points taken at a distance of 1 km in each sample unit), all points identified as change in land cover during the decade 
from 1990 to 2000 were selected, resulting in 1 663, 1 194 and 1 425 points (for a total of 4 282) respectively for the 
three subregions. The corresponding polygons were carefully visually reinterpreted by independent experts using 
any available ancillary information (such as imagery from Google Earth, with due attention to the date of image 
capture). This enables an assessment of the “consistency” of the results of the interpretation. 

To complement this consistency assessment, the results were also compared to the INPE interpretations for the 
decade from 1990 to 2000 (INPE, 2013) for a random selection of 34 sample units among the 411 sample units 
falling in the Brazilian Legal Amazon (Eva et al., 2012).

7.3.7.  Results for the tropics
Results of the FRA 2010 RSS have been published at global level for 1990–2000 and 2000–2005 (FAO and JRC 
2012) and at tropical or regional scales for 1990–2000 and 2000–2010 (Achard et al., 2014; Beuchle et al., 2015; 
Bodart et al,. 2013; Eva et al., 2012; Mayaux et al., 2013; Stibig et al., 2014). This section briefly reports the main 
results for the tropical region, to illustrate the outcomes of this RSS.

In 1990, there were 1 635 million ha of tropical forest and 964 million ha of other wooded land. By 2010, the forest 
area had fallen to 1 514 million ha, with an overall net loss over the two decades of 56.9, 30.9 and 32.9 million ha in 
South and Central America and the Caribbean, sub-Saharan Africa and South and Southeast Asia, respectively. Other 
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wooded land increased in that period to 975 million ha, mainly due to the increase of 18.6 million ha in Southeast 
Asia. In 2010, humid tropical forests accounted for approximately 64 per cent of the tropical forest cover, that is, 
972 million ha from a total of 1 514 million ha, with the following regional distribution: 599 million ha in South 
America, 210 million ha in Africa and 163 million ha in Southeast Asia.

At global level, the gross loss of tropical forests was of 8.0 million ha y-1 during the 1990s (0.497 per cent annually), 
with a slight decrease of 7.6 million ha y-1 during the 2000s (0.494 per cent annually), mainly due to reduced 
deforestation rates in the humid forests of Africa and Southeast Asia (from 0.70 to 0.36 million ha y-1 and from 1.70 
to 1.22 million ha y-1, respectively) (Achard et al., 2014). Large non-forest areas were also reoccupied by forests, 
reaching 1.9 million ha y-1 in the 1990s and 1.6 million ha y-1 in the 2000s. 

7.3.8.  precision of the estimates for the tropics
The estimates of forest area changes (gross loss, gross gain and net loss) have small statistical standard errors due 
to the large sample size: from 4 percent to 10 percent at global level, and from 11 percent to 19 percent on average 
at regional level. A dedicated accuracy assessment was carried out for the land cover maps of the tropical sample 
units for the 1990–2000 period. The overall agreements between the RSS results and the reinterpretations considered 
as reference information are of 92.9 percent for the forest labels and 85.5 percent for the forest change labels. The 
potential bias in these results (due to errors of interpretations) were assessed by comparing estimates derived from 
our sample to estimates derived from the reference data set. The relative difference is of -8.9 percent for the global 
forest area estimate – that is, a lower forest area estimate is derived from the RSS study compared to the reference 
data set – and of 11.2 percent for the global gross deforestation estimate; in other words, larger deforestation 
estimates were obtained from the RSS study. Comparison to the INPE interpretations for the 1990–2000 period for 
a random selection of 34 sample sites displays a good correspondence between the INPE interpretations and the 
RSS results, both for the forest area of the year 1990 and for deforestation in the 1990–2000 period, with slopes 
close to 1 (1.017 and 1.008 respectively) and an R2 close to 1 (0.986 and 0.978 respectively) (Eva et al., 2012).

7.3.9.  intensification of the sampling scheme for forest cover change estimation 
at national scale

The global systematic sampling scheme described above can be intensified to produce results at the national level. 
Deforestation estimates derived from two levels of sampling intensity have been compared with estimates derived 
from the official inventories for the Brazilian Amazon and for French Guyana (Eva et al., 2010). 

