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Direct and indirect effects of a pH gradient
bring insights into the mechanisms driving
prokaryotic community structures
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Abstract

Background: pH is frequently reported as the main driver for prokaryotic community structure in soils. However,
pH changes are also linked to “spillover effects” on other chemical parameters (e.g., availability of Al, Fe, Mn, Zn, and
Cu) and plant growth, but these indirect effects on the microbial communities are rarely investigated. Usually, pH
also co-varies with some confounding factors, such as land use, soil management (e.g., tillage and chemical inputs),
plant cover, and/or edapho-climatic conditions. So, a more comprehensive analysis of the direct and indirect
effects of pH brings a better understanding of the mechanisms driving prokaryotic (archaeal and bacterial)
community structures.

Results: We evaluated an agricultural soil pH gradient (from 4 to 6, the typical range for tropical farms), in a
liming gradient with confounding factors minimized, investigating relationships between prokaryotic communities (16S
rRNA) and physical–chemical parameters (indirect effects). Correlations, hierarchical modeling of species communities
(HMSC), and random forest (RF) modeling indicated that both direct and indirect effects of the pH gradient affected
the prokaryotic communities. Some OTUs were more affected by the pH changes (e.g., some Actinobacteria), while
others were more affected by the indirect pH effects (e.g., some Proteobacteria). HMSC detected a phylogenetic signal
related to the effects. Both HMSC and RF indicated that the main indirect effect was the pH changes on the availability
of some elements (e.g., Al, Fe, and Cu), and secondarily, effects on plant growth and nutrient cycling also affected the
OTUs. Additionally, we found that some of the OTUs that responded to pH also correlated with CO2, CH4, and N2O
greenhouse gas fluxes.

Conclusions: Our results indicate that there are two distinct pH-related mechanisms driving prokaryotic community
structures, the direct effect and “spillover effects” of pH (indirect effects). Moreover, the indirect effects are highly
relevant for some OTUs and consequently for the community structure; therefore, it is a mechanism that should be
further investigated in microbial ecology.
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Background
In microbial ecology, a key open question is what are
the main environmental drivers of microbial community
structure, such as the factors involved in the determinis-
tic processes behind community assembly [1, 2]. In soils,
pH is usually indicated as the most important driver for

soil prokaryotic community structures. Previous studies
evaluated microbial communities across pH gradients
with high-throughput DNA sequencing and found that
both archaeal and bacterial community structures are
largely influenced by changes in pH [1, 3–7]. Beyond the
microbial community, the influence of pH on the dy-
namics of many elements in soil is well known, as well
as effects on their availability and uptake by plant roots,
which may itself influence soil microorganisms [4, 7–9].
It is crucial to improve our understanding of how pH
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affects microbial communities, because in environmental
conditions, pH may be dynamic (e.g., due to root exu-
dates, microbial respiration, and climatic factors) and be-
cause controlling soil pH is one of the main practices in
agriculture to improve crop production [1, 4, 8, 10].
Little is presently known about the “spillover effects”

of pH (indirect effects) on microbial community struc-
ture [1, 4], especially in sub-tropical and tropical soils.
The indirect effects of pH in soils are wide ranging. pH
affects the solubility of different elements, including
aluminum (Al3+), which can be toxic to plants and mi-
croorganisms (Al3+ availability decreases with pH, being
completely precipitated in pH > 5.5), and also affects the
solubility of nutrients (SI 1) [4, 8, 10, 11]. Mineral nutri-
ent availability in soil is mainly studied in an agricultural
context and thus focuses on plant-available soluble frac-
tions [8, 12], but these fractions usually also correlate
with microbial community structures [4, 13–17]. Phos-
phorus (P) availability, in the form of phosphate, is
optimum at pH 6–6.5 but can be precipitated with iron
(Fe), manganese (Mn), and Al in acidic conditions or
calcium (Ca) in basic conditions. Additionally, in acidic
tropical soils, phosphate can ligate to weathered min-
erals, such iron and aluminum oxides, rendering it un-
available [8]. Nitrogen (N), sulfur (S), and boron (B)
availability (nitrate/ammonium, sulfate, and borate) is
optimum between pH 6 and 7.5. The availability of the
cations Fe2+, Mn2+, cupper (Cu2+), and zinc (Zn2+) de-
creases with pH, while molybdenum (Mo; molybdate)
and chlorine (Cl−) availability increases with pH. In
acidic conditions, increased Fe and Mn solubility may
cause toxicity to plants [8, 18, 19]. Due to these charac-
teristics, plant growth is usually optimal in the pH
(CaCl2) range of 5.5–6.5 [8, 10].
Although overall bacterial diversity is usually also

highest in this pH range [1, 3, 6, 20], the optimal ranges
of pH and nutrients for most environmental micro-
organism species are still largely unknown [4, 9, 21].
Some studies investigating the interaction of plants and
microorganisms, such as the symbiosis between rhizobia
and leguminous plants, demonstrated that Ca, P, Fe, and
Mo stimulate these bacteria and that their optimal pH
was also near 6 [11, 22–24]. Other examples of the ef-
fects from pH-driven changes in soil nutrient availability
on bacterial species or communities are summarized in
Additional file 1.
Due to the effects of pH on elemental solubility, a

common practice in agriculture consists of applying lime
(Ca and Mg carbonates) in order to increase soil pH,
simultaneously increasing the concentrations of Ca and
Mg [8, 10]. This leads to increased plant growth that
usually results in higher output of plant exudates, roots
and litter decomposition, and consequently higher soil
organic matter (SOM) [8, 25]. Moreover, increased litter

accumulation will result in increased nutrient cycling on
the soil surface, as bigger plants will extract more nutri-
ents from different soil depths that are then decomposed
and mineralized on the surface (e.g., K and NO3) [26,
27]. On the other hand, plants growing in acidic soils
are not usually smaller but also have altered metabolisms
and different biomass composition—for example, some
soybean varieties produce root organic exudates (e.g.,
malate) to reduce toxic effects of Al [28, 29]. Differing
plant biomasses and root exudates resulting from soil
pH effects can subsequently influence microbial commu-
nity structures, since they are usually responsive to
different carbon sources and quantities [7, 30].
Because of all these factors, pH can have direct and in-

direct effects on soil microbiota that are summarized in
a conceptual model (Fig. 1). Moreover, all these effects
can influence not only microbial community structure
but also microbial physiology and activity. This can have
consequences for biogeochemical cycles, changing fluxes
of CO2, and the greenhouse gases (GHG) CH4 and N2O.
The flux of these gases, especially CO2 and N2O, in soils
generally increases with increasing pH [1, 31].
Direct and indirect effects of pH are usually well de-

scribed in the soil fertility research field but are rarely
addressed in microbial ecology [8]. While pH is fre-
quently measured, the other elements and factors that
usually co-variate with it (e.g., Ca, Al, Fe, Mn) are often
ignored. Also, in most previous studies, pH co-varied
simultaneously with multiple confounding factors, such
as land use, soil management (e.g., fertilizers, lime, and
pesticides usage), plant cover, and/or edapho-climatic
conditions (e.g., soil type, clay content and type, precipi-
tation, and temperature) [3, 14, 32, 33]. For example, in
a study comparing bacterial community structure shifts
due to land-use change in south Amazonia, pH
co-varied with plant cover, liming, and other agricultural
practices, making it difficult to disentangle the most im-
portant driver [14]. On the other hand, two studies using
lime (Hoosfield acid strip at Rothamsted Research, UK)
and fertilizer (Park Grass experiment, UK) gradients
were better able to separate the effects of pH on micro-
bial communities, since confounding factors were mini-
mized [1, 4]. Furthermore, the latter study suggested
that factors that co-varied with pH should be investi-
gated in greater detail (e.g., mediation of nutrient avail-
ability). Thus, the application of lime or fertilizer
gradients in areas with identical land-use permit in-
creased control over edapho-climatic conditions, chem-
ical inputs, and plant cover to allow for improved
investigations of pH and co-varying factors on microbial
communities [1, 4].
The aim of this study was to evaluate an agricultural

pH gradient (from 4 to 6.2, a typical range for tropical
farms), quantifying changes in archaeal and bacterial
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community structure and investigating relationships
with soil parameters, according to the conceptual model
(Fig. 1). We hypothesized that in addition to the direct
effects of pH, indirect effects are also important drivers
for prokaryotic community structure.