By extracting nine sample data sets from the official wall-to-wall deforestation map derived from satellite 
interpretations produced for the Brazilian Amazon for the year-long period from 2002 to 2003 (INPE, 2016), 
the global systematic sampling scheme estimate gives 2.8 million ha of deforestation with a standard error of 0.1 
million ha. This compares with the full population estimate from the wall-to-wall interpretations of 2.7 million ha 
deforested. The relative difference between the mean estimate from the sampling approach and the full population 
estimate is of 3.1 percent and the standard error represents 4 percent of the full population estimate. The testing of 
the systematic sampling design within the Brazilian Amazon resulted in a low standard error of less than 5 percent 
of forest cover change rate.

To intensify the sampling intensity of this global survey over French Guyana, Landsat-5 TM data were used for the 
historical reference period (1990) and a coverage of SPOT high-resolution visible sensor imagery at a resolution 
of 20 m × 20 m was used for 2006. The estimates of deforestation between 1990 and 2006 from the intensified 
global sampling scheme over French Guyana are compared with those produced by the national authority to report 
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on deforestation rates for its overseas department under the rules established by the Kyoto Protocol rules (Stach et 
al., 2009). The latter estimates derive from a sampling scheme of almost 17 000 plots derived from the traditional 
forest inventory methods carried out by the country’s Inventaire Forestier National (IFN) and analysed from same 
spatial imagery acquired between 1990 and 2006. The intensified global sampling scheme leads to an estimate with 
a relative difference from the IFN of 5.4 percent. These results, as well as other studies (Steininger et al., 2009), 
demonstrate that the intensification of the global sampling scheme can provide forest area change estimates that 
are close to those achieved by official forest inventories with precisions of less than 10 percent, although only the 
estimated errors from sampling are considered and not errors from the use of surrogate data.

7.3.10.  The future of the global forest Resources Assessment: towards fRA 2020
The FAO FRA is a continuously improving process: each assessment is an upgrade of the former one as information 
needs change, new and better data become available and new methods and technologies can be applied. Due to 
recent developments in the international forestry and policy arena, such as the Paris Agreement and the Sustainable 
Development Goals (SDGs), FRA must adapt to respond to evolving information needs, in terms of both scope and 
reporting periodicity.

The FRA has received technical guidance and support from international specialists through expert consultations 
organized at regular intervals by FAO and the United Nations Economic Commission for Europe (UNECE) over 
the last 30 years. The first consultation on the FRA was held in 1987; subsequent consultations took place in 1993, 
1996, 2002 and 2006 (Kotka I-V) in Kotka, Finland and 2012 in Ispra, Italy. The latest expert consultation was held 
in June 2017 in Joensuu, Finland.

The objectives of the expert consultation include the provision of recommendations on the scope of the next global 
assessment, including the country reporting process and the remote sensing component, and discussion of the 
frequency of reporting on core variables and annual reporting on SDG indicators.
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7.4. OTheR exAmples Of Rss UseD fOR fOResTRy sTATisTiCs

7.4.1   Deforestation statistics from the global Tree Cover product, University of 
maryland

More recently, a new approach that employs recommended IPCC  good practices and a combination of remote 
sensing data (De Sy et al., 2012) to quantify tropical forest above-ground carbon (AGC) losses from 2000 to 2012 
was presented by the University of Maryland (Tyukavina et al., 2015). This study is an important extension of earlier 
studies applied to the Democratic Republic of Congo and Peru (Tyukavina et al., 2013; Pelletier and Goetz, 2015). 

More specifically, Tyukavina et al. (2015) use a sample-based approach combined with a wall-to-wall tree cover 
loss data set (Hansen et al., 2013) to estimate tropical forest area losses. 

The Global Tree Cover data set from the University of Maryland (Hansen et al., 2013) provides wall-to-wall data 
starting from the year 2000.  Hansen et al. (2013) divide world land area into four “tree cover” classes – 0–25 
percent, 26–50 percent, 51–75 percent and 76–100 percent – when undertaking wall-to-wall mapping using Landsat 
images. The authors found that in the tropics, the 76–100 percent tree cover class, which broadly corresponds with 
tropical moist forest, covered 1 324 million ha in the year 2000, while the area having above 25 percent tree cover, 
of 2 094 million ha, was of the same order of magnitude as the FRA 2015 figure for all tropical forest, a figure that 
was based on a threshold tree cover of 10 percent (Keenan et al., 2015).