Methods
Study area and experimental design
Soils were sampled from a pH gradient in the agricul-
tural region of the “Campos Gerais” in southern Brazil,
which is one of the biggest producers of soybean (Gly-
cine max), corn (Zea mays), and wheat (Triticum aesti-
vum) in the country [34]. This area was under the
experimental management of the ABC Research Foun-
dation, where a typical no-till farm was identified with
soil pH around 4 (coordinates 24° 40′ 34.7″ S and 50°
26′ 52.5″ W, 748 m amsl) and a liming experiment pro-
duced a gradient of pH (CaCl2) from 4 to 6.2 (the typical
pH range of farms in tropical regions). It is estimated
that 31.8 million hectares are cultivated in Brazil with
similar no-till techniques and soil pH ranges [34]. The
soil was identified as a Red Latosol (Oxisol—the most
common soil type in tropical crop regions), with clayey
texture. The climate in the region is mesothermal warm
summer (Cfb, by the K ppen–Geiger classification)
[35], with 18.7 °C annual average temperature and
1335 mm annual precipitation.
Direct and indirect effects of pH on soil prokaryotic

community structures are usually difficult to disentangle

due to co-variables and confounding factors. Here, we
surveyed a previously established liming experiment that
produced a pH gradient with quantifiable co-variables
(Ca and Mg). The experiment was composed of four
lime doses (0, 2250, 4500, and 6750 kg ha− 1 of Ca and
Mg carbonates) applied to nine replicate plots of 9 × 7 m
in blocks. Within the nine replicate plots, three different
lime brands were used, reducing bias. Thus, in the ana-
lysis, we assumed a nested design, considering the
brands as fixed effects in each dose. The experiment was
maintained following typical crop management and rota-
tion from the region, and all the plots received exactly
the same treatments (Additional file 2: Table SI2 A),
except the lime doses described above. The soil was
sampled in April 2014 (5 years after the lime applica-
tion), 3 weeks after soybean harvest, allowing the use of
the grain yield and litter quantification as proxies for
plant growth.

Sampling
First, one 32-cm-diameter ring was inserted into the soil
of each experimental plot, and the litter (dead debris
from previous crop harvests, mainly soybean harvested
in summer 2014 and oats from the previous winter sea-
son) was removed from the soil surface and placed in
paper bags for quantification. One hour later, green-
house gas (GHG) measurements were performed using
these rings as bases and 20-l static chambers for gas ac-
cumulation [36, 37]. The chambers were coated with

Fig. 1 Simplified theoretical diagram of expected interactions in the pH range between 4 and 6 with the microbial community structure (full
diagram available in Additional file 1). The direct effect of pH is expected to be the biggest driver of microbial community structure. In this study,
the pH gradient was produced by liming application, thereby producing quantifiable co-variables (Ca and Mg). The indirect effects are the
“spillover” effect of the pH in the other soil and plant variables. Indirect effect 1 is mainly related to the solubility of elements (Al, B, Fe, Mn, Cu,
Zn, P) and the cation exchange capacity (CEC), while indirect effect 2 is related to these effects on plant growth and consequently on soil organic
matter (SOM) and nutrient cycling (e.g., K and nitrate, NO3). Temperature and soil water content (WC) are considered in this diagram only for the
survey day of greenhouse fluxes (as a proxy for microbial activity)
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thermal insulation to avoid an increase of temperature
during GHG sampling and had a ventilator inside to
homogenize the air samples. Then, gas samples were
collected with 20-ml polypropylene syringes at 0, 5, 10,
and 20 min and stored in hermetic glass vessels (Labco
Exetainer® Vials) until analysis in the same week for
quantification of CO2, N2O, and CH4 [36–38]. This sys-
tem was previously tested with standard gases, and no
leaking was observed. In parallel, air temperatures inside
the chambers were measured.
Then, soil samples were collected from a 0–10-cm

depth. Five soil cores were surveyed in each plot and ho-
mogenized, and approximately 200 g was stored in asep-
tic plastic bags. All the tools used were previously
disinfected with ethanol 80%. Aliquots for DNA and ni-
trate extractions were placed in 15-ml sterile conical
tubes on ice and later stored at − 20 °C until analyzed.

Chemical analysis
Soil samples were processed according to the standard
methods for Brazilian tropical soils proposed by the IAC
[12]. First, samples were sieved to 2 mm and air dried.
The pH values were measured in H2O and in 0.01 M
CaCl2 (across the manuscript, we report pH CaCl2
values, since it is the most stable pH used in soil analysis
[8]). The exchangeable cations (K+, Ca2+, and Mg2+) and
available P-phosphate were extracted using ion exchange
resins; Al3+ was extracted with KCl 2 M, the trace ele-
ments Cu2+, Fe2+, Mn2+, and Zn2+ were extracted by
diethylenetriaminepentaacetic acid (DTPA) and trietha-
nolamine, and B was thermally extracted in water and
analyzed according to Cantarella et al. [12]. K, Ca, Mg,
Al, Cu, Fe, Mn, and Zn were analyzed by an atomic ab-
sorption spectrophotometer (Analytik Jena, con-
trAA300), and P and B were analyzed by the ammonium
molybdate method and by the azometin-H method, re-
spectively, and read spectrophotometrically (Micronal,
AJX 1600) [12]. Cation exchange capacity (CEC) was es-
timated by summing H, Al, Ca, Mg, and K. Nitrate was
extracted by adding 4-g frozen soil to 40 ml of 2 M KCl,
agitated for 1 h, and filtered [38] and analyzed spectro-
photometrically (Tecan, Infinite M200 PRO) [39].

Gas analysis
Gas samples were analyzed by gas chromatography
(Thermo Scientific, GC TRACE 1310), and the concen-
tration of CO2 and CH4 were determined by a flame
ionization detector (250 °C) and N2O by a Ni-electron
capture detector (320 °C). Injector was setting to 250 °C
and Porapak columns to 70 °C of temperature. The GC
was calibrated with standard gases (White Martins,
Praxair), and standard gases were read periodically (be-
tween every 20 samples), as quality control. The gas
molar volume (Vm) was corrected for the headspace

chamber air temperature (K) as measured at sampling
time. And the gas fluxes (f ) were calculated by each gas
considering the change in gas concentration in the
chamber during the incubation time (ΔC/Δt), the cham-
ber volume (V), the soil area covered by the chamber
(A), and the molecular weight of the gas (m), by the
equation: f =ΔC/Δt × V/A ×m/Vm [36–38].