Tyukavina et al. (2015) produced an unbiased estimate of forest area loss using a stratified random sample of 3 
000 pixels (each approximately 0.1 ha in size) distributed in tropical forested regions. Furthermore, Tyukavina et 
al. distinguished “‘natural forests” (primary and mature secondary forests, and natural woodlands) from “managed 
forests” (plantations, agroforestry systems and areas of subsistence agriculture with tree cover rotation). Tyukavina 
et al. confirmed that a sample-based approach can provide more accurate and significantly higher estimates of forest 
cover losses than a wall-to-wall approach: the higher estimate is explained by small-scale forest dynamics that were 
not depicted in the wall-to-wall tree cover loss map. Ensuring that these small-scale dynamics are captured correctly 
can be very important for individual countries’ efforts to set accurate reference levels.

The use of different definitions and methods can lead to very different estimates of forest area losses: for example, 
Tyukavina et al. define forests as areas where the tree canopy cover is greater than 25 percent, while FAO reporting is 
based on a tree cover threshold of 10 percent and a definition of land use. Moreover, Tyukavina et al. account only for 
gross forest losses, while FAO reports net forest loss (including afforestation and forest regrowth) (Keenan et al., 2015).

Tyukavina et al. (2015) illustrate the current capabilities of satellite data with a sample-based approach for estimating 
forest cover losses in the tropics and related carbon losses. 
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7.4.2.   example at national level: the landscape Units of the brazilian national 
forest inventory

Brazil occupies approximately 8.5 million km2, of which 4.9 million are covered by forests (FAO, 2015b). These 
forests are of enormous importance for the country, in environmental and socio-economic terms, and because of 
the contribution they make globally by delivering forest services, such as biodiversity conservation and carbon 
retention. The National Forest Inventory (NFI) of Brazil is compiled by the Brazilian Forest Service (BFS)9 of the 
Ministry of the Environment, in partnership with other institutions such as Embrapa, state environmental agencies, 
universities, research institutions and specialized herbaria. The NFI is one of the most important components of the 
National Forest Information System (Freitas et al., 2010), and therefore a key step in producing reliable and regular 
information on forest resources (Brazilian Forest Service, 2016). 

The main purpose of the Brazilian NFI is to generate information on forest resources, both natural and plantation, 
based on a five-year measurement cycle, to support the formulation of public policies aiming at the use and 
conservation of forest resources. For some Brazilian states, information on the second cycle is being collected; 
however, for the majority of the 27 states, data collection is still in the first cycle.  

The Brazilian NFI is based on a systematic sampling design, with the distribution of clusters (Field Sample Units, 
or FSUs) on a national network of sample points that are 648 seconds equidistant from each other, corresponding to 
approximately 20 km × 20 km between sample points at the Equator line. The cluster is composed by four subunits 
of 20 m × 50 m each. Field data collection comprises biophysical variables for forest and environment condition 
assessment, as well as socio-economic variables (interviews) to characterize how people living in nearby forests 
use and perceive the forest resources (Freitas et al., 2010). In addition, for some states, the NFI preliminary results 
present information on forest stocks, composition, and health and vitality. The assessment of patterns of change in 
time is possible by comparing estimates from successive inventory cycles. 

In addition to field data collected every 20 km × 20 km over the entire territory, the NFI also includes a Geospatial 
Component, which provides information at landscape level through Landscape Sample Units (LSUs), Land Use/
Land Cover (LULC) mapping and spatial analysis (Luz et al., 2015b). The Geospatial Component LSU methodology 
was developed as a joint effort between the FAO/BFS team10 and the Embrapa Forestry team11. As stated by Freitas 
et al. (2006), the sampling design to collect data at landscape level must be based on the same systematic grid used 
for the fieldwork, although using a systematic subsample with an interval of 40 km × 40 km (figure 4). The size of 
each LSU is of 10 km × 10 km (100 km2), the geometric centre of which corresponds to the location of a field cluster. 