DNA extraction, 16S rDNA amplification, and sequencing
The 15-ml frozen soil samples were ground in mortars
in liquid nitrogen to improve homogeneity and lysis effi-
ciency. Aliquots (250 mg) were then used for extraction
with the Power Lyzer Soil DNA Isolation Kit (MOBIO
laboratories, Inc.), and DNA concentration was analyzed
spectrophotometrically (Thermo Fisher Scientific, Nano-
drop). Later, the V4 region of the 16S rRNA was ampli-
fied by PCR using 1 μl of the DNA extracts (49 ± 9 ng of
DNA) and the KlenTaq Master Mix 1X (Sigma) and the
primers 515F and 806R [40]. PCR conditions were 94 °C
for 3 min and 18 cycles of 94 °C for 15 s, 50 °C for 30 s,
and 68 °C for 60 s, followed by 68 °C for 7 min. PCR
was performed in triplicate for each sample, and then,
the amplicons were merged in equal volumes, quantified
fluorometrically (Thermo Fisher Scientific, Qubit),
pooled, purified using the PureLink PCR Purification Kit
(Invitrogen), and sequenced with the v2 Reagent Kit
(500 cycles PE) in the MiSeq platform (Illumina, MiSeq),
following the manufacturer’s instructions [40]. Se-
quences were deposited in the NCBI Genbank (BioPro-
ject PRJNA413794).

Sequence analysis
Sequencing data were analyzed with the QIIME pipeline
[41]. Sequences were quality filtered and identified ac-
cording to the SILVA 123 database [42, 43]. Since the
Illumina output ranged from ~ 4000 to 100,000 reads
per sample, they were re-sampled to 31,000 reads per
sample, allowing the diversity comparisons [44]. For four
samples, sequencing yielded less than 31,000 reads, and
so, these samples were excluded from the analysis (ana-
lyses were applied for 32 samples). QIIME output was
exported for further analysis.

Statistical analysis
Statistical analyses were first performed using the R soft-
ware [45], and the package Vegan was used to calculate
the Simpson diversity index [46]. Soil data were analyzed
by ANOVA and ranked according to the Tukey post hoc
test (P < 0.05) (SI 2). The operational taxonomy units
(OTUs; previously identified by the QIIME pipeline at
phylum and genus levels) were correlated with the
chemical data (Pearson and Spearman correlation
indices). Also, unweighted UniFrac distances previously
obtained from QIIME were used for ordination using
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PCoA and further correlated with the environmental pa-
rameters using Vegan envfit function [46].

Hierarchical modeling of species communities (HMSC)
We then analyzed the data with HMSC [2], an approach
that belongs to the class of joint species distribution
models (JSDM; [47]), using R and Mathlab. We consid-
ered four groups of explanatory variables based on the
conceptual model (Fig. 1). The first group (G1 = direct
1) of variables consisted solely of pH, as this variable
was our main focus. The second group (G2 = direct 2)
consisted of the effects of Ca and Mg, the variation in
which we considered to be a direct consequence of the
lime application (co-variables). The third group (G3 = in-
direct 1) consisted of those variables that we expected to
be primarily influenced by changes in pH: Al, Fe, Mn,
Cu, Zn, P, B, and CEC. The fourth group (G4 = indirect
2) consisted of those variables that we expected to be
secondarily related to pH: soybean yield and litter (both
proxies of plant growth), soil organic matter (SOM), K,
and NO3. In order to measure the influences that are
beyond those explained by pH, we regressed the vari-
ables in groups G2, G3, and G4 against pH and used the
residuals from these models as explanatory variables.
Further, due to the experimental design (n = 32), we re-
duced the number of explanatory variables to avoid
overfitting. To do this, we run principal component ana-
lysis and included as explanatory variables only the two
first principal components of the variables in groups G3
and G4. Thus, the full model consisted of seven explana-
tory variables: pH (G1), Ca and Mg (G2), and two vari-
ables representing G3 (principal components G3_1 and
G3_2) and G4 (G4_1 and G4_2).
Due to the zero-inflated nature of the data (absences)

and the high number of OTUs involved, we constructed
two models, one for presence–absence (assuming probit
link function and Bernoulli distribution), and another
one for abundance (assuming normal distribution for
log-transformed and centered data). In the presence–ab-
sence model, we included only those 248 OTUs that
were both present and absent in at least 10 samples and
thus showed substantial variation in occurrence. In the
abundance model, we included only those 271 OTUs
that were present in all samples and thus showed vari-
ation in terms of abundance but not occurrence. To
quantify the influences of variables other than pH, we
also considered four reduced models containing subsets
of full model predictors: (i) G1 only, (ii) G1 and G2, (iii)
G1, G2, and G3, and (iv) G1, G2, and G4. We examined
the predictive powers of these models through fivefold
cross-validation (Additional file 3: Table SI3 A, B). We
thus randomly split the 32 data points into five groups
and predicted the data for each group by a model fitted
to a subset of the data from which the focal group was

excluded. We assessed the predictive performance of the
models separately for each species, by Tjur R2 [48] for the
presence–absence models and by correlation for the abun-
dance models. We averaged the species-specific values to
obtain an overall measure of model performance.
Additionally, to examine if the responses of the OTUs

to the explanatory variables are structured by phylogeny,
we included a phylogenetic correlation matrix (generated
based on the QIIME phylogenetic tree) into the HMSC
analyses. To assess possible co-occurrence patterns
among the OTUs that cannot be attributed to their
responses to the environment, we also included a
community-level random effect implemented through a
latent variable approach [2].

Random forest (RF)
The abundance of each OTU was modeled according to
the environmental predictors using the machine-learning
algorithm RF, which is independent of data distribution
[49]. RF algorithms are able to evaluate the relative
importance of predictors that are highly correlated to each
other (cf. multicollinearity), thereby improving confidence
in determining which predictors are affected more
strongly to the response variable [50, 51]. Using the
approach by Hapfelmeier and Ulm [52], statistically sig-
nificant predictors were selected with a permutation ap-
proach (P = 0.05, trees = 500, and permutations = 400). If
none of the predictors were significant, no model was pro-
duced for the response variable (OTUs). Model perfor-
mances were measured as variance explained (R2) and
validation score, and OTUs that had a validation score
lower than 0.1 were excluded from the “Results” section
(but are shown in Additional file 4).

Results
The direct and indirect effects of a pH gradient on the
soil prokaryotic community structure were evaluated. A
lime gradient produced alterations in the soil pH (ran-
ging from 4.1 to 6.2) that caused changes in soil chemis-
try and shifts on the prokaryotic community structures.
Some effects were observed at Phylum level (Table 1 and
Additional file 5), including two archaeal phyla and 17
bacterial phyla that correlated with pH (e.g., Bacteroides
p 0.65, Hydrogenedentes p 0.74, and WD272 p − 0.78; P
< 0.001). But the strongest effects were observed at
genus level, as will be described in Fig. 2 and Table 2.

Soil chemistry, plant yield, and gases
The pH gradient caused alterations to several soil chem-
ical attributes (Table 1 and Additional file 2). The direct
effect of the liming increased the pH CaCl2 (from 4.2 ± 0.3
in the control to 5.3 ± 5 in the highest lime dose) and the
concentration of the co-variables Ca (from 22.9 ± 10.9 in
the control to 81.4 ± 31.8 cmolc dm3 in the highest lime
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dose) and Mg (from 9.6 ± 8.0 to 21.3 ± 14.8 cmolc dm3).
Indirect effects of the pH were also detected, accordingly
to the correlation between pH with the different vari-
ables (P < 0.01): Al (p − 0.98), Fe (p − 0.51), Mn (p − 0.51),
Cu (r − 0.45), B (r − 0.54), CEC (r 0.52), and soybean yield

(p 0.49) (Table 1). No significant correlations were observed
for litter quantity, nitrate, and gas emissions (P < 0.05).
Perhaps, future studies using litter traps and temporal
survey of the gases could bring better correlations.
Litter quantity among all plots was 78.8 ± 31.7 g m− 2,
nitrate 6.4 ± 1.1, CO2 flux 107 ± 89 mg m2 h− 1, CH4

flux − 7 ± 19 μg m2 h− 1, and N2O flux 13 ± 60 μg m2 h− 1,
but no statistical difference was observed between the
pH ranges or lime doses (P < 0.05, Additional file 2:
Table SI2 B). However, some OTUs correlated with
gas fluxes (mostly Proteobacteria), of which 34 OTUs
correlated with CO2, 46 with CH4, and 32 with N2O
(Additional file 6).

pH effects on the community structures
Community structures were highly modulated by pH
(Fig. 2), as indicated by the PCoA ordination of the sam-
ples across the first axis of the PCoA analysis (PCoA1,
Fig. 2). The indirect effects of pH were then indicated by
the sample ordination across the second axis (PCoA2)
and both supported by the envfit algorithm coefficients
(P < 0.05) with pH CaCl2 (r

2 0.85), the co-variates Ca (r2

0.75) and Mg (r2 0.26), and the indirect effects 1: Al (r2

0.88), B (r2 0.26), Cu, (r2, 0.31), Mn (r2 0.37), and Fe (r2

0.49), and the indirect effects 2: soy yield (r2 0.31), NO3

(r2 0.15), K (r2 0.37), and CEC (r2 0.20) (variables statisti-
cally not significant were not reported). Additionally, the
Simpson diversity index positively correlated with pH (p
0.73, P < 0.01) (Table 1).
Further analysis revealed that 493 out of 1374 OTUs

(at genus level) were highly correlated with pH, but
some were correlated also with the indirect effects
(Additional file 6). Among the 15 most abundant OTUs
correlated with pH, 11 of them correlated equally or bet-
ter with the indirect effects (e.g., Ca, Al, Fe, and Cu)
(Table 2). For example, Variibacter and Bradyrhizobium
(relative abundances of 8.1 and 2.9%) had negative corre-
lations with pH, but correlated better with Fe, as sup-
ported by the RF analysis (Table 2). The same pattern
occurred for bacteria potentially beneficial to plants. Rhi-
zobium, Mesorhizobium, and Herbaspirillum (that can
promote plant growth [53, 54]) had correlation not only
with pH but also with Ca and Al, and Rhizobium was
correlated better with Fe (Table 2).

HMSC analysis
The data were further explored using HMSC. The
cross-validation exercise of the models showed that the
presence–absence model had little predictive power (R2

0.06), whereas the abundance model had better predict-
ive power (R2 0.29), so the results are shown for this
model (Fig. 3; see Additional file 3 for the presence–ab-
sence model). Variance partitioning indicated that the
pH was the most important explanatory variable (33%)

Table 1 Spearman (ρ) Correlation indexes (or Pearson when
indicated “r”), between the soil pH CaCl2, Ca and Mg with
analyzed parameters and the relative abundance of archaeal
and bacterial phyla (only significant values are shown: r or ρ
>0.4 or <-0.4 and P<0.05)

Variable pH (CaCl2) Ca Mg

Soil Chemistry

pH (H2O) 0.98a 0.94 0.72

Ca 0.95 1.00

Mg 0.72 0.65 1.00

Al -0.98 -0.94 -0.70

Fe -0.51 -0.44

Mn -0.51 -0.53 -0.41

Cu -0.45 (r) -0.51 (r)

B -0.54 (r) -0.44 -0.46

P 0.48

CEC 0.52 (r) 0.69 (r) 0.56 (r)

Soy Yield 0.49 0.45

Simpson diversity index 0.73 0.60 0.59

Archaeal Phyla

Euryarchaeota 0.41 0.44

Woesearchaeota 0.59 (r) 0.51 (r)

Bacterial Phyla

Bacteroidetes 0.69 (r) 0.54 0.48

OP3 0.52 (r) 0.46 (r) 0.52

SR1 0.45 (r)

Gemmatimonadetes 0.49 (r) 0.41

Hydrogenedentes 0.74 0.76 (r) 0.64

Latescibacteria 0.53 0.49

Lentisphaerae 0.44 0.45

Microgenomates 0.76 (r) 0.70 (r) 0.58

Nitrospirae 0.55 0.51 0.55

Omnitrophica 0.58 (r) 0.49 (r) 0.49

Parcubacteria 0.43 (r) 0.47 (r)

Planctomycetes 0.65 (r) 0.66 (r) 0.48

Proteobacteria 0.40 (r) 0.45 (r)

Verrucomicrobia -0.61 -0.61

WCHB1.60 -0.42

WD272 -0.83 (r) -0.73 -0.64

Unclassified Bacteria -0.44 -0.47
aWe reported Spearman (p) correlations since it fitted better for most of the
data and Pearson (r) in the cases it fitted better (full data is available in
Additional file 3)

Lammel et al. Microbiome  (2018) 6:106 Page 6 of 13



and the group G3 (indirect 1) was the second most im-
portant variable (18%), which is in accordance with the
cross-validation results (R2 0.28, when including both
variables). A large proportion of OTUs obtained strong
statistical support for either a positive (37 OTUs) or a
negative response to pH (23 OTUs) and also to the vari-
ables from the group G3 (indirect 1; 43 positive and 10
negative responses) and G4 (indirect 2; 13 negative and
2 positive responses) (Fig. 3). Of these, 39 OTUs
responded more strongly to indirect effects than to the
pH itself, including 17 Chloroflexi and 8 Proteobacteria
(Additional file 3: Table S3 C).
There was a strong phylogenetic influence on how the

species responded to the explanatory variables. The par-
ameter ρ, that measures the strength of the phylogenetic
signal in the HMSC model (varying from 0 to 1) [2], was
0.68 (0.54–0.83) for the presence–absence model and
0.99 (0.97–1.00) for the abundance model (95% confi-
dence interval). This effect is shown in Fig. 3, e.g., the
OTUs belonging to rectangle 1 (some Proteobacteria)
responded positively (increase in abundance) to group
G3 (indirect 1), while rectangle 2 (some Actinobacteria)
responded positively to pH. The community-level ran-
dom effect included in the model captured also residual
co-occurrence patterns among the OTUs that were not
explained by the environmental covariates (Fig. 3c). The
residual co-occurrences were unrelated to phylogeny, as
the association network ordered by phylogeny lacks a
clear structure (Fig. 3d).

RF analysis
Lastly, the OTUs were modeled using RF. From the
1374 OTUs, 810 were successfully modeled based on the
best model selection (P = 0.05), resulting in overall mean
variance explained of 0.32 and mean validation score of
0.12 (Additional file 4). After screening the models to
validation score higher than 0.1, 338 OTUs were se-
lected, resulting in overall mean variance explained of
0.45 and mean validation score of 0.23 (Fig. 4). The top
five individual predictors were, in order of importance,
the following: pH with 13.5%, Al 8.1%, Ca 6.8%, Fe 4.5%,
and Cu 2.1%. We also built RF models for the

greenhouses fluxes, CO2, N2O, and CH4, but neither pH
nor individual OTUs or Simpson diversity indices were
significant predictors.