9   The Brazilian National Forest Inventory is led by Joberto Veloso de Freitas and Claudia Melo Rosa.
10   Naissa Batista da Luz and Jessica Maran.
11   Maria Augusta Doetzer Rosot, Marilice Cordeiro Garrastazú and Yeda Maria Malheiros de Oliveira.
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figURe 4.  lOCATiOn Of The lAnDsCApe sAmple UniTs Of The bRAzil nfi fOR The sTATe 
Of pARAnA.       

Recently, the Brazilian Government has issued a recent regulation on the use of and changes to natural resources, 
under the umbrella of the new Brazilian Forest Law. The Rural Environmental Cadastre (CAR) is one element of 
this legislation. To implement this new regulation, the Ministry of the Environment acquired RapidEye (RE) imagery 
covering the entire country, annually, since 2011. As this imagery is available to other governmental agencies, in 
2013, the Embrapa Forestry team, BFS and FAO initiated the NFI Landscape Study as a pilot project, using the 
available RapidEye and Landsat 8 (L-8) imagery. RapidEye orthorectified imagery was used as the basis for an 
object-based image analysis approach (implemented in Definiens software). Polygons generated from RapidEye 
segmentation were then classified with the aid of several ancillary layers, such as enhanced vegetation indices, 
temporal series statistical layers (one year mean, minimum, maximum, and standard deviation) and information 
derived from the Global Forest Change (GFC; such as tree cover percentage for 2013) and processed using the 
Google Earth Engine Code Editor. Pixel-based RapidEye and L-8 unsupervised classification, performed using 
the IMPACT Toolbox software (developed by the JRC), were also included as ancillary information for RapidEye 
polygon classification (Luz et al., 2015b).    

Within the Brazilian NFI, landscape can be considered as a heterogeneous group of ecosystems embodied in different 
LULC types interacting with one another (Luz et al., 2015a). The mosaic of LULC classes – in which natural and 
anthropogenic components contribute to the quality of existing forest resources – were defined as: (a) tree/shrub cover; 
(b) planted forest; (c) natural grasslands; (d) agriculture and pasture; (e) urban areas; (f) bare soil; and (g) water bodies. 
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After the first phase concerning the LULC mapping involving the aforementioned classes, a second step is performed, 
the landscape structural analysis of each LSU. The methodology, which is tailored specifically to the NFI’s LSUs 
envisages innovative aspects relating to landscape spatial patterns, LULC mosaics and habitat fragmentation, 
connectivity and interface. The design incorporates traditional indicators, such as landscape composition, but also 
addresses fragmentation in a different manner, adopting a normalized and comparable index based on the habitat’s 
overall Euclidean distance. Another approach involves the quality assessment of riparian zones, based on the 
structural connectivity of these environments such as vegetation corridors, the degree of anthropogenic pressure and 
scenario simulations for riparian protection zones, as well as their ranking (Clerici and Vogt, 2012) with reference to 
conservation priorities. This is especially important in light of recent changes occurring in the Brazilian Forest Law 
concerning the extent of forest vegetation to be restored along rivers and water bodies. Trees Outside Forest (TOFs) 
are a specific theme within LSU analysis, and different approaches were tested to discriminate between and classify 
them using RapidEye imagery. The relevant definitions and premises were established by FAO, in partnership with 
the Institut de Recherche pour le Développement (IRD) (De Foresta et al., 2013).

A group of landscape indicators (and respective indices) is currently being calculated. These are the following:
•	 Landscape composition (proportion of tree/shrub cover that includes natural forest, other wooded lands and 

TOFs) and proportion of other natural/seminatural areas, which include natural grasslands and planted forest;
•	 Landscape taxonomy defined by the degree (percentage) of the presence of each LULC class; 
•	 Habitat morphological spatial pattern analysis (MSPA) implemented by Soile and Vogt (2008) in the Guidos 

Toolbox software (Vogt et al., 2007; Saura et al., 2011), which encompasses possible categories or classes, as 
core, edge, perforation, bridge, loop, branch and islets;

•	 Forest landscape mosaic, which envisages various classes and indices (and classifies a given location according 
to the surface of intensive agriculture and urbanized areas surrounding it) and is implemented in the Guidos 
Toolbox.