Discussion
It is well known that pH influences the growth and di-
versity of prokaryotes [1, 4–6, 20]. However, many other
factors in soil are also influenced by pH that may also
indirectly affect microbial communities, and this issue is
still unclear and not explicitly investigated [1, 4]. Thus,
the investigation of these aspects is highly relevant for
microbial ecology and provides insight into the mecha-
nisms driving prokaryotic community structures in soils.
Our results indicated a clear effect of pH on the micro-
bial communities (Table 1 and Fig. 2), as previously re-
ported [1, 3–6, 20] but, furthermore, indicated that
indirect effects and co-variables also played a significant
role in the microbial community assembly (Figs. 3 and
4). Interestingly, we also detected an influence on the
phylogenetic structure of the community, related to both
the direct and indirect effects of pH, suggesting a certain
level of phylogenetic niche conservatism (Fig. 3).
Our data indicate that diversity increases with pH

changing from 4 to 6 (Spearman correlation, p 0.73,
Table 1), which is in agreement with several studies that
showed maximum values of prokaryotic diversity in the
pH range 6–7 [1, 3, 6, 20]. In this pH range, the highest
overall availability of soil nutrients is expected, while
metal (i.e., Al, Fe, Mn) concentrations are typically
non-toxic [8, 18]. However, up to now, only a few
studies have suggested this link between the indirect
effects of pH on soil elements with microbial community
structures [4, 14].
Moreover, our data point to a strong influence of pH

on the community structure indirectly throughout
effects on elemental availability (Al, Fe, Cu, Mn, Zn, P,
and B; Figs. 2, 3, and 4). Previous studies in tropical soils
that investigated shifts in bacterial community structures
due to land-use change also detected similar correlations
[15, 32]. In these studies, changes in the microbial
community structures were directly correlated with pH,
as well to elemental availability (e.g., Ca, Mg, P, Al, Fe,
Cu, B, and Zn). However, during land-use change,

Fig. 2 Principal coordinate analysis (PCoA) based on unweighted UniFrac distance depicting the prokaryotic diversity according to a each sampling
point (represented in the plot by its pH CaCl2 values) and b the biplot of the significant environmental parameters (P < 0.1)
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simultaneously, changes occur, such as plant cover and
applications of lime and fertilizers, masking indirect rela-
tionship between pH and the co-variates [14]. Another
study in New Zealand evaluated multiple factors in soils,
and their results also indicated that some pH effects on
bacterial community structures were parallel to the P,
Al, Cu, and Mg effects [17]. In our study, with

confounding factors minimized, we could clearly observe
the same trends, where some taxa (e.g., Acidobacteria
and Proteobacteria) also shifted simultaneously (e.g., in
response to pH and Al). Additionally, in the Park Grass
experiment in UK, a pH gradient that had confounding
factors minimized, community structures were linked to
pH, P, C, and N, and the authors suggested that the

a b

c d

Fig. 3 Panels highlighting the main HMSC results based on the abundance model (details in Additional file 3). a HSMC-based estimates of species
responses to the environmental covariates. The OTUs were ordered by their phylogeny (high-resolution tree in Additional file 7), as illustrated by the
plots. Positive and negative responses, based on posterior mean, are shown in red and blue, respectively. The darker red and blue colors corresponding to
cases with strong statistical support (posterior probability at least 95%), and the percentages of such OTUs are given on the bottom of the panel. The areas
highlighted by the green rectangles are discussed in the text (1, Deltaproteobacteria and 2, Actinobacteria). b Variance partitioning of the species responses
to the environmental covariates. Panels c and d show the HMSC-based estimates of species residual (after accounting for influences of covariates)
associations. In panel c, the species have been ordered in a way that best show clusters of associated OTUs, whereas in panel d, they
have been ordered by the phylogeny (as illustrated in the plots). Red (respectively, blue) entries show OTU pairs for which the residual
association is positive (respectively, negative) with at least 95% posterior probability

a b

Fig. 4 Summary of the RF models for each OTU that had a validation score higher than 0.1; the overall averages of variance explained R2 and
validation score were 0.45 and 0.23, respectively (full data is available in Additional file 4). a Variance explained (%) by each category of the
predictors in our conceptual model for each OTU. b Variable importance of each predictor that was averaged across all the models (the numbers
are the mean values in %); the box plot (B1) summarizes the distributions of all the predictors according to the conceptual model categorization
across the OTUs (Fig. 1)
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effect of pH on nutrient availability was the most prob-
able mechanism, in line with our results [4].
In a further analysis of the variables that impacted spe-

cific groups in a stronger way than directly pH in our
dataset, the HMSC models indicated 39 OTUs, of which
17 were Chloroflexi and 8 Proteobacteria (SI 3-C). RF in-
dicated that these OTUs were mostly related to Al, Fe,
Zn, and Cu (Additional file 4). This is in agreement with
previous studies that report some Proteobacteria and
Chloroflexi tolerant to heavy metals and that soil com-
munities respond to metal gradients (such Fe, Zn, and
Cu) in soil [13, 16, 17]. Interestingly, the phylogenetic
closely related OTUs Varibacter, Bradyrhizobium, and
Rhizobium were highly correlated with Fe (Table 2), and
a recent review highlighted the diverse and complex
mechanisms that rhizobia uses for Fe homeostatic
control, including tolerance to high levels [55]. We also
detected indirect effects of pH on plant growth and litter
nutrient cycling (e.g., K and NO3) that influenced micro-
bial community structure (Fig. 1, indirect 2) [27]. A total
of 35 OTUs (including 11 Actinobacteria and 14 Proteo-
bacteria; Figs. 3 and 4) were found to change under
these influences. Among these OTUs, one example is
Azospirillum, a well-known genus that contain represen-
tatives of plant growth-promoting bacteria associated to
rhizosphere [53, 54].
Additionally, we found that the microbial community

structures influenced by the direct and indirect effects of
pH were also influenced by phylogenetic patterns. It
could be that closely related organisms, due to similarity
on basic structural and physiological processes, are more
likely to react similarly to the direct and indirect effects
of pH [56, 57], as shown to some Actinobacteria and
Proteobacteria, respectively (Fig. 3). After accounting for
the direct and indirect effects, the communities were
better assembled by association with other OTUs
(co-occurrence) than with phylogeny (Fig. 3c, d), indicat-
ing that the detected phylogenetical patterns occurred
only for the pH-related factors. This result is in line with
a recent study that found that communities in more
acidic soils are driven by deterministic process and
linked to phylogenetic relationships, while soils close to
neutral pH are more influenced by stochastic processes
not related to phylogeny [6].
Although this phylogenetical pattern was observed for

some groups of OTUs in our data, it is still hypothesized
that a high degree of variation to pH exists even at spe-
cies/strain levels [1] and not well resolved by 16S rRNA
gene sequence-based analysis. For example, it is known
that during isolation and screening of symbiotic Bradyr-
hizobium isolates, a wide variation of genotypes growing
in different pH ranges can be found, with a generally ex-
pected predominance in neutral pH ranges [23, 24]. In
our study, Bradyrhizobium (including environmental

genotypes) had higher relative occurrence in low pH, as
also reported in a European soil [4]. This is also in ac-
cordance with the result that different groups of OTUs
identified within Actinobacteria may benefit from higher
(Fig. 3) or lower pH (Table 2). These examples illustrate
that not always taxonomic groups (e.g., phylum/genus) un-
equivocally correlate to specific pH ranges. Even though cor-
relations are sometimes observed, usually, they are highly
variable when comparing different study sites [1, 4]. For ex-
ample, usually, Acidobacteria is suggested as negatively cor-
related with pH, but in our study, as well as others in
Europe and the Amazon, variations were observed [1, 32].
Also, our data strongly support that OTUs should be

better investigated regardless not only to the direct
effects of pH but also to the indirect effects of pH which
are the main drivers for their occurrence. In recent
years, there has been a large increase in the number of
studies correlating prokaryotic community structures to
pH, so we suggest that it is timely a call to more studies
focusing to disentangle these direct and indirect effects
[1, 4]. This kind of information could be obtained from
an increased global database about microbial com-
munities considering the co-variables (more articles
published), followed by meta-analysis and factorial ex-
periments simultaneously testing pH and specific
elements.
It could have important applications for agronomic and

land reclamation systems. For example, there is a current
research focus in identifying which bacterial species are re-
lated to plant yield, disease suppression, and environmental
services [53, 54]. One possibility could be the stimulation
of these bacteria using the knowledge about indirect effects
of pH. Even though prokaryotic community structures and
specific OTUs are affected by changes in the pH, the
knowledge of specific indirect effects may allow a mineral
supplementation to stimulate (or suppress) the growth of
particular OTUs (e.g., Fe could be applied to stimulate
Bradyrhizobium after a lime event).
Lastly, based on our conceptual model, we hypothe-

sized that the pH effects on soil chemistry and in the
microbial community structures could also affect micro-
bial activity, such as gas fluxes [1, 31, 38]. We did not
detect significant effects of the pH gradient on these
fluxes at the sampling time but detected correlation with
some microbial groups. It is likely, rather than investi-
gating the relative abundance of specific OTUs, the
quantification of marker genes related directly to the
processes (e.g., nosZ, mcrA, and pmoA) simultaneously
coupled to a temporal survey of the gases could be a bet-
ter proxy to it, as demonstrated previously [31, 38].

Conclusions
pH changes in soil co-occur with interactions among soil
elements (e.g., precipitation of ions), hiding many
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indirect effects of pH on soil microbial communities.
Thus, in this work, we investigated an important ques-
tion that is rarely addressed in microbial ecology: is pH
directly the main driver for most of the prokaryotic
OTU occurrences or is it also a good indicator of the
other co-variables that are in fact the relevant drivers for
some microbial groups? Our data indicated that pH acts
by means of two different mechanisms to drive prokary-
otic community structures: (i) first, pH changes are dir-
ectly associated with changes in some microbial groups,
and (ii) the second is related to the “spillover effects” of
pH, indirectly affecting microbial community structures
through changes in some soil element availability. More-
over, indirect effects are highly relevant for some OTUs,
and consequently for the community structure, deserv-
ing more attention in microbial ecology. Future studies
in controlled conditions (e.g., factorial studies of pH and
specific elements) should address this question in detail.
Thereby, a better understanding of the ecology of several
microbial groups can be more accurately accessed.

Additional files

Additional file 1: Theoretical full diagram and rationally. Figure S1A.
Overall theoretical diagram of expected interactions in the pH range
between 4 and 6 with the microbial community structure. Boxes
represent soil variables and the arrows the interactions (soluble Al+ 3 is
toxic for plant roots and some bacteria; Fe, Mn, Cu, Zn, and B are
nutrients that in high concentrations may be toxic; and P, K, Ca, Mg, and
NO3 are nutrients rarely toxic to plants). In this study, the gradient was
produced by liming application, with expected direct effect on pH, and
Ca and Mg values. The indirect effects are the “spillover” effect of the pH
in the other soil and plant variables. Indirect effect 1 is mainly related to
the solubility of elements, while indirect effect 2 is related to these
effects on plant growth and nutrient cycling. SOM is the abbreviated
form for soil organic matter, CEC for cation exchange capacity, and WC
for water content. Temperature and WC are considered in this diagram
only for the survey day of greenhouse fluxes (proxy for microbial activity).
Figure S1B. Effect of pH in the relative availability of important ions
related to soil fertility (Fe, Cu, Mn, Zn, Al, Mo, Cl, P, N, S, B). (PDF 526 kb)

Additional file 2: Land-use description and soil parameters. Table SI2A.
Land-use history of the crop fields (all the experimental plots were
managed identically, the only difference between the treatments was the
lime doses that created the pH gradient). Table SI2B. Soil chemical
parameters, and plant yield, and greenhouse gas fluxes according to
different soil pH (CaCl2) ranges. Table SI2C. Soil chemical parameters, plant
yield, and greenhouse gas fluxes according to the lime doses. (PDF 775 kb)

Additional file 3: Hierarchical modeling of species communities (HMSC).
Table SI3A. Predictive performance of different HMSC models based on
fivefold cross-validation. All models include community-level random effect
at the sample level. Predictive performance is measured by Tjur (2009) R2 for
the presence–absence model and correlation for the abundance model.
The values presented are averages over the OTUs. Table SI3B. Variance
partitioning of the full HMSC models. The values show average (over the
OTUs) proportion of variance attributed to each of the predictors. Figure
SI3A. HMSC-based estimates of species responses to the environmental
covariates. Panel A shows the results for the presence–absence model and
panel B for the abundance model. In both cases, the OTUs have been
ordered by their phylogeny, as illustrated by the plots. Positive and negative
responses are shown by red and blue entries, respectively, and based on
posterior mean. The darker red and blue colors corresponding to cases with
strong statistical support (posterior probability at least 95%), and the

percentages of such OTUs are given on the bottom of the panel.
Figure SI3B. HMSC-based estimates of species residual (after
accounting for influences of covariates) associations. Panels A and C
show the results for the presence–absence model and panels B and
D for the abundance model. In panels A and B, the species have been
ordered in a way that best shows clusters of associated OTUs, whereas in
panels C and D, they have been ordered by the phylogeny (as illustrated in
the plots). Positive and negative OTU pairs for which the residual association
is positive, with at least 95% posterior probability, are shown by red and
blue entries, respectively. Table SI3C. Responses of the OTUs (− 1, negative;
1, positive; and only significant effects are shown P < 0.05) according to the
abundance model to pH, Ca, Mg, indirect effects 1 (PCA1a and PCA1b), and
indirect effects 2 (PCA2a and PCA2b). (PDF 1310 kb)

Additional file 4: Table S6 Random Forests (RF) models for each OTU
(no significant values are reported as "0"). (XLSX 622 kb)

Additional file 5: Bacteria and Archaea Phyla correlations. Table S4 A1
Bacteria Relative Frequency (overall abundance >0.5%). Table S4 A2
Bacteria Relative Frequency (overall abundance <0.5%). Table S4 B1
Archaea Relative Frequency (related to Bacteria %). Table S4 B2 Archaea
Relative Frequency (Only Archaea). Table S4 C Pearson (r) and Spearman
(p) correlation indexes between soil parameters and the relative
abundance of archaeal and bacterial phyla (only significant values are
shown: r or ? >0.4 or <-0.4 and P<0.05). (XLS 55 kb)

Additional file 6: OTUs at Genus level (frequency and correlations).
Table S5 A Spearman (p) and Pearson (r) correlation indexes between the
soil chemical parameters and the relative abundance of archaeal and
bacterial OTUs (only significant values are shown: r or p >0.4 or <-0.4 and
P<0.05) (XLSX 217 kb)

Additional file 7: Phylogenetic tree correspondent to the Figure 3 - HMSC
models. (PDF 17 kb)

Acknowledgements
The authors acknowledged Professors Jefferson Dieckow and Antonio Motta
(DSEA-UFPR) and for the ABC Foundation (foundation maintained by a
cooperative of farmers) for the important support, Eduardo Balsanelli and
Valter Baura for sequencing support, Euan James and India Mansour for
the comments on the manuscript, and the reviewers for the important
suggestions that significantly improved the manuscript.