•	 Edge interface model, which generates various indices and considers the importance of fragmentation related 
to the change of LULC in the forest edges, and is implemented in the Guidos Toolbox;

•	 Landscape connectivity encompasses landscape connections priorities, based on the MSPA and Conefor12 
software (Saura and Torné, 2009); a ranking of the structural corridors under pressure in the landscape is also 
presented;

•	 Landscape fragmentation, an indicator that introduced innovative concepts to quantify forest fragmentation 
(in the Guidos Toolbox); it enables comparison of the degree of fragmentation in different locations, the 
measurement of changes in fragmentation and its monitoring over time;

•	 Riparian zones analysis, based on the structural connectivity of those environments as vegetation corridors, on 
the degree of anthropogenic pressure acting upon them and on scenario simulation for riparian protection zones 
based on the concepts elucidated by Clerici et al. (2011) and Ivits et al., (2009).

The LSUs’ structural quality is assessed against these indicators, represented by groups of indices. The linear 
weighted combination of selected indices generate a single score by LSU, which allows for analyses and comparisons 
between them, aiming to restore and monitor certain aspects of the landscape.

The efforts made by the Brazilian NFI constitute an essential contribution to the Brazilian Government’s commitment 
to sustainability. In 2010, Brazil voluntarily committted to reduce emissions by 80 percent in the Amazon and 40 
percent in the Cerrado (Savannah region) by 2020. The country plans to integrate existing instruments and to 
promote coordination and synergies between them to maximize the REDD+ results. The NFI provides tools that 
can contribute to those decisions. The NFI programme can also benefit the implementation and monitoring of other 
national policies on planted forests and on the integration of agriculture, livestock and forestry (iLPF-agroforestry), 
among others.

12   http://www.conefor.org.
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Brazil’s intended Nationally Determined Contribution – or iNDC – is considered a highly ambitious project. 
Regarding the spheres of forestry and LULC, it was proposed to strengthen compliance with the new Brazilian Forest 
Law at all levels; strengthen policies and measures to achieve, in the Brazilian Amazon, zero illegal deforestation 
by 2030 and compensation of greenhouse gas emissions from legal removal of vegetation by 2030; restore and 
plant 12 million ha of forest by 2030 for multiple uses; expand the range of sustainable management systems of 
native forests through georeferencing and traceability systems applicable to the management of native forests, to 
discourage illegal and unsustainable practices. Additionally, the commitment relating to the agricultural sector was 
to strengthen the Low-Carbon Agriculture Plan (ABC Plan) as the main strategy to ensure sustainable development 
in agriculture, including the further restoration of 15 million ha of degraded pastures by 2030 and the increment by 
5 million ha of iLPF-agroforestry projects, by the same year. Therefore, the Brazilian NFI will play an important 
role in the fulfillment of country goals and targets by providing valuable data sets on forest resources, LULC and 
landscape quality.

The landscape analysis complements the other two components of the IFN-BR, which consist in a field data 
collection exercise and a socio-economic survey. The adopted strategy has been to develop the methodology 
of all Brazilian NFI components, aiming at their integration and subsequent joint analysis. Thus, aspects of the 
physical and biological environment obtained in the field survey (ecosystem approach), integrated with spatialized 
information on LULC and the socio-economic environment may conform that which in contemporary terms is 
known as the landscape approach.

7.4.3.  The fAO global forest survey project 
Objectives of the Global Forest Survey project 
The main objective of the Global Forest Survey (GFS) project is to provide global and regional estimates of forest 
inventory data for specific forest ecosystems. Forest inventory data is to be collected through a global network of 
field plots. The project is intended to be implemented on a global scale.

The specific objectives of the GFS project are to:
•	 develop a global network of permanent field sample plots, which will utilize existing field plots where possible, 

but will also include new field sample plots as required;
•	 Produce detailed, georeferenced global estimates of forest carbon, forest health, and other forest characteristics 

based on the field sample plots and remote sensing data;
•	 Develop an information portal and data sharing policy to make all data and results freely available; and
•	 Demonstrate the value of a single, permanent, freely available, web-based repository.

The data collection exercise is intended to be based on a multiscale sampling design and measurement protocols 
will be developed to assess forests, from basic (for example, tree cover percentage) to complex (such as land use 
types) parameters  Data will be collected by partner organizations, local authorities and communities and, where 
necessary, by FAO staff directly. All of the data collected in the context of the GFS will be freely available and 
accessible through a web-based GIS-enabled portal.

The first Global Drylands Assessment
The Global Drylands Assessment (FAO, 2016) is a pilot action within the World Forest Open Data project that 
focuses solely on drylands and on the use of satellite images from publicly available repositories (such as Google 
Earth Engine and Bing Maps). For the first Global Drylands Assessment, more than 200 experts with knowledge 
of the land and land uses in specific dryland regions were involved. 
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The global assessment draws on information from 213 795 sample plots in the world’s drylands. Each plot measured 
70 m x 70 m (approximately 0.5 ha), a size corresponding to the smallest patch that qualifies as forest according to 
the forest definition used by the FAO Global FRA (FAO, 2015a).

In locating sample plots in a grid across the drylands, each aridity zone was treated as an independent stratum. The 
relative sampling intensity assigned to each aridity zone was as follows: hyperarid = 0.5; arid = 1; and semiarid and 
dry subhumid = 1.5. The results are reported at the global and regional levels (FAO, 2016). The statistical sampling 
error for the estimate of the total forest land area for all drylands is about 1 percent.

figURe 5.  illUsTRATiOn Of sAmpling inTensiTy Of The fiRsT glObAl DRylAnDs 
AssessmenT        

FAO, 2016

Data and tools used for the Global Drylands Assessment
The survey was set up using Collect, a software tool available in the Open Foris suite13 and then embedded in Collect 
Earth, which was developed in cooperation with Google Earth Outreach (Bey et al., 2016).

Sample plot data were collected from online libraries of satellite images using Collect Earth. Typically, each plot 
was overlaid onto several images obtained through Google Earth Engine and Bing Maps. Collect Earth is capable 
of visualizing reflectance values and user-defined indices such as the Normalized Difference Vegetation Index 
(NDVI) based on Landsat and MODIS satellite images. The visual interpretation exercise was facilitated by the 
temporal profiles of interannual vegetation indices, which were derived from lower-resolution satellite data (the 
ground resolution ranging from 30 to 250 m).

13    Open Foris is a suite developed by the FAO Forestry Department to facilitate flexible and efficient data collection, analysis and reporting; 
see http://www.openforis.org/.
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Landsat imagery (having a resolution of 30 m) was available for all plots, and 89 percent of plots were also covered 
by finer-resolution images, more than half of which consisted in images from Digital Globe and having a spatial 
resolution finer than 1 m. The proportion of satellite image types was similar for all land-use categories.

Collect Earth projected each sample plot as a frame containing a grid of 49 control points, enabling users to 
make precise estimates of the proportion of plots taken up by trees, shrubs and other land elements. In the visual 
interpretation exercise, each expert used his or her knowledge of the location and information provided by remote 
sensing data to support the survey process.

Land use image interpretation
For each sample plot, data on over 70 characteristics were collected and recorded for the most recent point in time 
for which satellite images were available. The variables were selected to characterize land cover, land use, land use 
change and other significant land dynamics (such as desertification and greening), along with biophysical indicators. 
The year 2000 is used as the reference year, because it is considered to be first year for which consistent global 
coverage of satellite data (Landsat 7) is available.

The simultaneous use of low-resolution and very-high-resolution (VHR) satellite imagery facilitates the detection 
of land use and land-use change. For certain land elements (for example, distinguishing between trees and shrubs), 
satellite data and local knowledge sometimes proved to be insufficient; therefore, a decision rule based on the crown 
diameter of trees and shrubs was adopted. Elements with a crown diameter larger than 3 m were considered trees; 
elements with smaller diameters were considered shrubs. Collect Earth does not allow for the direct measurement 
of tree height; therefore, tree shadows (where visible) were used in addition to the crown diameter threshold to 
determine whether elements were sufficiently tall (in other words, 5 m or taller, consistently with the definition of 
forests used in the Global Drylands Assessment) to be considered trees.