Funding
This study was funded by the Conselho Nacional de Desenvolvimento
Científico e Tecnológico (CNPq) and Fundação ABC. OO was supported
by the Academy of Finland (1273253/284601/273253) and the Research
Council of Norway (223257). DRL is thankful to CNPq and CAPES-Alexander von
Humboldt foundations for the Postdoctoral Scholarships.

Availability of data and materials
The dataset supporting the results of this article is available in the NCBI
BioProject repository, under study accession #PRJNA413794.

Authors’ contributions
DRL, GB, EMS, and LMC designed the study. DRL and GB coordinated the sample
collection. GB managed the field experiment and analyzed the soil chemistry. JAZ
analyzed the gas samples and helped with the data interpretation. DRL, LMC,
EMS, and FOP contributed to the DNA sequencing and interpretation. DRL, OO,
and MR performed the statistical analysis and data interpretation. DRL drafted the
manuscript, and all authors read, collaborated, and approved the final manuscript.

Ethics approval and consent to participate
Not applicable

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Lammel et al. Microbiome  (2018) 6:106 Page 11 of 13

https://doi.org/10.1186/s40168-018-0482-8
https://doi.org/10.1186/s40168-018-0482-8
https://doi.org/10.1186/s40168-018-0482-8
https://doi.org/10.1186/s40168-018-0482-8
https://doi.org/10.1186/s40168-018-0482-8
https://doi.org/10.1186/s40168-018-0482-8
https://doi.org/10.1186/s40168-018-0482-8


Author details
1Department of Biochemistry and Molecular Biology, Universidade Federal
do Paraná (UFPR), Curitiba, Brazil. 2Department of Soils and Agricultural
Engineer, UFPR, Curitiba, Brazil. 3Freie Universität Berlin and
Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin,
Germany. 4ABC Research Foundation, Castro, Brazil. 5Department of
Biosciences, University of Helsinki, PO Box 65, 00014 Helsinki, Finland.
6Department of Biology, Centre for Biodiversity Dynamics, Norwegian
University of Science and Technology, 7491 Trondheim, Norway. 7EMBRAPA
Forests, Colombo, Brazil.

Received: 14 December 2017 Accepted: 14 May 2018

References
1. Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R,

Fierer N. Soil bacterial and fungal communities across a pH gradient in an
arable soil. Isme J. 2010;4:1340–51.

2. Ovaskainen O, Tikhonov G, Norberg A, Blanchet FG, Duan L, Dunson D,
Roslin T, Abrego N. How to make more out of community data? A
conceptual framework and its implementation as models and software. Ecol
Lett. 2017;20:561–76.

3. Lauber CL, Hamady M, Knight R, Fierer N. Pyrosequencing-based assessment
of soil pH as a predictor of soil bacterial community structure at the
continental scale. Appl Environ Microb. 2009;75:5111–20.

4. Zhalnina K, Dias R, de Quadros PD, Davis-Richardson A, Camargo FAO, Clark
IM, McGrath SP, Hirsch PR, Triplett EW. Soil pH determines microbial
diversity and composition in the park grass experiment. Microb Ecol. 2015;
69:395–406.

5. Tripathi BM, Kim M, Tateno R, Kim W, Wang JJ, Lai-Hoe A, Ab Shukor NA,
Rahim RA, Go R, Adams JM. Soil pH and biome are both key determinants
of soil archaeal community structure. Soil Biol Biochem. 2015;88:1–8.

6. Tripathi BM, Stegen JC, Kim M, Dong K, Adams JM, Lee YK. Soil pH mediates
the balance between stochastic and deterministic assembly of bacteria.
Isme J. 2018;12:1072–83.

7. Young E, Carey M, Meharg AA, Meharg C. Microbiome and ecotypic
adaption of Holcus lanatus (L.) to extremes of its soil pH range, investigated
through transcriptome sequencing. Microbiome. 2018;6(1):48. https://doi.
org/10.1186/s40168-018-0434-3.

8. Brady NC WRR, Weil RR. The nature and properties of soils. Fifteenth ed.
Columbus: Pearson; 2016.

9. Madigan MT, Bender KS, Buckley DH, Sattley WM, Stahl DA. Brock biology of
microorganisms, fifteenth edition. Edn. Ny, Ny: Pearson; 2018.

10. Rodrighero MB, Barth G, Caires EF. Surface application of lime with different
magnesium contents and particle sizes under a no-till system. Rev Bras
Cienc Solo. 2015;39:1723–36.

11. Ferguson BJ, Lin MH, Gresshoff PM. Regulation of legume nodulation by
acidic growth conditions. Plant Signal Behav. 2013;8:e23426.

12. Cantarella H, van Raij B, Quaggio JA. Soil and plant analyses for lime and
fertilizer recommendations in Brazil. Commun Soil Sci Plan. 1998;29:1691–706.

13. Faoro H, Alves AC, Souza EM, Rigo LU, Cruz LM, Al-Janabi SM, Monteiro RA,
Baura VA, Pedrosa FO. Influence of soil characteristics on the diversity of
bacteria in the southern Brazilian Atlantic Forest. Appl Environ Microb. 2010;
76:4744–9.

14. Lammel DR, Nusslein K, Tsai SM, Cerri CC. Land use, soil and litter chemistry
drive bacterial community structures in samples of the rainforest and
Cerrado (Brazilian savannah) biomes in southern Amazonia. Eur J Soil Biol.
2015;66:32–9.

15. Mendes LW, Brossi MJD, Kuramae EE, Tsai SM. Land-use system shapes soil
bacterial communities in southeastern Amazon region. Appl Soil Ecol. 2015;
95:151–60.

16. Navarrete AA, Mellis EV, Escalas A, Lemos LN, Lavres J, Quaggio JA, Zhou JZ,
Tsai SM. Zinc concentration affects the functional groups of microbial
communities in sugarcane-cultivated soil. Agric Ecosyst Environ. 2017;236:
187–97.

17. Hermans SM, Buckley HL, Case BS, Curran-Cournane F, Taylor M, Lear G.
Bacteria as emerging indicators of soil condition. Appl Environ Microb. 2017;83

18. Gupta UCK,W, Siyuan L. Micronutrients in soil, crops, and livestock. Earth Sci
Front. 2008;15:110–25.

19. Rengel Z. Availability of Mn, Zn and Fe in the rhizosphere. J Soil Sci Plant
Nut. 2015;15:397–409.

20. Tripathi BM, Kim M, Singh D, Lee-Cruz L, Lai-Hoe A, Ainuddin AN, Go R,
Rahim RA, Husni MHA, Chun J, et al. Tropical soil bacterial communities in
Malaysia: pH dominates in the equatorial tropics too. Microb Ecol. 2012;64:
474–84.

21. Camenzind T, Hattenschwiler S, Treseder KK, Lehmann A, Rillig MC.
Nutrient limitation of soil microbial processes in tropical forests. Ecol
Monogr. 2018;88:4–21.