Land use is assessed on the basis of the six land-use categories established by the IPCC  (IPCC, 2006): forest, 
cropland, grassland, wetlands, settlements, and other land. A predominant land use is assigned to each sample 
plot, based on the presence of key land-use indicators interpreted according to a hierarchical rule (Martinez and 
Mollicone, 2012). For example, a sample plot with a crown cover greater than 10 percent is not classified as forest 
unless the prevailing land use can also be identified as forest. Only one land use per sample plot can be assigned.

Results and lessons learned during the first Global Drylands Assessment 
FAO has used this approach to produce a global assessment of the drylands (FAO, 2016) by analysing approximately 
214 000 sample plots (Bastin et al., 2017). This survey is the first statistical sampling-based assessment of land 
use, including the assessment of forests and tree cover, in the global drylands. Therefore, it provides a baseline for 
monitoring changes in dryland forests, tree cover and land use, globally, regionally and by aridity zone.

According to the first Global Drylands Assessment, the world’s drylands contain 1.11 billion ha of forest. More than 
half of these (specifically, 566 million ha) are in the dry subhumid zone, mostly in the northeastern part of southern 
Africa and the western (pre-Andean) part of South America. Approximately two thirds of dryland forests (742 
million ha) can be considered closed forests, because they have a crown cover density of more than 40 percent. More 
than half of these forests (most of which are in Europe and South America) have a crown cover of 90 percent or more.
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The Global Drylands Assessment uses data from publicly and freely available online libraries of satellite images 
using a simple visual interpretation tool, and it engages people with land-use expertise in a systematic data collection 
exercise. This approach has the following advantages:
•	 A statistics-based assessment of a basic set of variables can be conducted rapidly and inexpensively to 

complement other methods, because sample plots are assessed using satellite images rather than in the field; and
•	 A large number of people can be engaged in the assessment process, thanks to the ease of use of the interpretation 

and because the software and data are both available free of charge.

The first Global Drylands Assessment produced results (FAO, 2016; Bastin et al., 2017) in less than one year from 
conception, in a participatory and collaborative manner. The Global Drylands Assessment provided an opportunity to 
test the approach developed at a global scale. However, the methodology must be further developed for non-dryland 
areas, in particular to reduce interpretation errors.

A potential source of error is inconsistency: more than 200 people were engaged in the visual interpretation of 
satellite images, and the supply of images was not the same for all 213 795 sample plots assessed. The risk of 
inconsistency was mitigated by ensuring that all experts used the same training modules and tools. Additional 
measures to reduce inconsistencies and errors in interpretation will be implemented in a pilot assessment of all 
lands worldwide.

The methodology can be adapted to accommodate more intensive sampling for specific regional, national and 
landscape-scale needs, if required by countries and other users. For example, it is used at the regional scale for the 
baseline assessment of the Great Green Wall area over more than 20 countries both north and south of the Sahara, 
building on data already collected in North Africa, the Sahel and the Horn of Africa.

Future prospects
The results of the Global Drylands Assessment were reported in early 2017 (Bastin et al., 2017), following 
supplementary ground measurements and analyses. The results were made publicly available. It is expected that 
the Global Drylands Assessment will be repeated every two years.

The use of Collect Earth and other relevant tools for baseline assessments and monitoring must be further promoted 
through capacity-development events and workshops at regional and national levels. These tools provide a new 
and economically feasible way of assessing trees, forests, land use and land-use change in all areas of the world, as 
shown by the first Global Drylands Assessment.

FAO intends to apply the methodology in a global pilot assessment of all types of land by adding approximately 250 
000 sample plots to be visually interpreted through Collect Earth. Global estimates of forest areas will be produced 
from a total of approximately 500 000 sample plots each about 0.5 ha in size. These results will be integrated into 
the Global Forest Survey’s project database.
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7.5.  COmplemenTARiTy beTween esTimATes Of ChAnges in 
fOResT AnD AgRiCUlTURe

The complementarity between estimates of changes in forest and agriculture areas is illustrated by the analysis 
carried out by VITO, IIASA, HIVA and IUCN NL in the study entitled “Comprehensive analysis of the impact of 
EU consumption on deforestation”, funded by the European Commission, hereafter EC Technical Report (European 
Commission, 2013).

Worldwide gross deforestation from FAO Forest Resources Assessment 2010 for 1990–2008
For the period from 1990 to 2008, worldwide gross deforestation is estimated at 239 million ha (Mha), or about 13 
Mha on average per year, with substantial regional variations, as reported in the FAO Forest Resources Assessment 
2010. During the same period, gross deforestation was partially compensated by afforestation and by the natural 
expansion of forests, together counting for 115 Mha. Thus, net deforestation was of 124 Mha (FAO, 2010a).

In the EC Technical Report (2013), using FRA 2010 (FAO, 2010a) and FAOSTAT land use domain databases 
(FAOSTAT, 2011), gross deforestation is attributed to five main sectors: Agricultural Expansion, Logging (prior to 
agricultural expansion), Urban Areas Expansion, Natural hazards (especially wildfire), and Unexplained. Using a 
transition model, the land use changes reported in FAOSTAT for the above sectors are linked to the deforestation 
areas identified in the FRA 2010. Moreover, a fraction of the agricultural land expansion allocated to deforestation 
is reallocated to “logging for industrial round wood extraction”, to account for wood extraction preceding the 
conversion of forest land for agriculture.

Unexplained deforestation 
When gross deforestation cannot be explained by agriculture, logging, built-up area increases or natural hazards, 
it is termed Unexplained in the EC Technical Report (2013). Of the 239 Mha of worldwide gross deforestation, 
approximately 58 Mha (24 percent) of reported deforestation cannot be conclusively linked to the conversion of 
forests for clear consumption purposes or other reported deforestation causes. The largest source of uncertainty 
relates to the data on deforestation. However, FAO considers even the 9 percent difference in forest area between the 
FRA 2010 assessment and the FRA 2010 RSS as a good result, considering the differences in the methods adopted 
(FAO and JRC, 2012). Furthermore, an accurate assessment of tree cover at lower canopy densities (from 10 to 30 
percent) is difficult with both the country-level FRA 2010 assessment and the RSS. Therefore, uncertainties are 
particularly significant in dry regions and for degraded forests. Unlike the situation in Africa, no large discrepancies 
were found between the RSS survey and FRA 2010 with regard to the deforestation rates for South America. 
Agricultural production statistics and trade data were considered to be relatively reliable.

Unexplained deforestation can be partially attributed to erroneous deforestation figures (overreporting) and agricultural 
area data at the national level (underreporting), as demonstrated by the recent results of the FRA 2010 RSS. Second, 
the Unexplained category can be partially interpreted as the result of long-term degradation effects ensuing from 
several informal practices being carried out in forests, such as illegal logging and unsustainable fuelwood gathering. As 
consistent global data and clear cause-consequence relationships on the latter are non-existent, their impact is assumed 
to be taken into consideration in this category. Third, the conversion of forests into agricultural land may encompass 
more conversion than will actually result in productive (and reported) agricultural land.
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Drivers of deforestation
For the remaining 182 Mha of worldwide gross deforestation, approximately 41 Mha (17 percent) were caused by 
natural hazards (mainly natural or man-made fires) that failed to result in reported agricultural land expansion (EC, 
2013). The country of Indonesia alone lost 9 Mha of forest because of the 1997–1998 El Niño Southern Oscillation 
(ENSO). Furthermore, approximately 9 Mha (4 percent) were turned into built-up land and infrastructure. The 
remaining 132 Mha, or 55 percent of worldwide gross deforestation, can be clearly attributed to the conversion 
of forest land to land for crop production, ruminant livestock production and industrial round wood production 
(logging). 

Of the 132 Mha (55 percent) of deforestation linked to the global production of agricultural and forestry products, 
only 4.5 Mha (or 2 percent) of deforestation was attributed to logging, representing only the impact of logging which 
precedes conversion into agricultural land (EC, 2013). 

Additionally, within the overall impact of the agricultural sector (128 Mha or 53 percent), 69 Mha (or 29 percent) of 
forests were directly or indirectly cleared for cropland to meet the global human demand for food, feed for livestock, 
fuel and fibres from crops. Approximately 58 Mha (24 percent) of forests were cleared for pastures to raise livestock.
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