22. Bonilla I, Bolaños L. Mineral nutrition for legume-rhizobia symbiosis: B, ca, N,
P, S, K, Fe, Mo, co, and Ni: a review. In: Lichtfouse E, editor. Organic farming,
pest control and remediation of soil pollutants: organic farming, pest
control and remediation of soil pollutants. Dordrecht: Springer Netherlands;
2010. p. 253–74.

23. Chibeba AM, Kyei-Boahen S, Guimaraes MD, Nogueira MA, Hungria M.
Isolation, characterization and selection of indigenous Bradyrhizobium
strains with outstanding symbiotic performance to increase soybean yields
in Mozambique. Agric Ecosyst Environ. 2017;246:291–305.

24. Ozawa T, Imai Y, Sukiman HI, Karsono H, Ariani D, Saono S. Low pH and
aluminum tolerance of Bradyrhizobium strains isolated from acid soils in
Indonesia. Soil Sci Plant Nutr. 1999;45:987–92.

25. Paradelo R, Virto I, Chenu C. Net effect of liming on soil organic carbon
stocks: a review. Agric Ecosyst Environ. 2015;202:98–107.

26. Zhang GQ, Zhang P, Peng SZ, Chen YM, Cao Y. The coupling of leaf, litter,
and soil nutrients in warm temperate forests in northwestern China. Sci
Rep. 2017;7:11754.

27. Mbuthia LW, Acosta-Martinez V, DeBruyn J, Schaeffer S, Tyler D, Odoi E,
Mpheshea M, Walker F, Eash N. Long term tillage, cover crop, and
fertilization effects on microbial community structure, activity: implications
for soil quality. Soil Biol Biochem. 2015;89:24–34.

28. Liang CY, Pineros MA, Tian J, Yao ZF, Sun LL, Liu JP, Shaff J, Coluccio A,
Kochian LV, Liao H. Low pH, aluminum, and phosphorus coordinately
regulate malate exudation through GmALMT1 to improve soybean
adaptation to acid soils. Plant Physiol. 2013;161:1347–61.

29. Kochian LV, Pineros MA, Liu JP, Magalhaes JV. Plant adaptation to acid soils:
the molecular basis for crop aluminum resistance. Annu Rev Plant Biol.
2015;66:571–98.

30. Eisenhauer N, Lanoue A, Strecker T, Scheu S, Steinauer K, Thakur MP,
Mommer L. Root biomass and exudates link plant diversity with soil
bacterial and fungal biomass. Sci Rep. 2017;7:44641. https://doi.org/10.1038/
srep44641.

31. Petersen DG, Blazewicz SJ, Firestone M, Herman DJ, Turetsky M, Waldrop M.
Abundance of microbial genes associated with nitrogen cycling as indices
of biogeochemical process rates across a vegetation gradient in Alaska.
Environ Microbiol. 2012;14:993–1008.

32. Jesus ED, Marsh TL, Tiedje JM, Moreira FMD. Changes in land use alter the
structure of bacterial communities in western Amazon soils. Isme J. 2009;3:
1004–11.

33. Kaiser K, Wemheuer B, Korolkow V, Wemheuer F, Nacke H, Schoning I,
Schrumpf M, Daniel R. Driving forces of soil bacterial community structure,
diversity, and function in temperate grasslands and forests. Sci Rep. 2016;6:
33696. https://doi.org/10.1038/srep33696.

34. de Freitas PL, Landers JN. The transformation of agriculture in Brazil through
development and adoption of zero tillage conservation agriculture. Int Soil
Water Conserv Res. 2014;2:35–46.

35. Rohli RV, Joyner TA, Reynolds SJ, Shaw C, Vazquez JR. Globally extended
Koppen-Geiger climate classification and temporal shifts in terrestrial
climatic types. Phys Geogr. 2015;36:142–57.

36. Bayer C, Gomes J, Zanatta JA, Vieira FCB, Piccolo MD, Dieckow J, Six J. Soil
nitrous oxide emissions as affected by long-term tillage, cropping systems
and nitrogen fertilization in southern Brazil. Soil Till Res. 2015;146:213–22.

37. Bayer C, Gomes J, Zanatta JA, Vieira FCB, Dieckow J. Mitigating greenhouse
gas emissions from a subtropical Ultisol by using long-term no-tillage in
combination with legume cover crops. Soil Till Res. 2016;161:86–94.

38. Lammel DR, Feigl BJ, Cerri CC, Nusslein K. Specific microbial gene
abundances and soil parameters contribute to C, N, and greenhouse gas
process rates after land use change in southern Amazonian soils. Front
Microbiol. 2015;6.

39. Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric
method for simultaneous detection of nitrate and nitrite. Nitric Oxide-Biol
Ch. 2001;5:62–71.

40. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA,
Turnbaugh PJ, Fierer N, Knight R. Global patterns of 16S rRNA diversity at a

Lammel et al. Microbiome  (2018) 6:106 Page 12 of 13

https://doi.org/10.1186/s40168-018-0434-3
https://doi.org/10.1186/s40168-018-0434-3
https://doi.org/10.1038/srep44641
https://doi.org/10.1038/srep44641
https://doi.org/10.1038/srep33696


depth of millions of sequences per sample. Proc Natl Acad Sci. 2011;108:
4516–22.

41. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello
EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, et al. QIIME allows analysis of
high-throughput community sequencing data. Nat Methods. 2010;7:335–6.

42. Rideout JR, He Y, Navas-Molina JA, Walters WA, Ursell LK, Gibbons SM,
Chase J, McDonald D, Gonzalez A, Robbins-Pianka A, et al. Subsampled
open-reference clustering creates consistent, comprehensive OTU
definitions and scales to billions of sequences. PeerJ. 2014;2:e545.

43. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, Schweer T,
Peplies J, Ludwig W, Glöckner FO. The SILVA and “all-species living tree
project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014;42(Database
issue):D643–D648. https://doi.org/10.1093/nar/gkt1209 51.

44. Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, Lozupone C,
Zaneveld JR, Vazquez-Baeza Y, Birmingham A, et al. Normalization and
microbial differential abundance strategies depend upon data
characteristics. Microbiome. 2017;5:27. https://doi.org/10.1186/s40168-
017-0237-y.

45. Team Rc. R: a language and environment for statistical computing. 2015.
46. Oksanen J BF, Kindt R, Kindt R, Legendre P, McGlinn D, et al. Package

‘vegan’ documentation 2011.
47. Warton DI, Blanchet FG, O'Hara RB, Ovaskainen O, Taskinen S, Walker SC, Hui

FKC. So many variables: joint modeling in community ecology. Trends Ecol
Evol. 2015;30:766–79.

48. Tjur T. Coefficients of determination in logistic regression models-a new
proposal: the coefficient of discrimination. Am Stat. 2009;63:366–72.

49. Breiman L. Random forests. Mach Learn. 2001;45:5–32.
50. Nicodemus KK, Malley JD, Strobl C, Ziegler A. The behaviour of random

forest permutation-based variable importance measures under predictor
correlation. BMC Bioinform. 2010;11:110. https://doi.org/10.1186/1471-2105-
11-11.

51. Ryo M, Yoshimura C, Iwasaki Y. Importance of antecedent environmental
conditions in modeling species distributions. Ecography. 2018;41(5):825–836.
https://doi.org/10.1111/ecog.02925.

52. Hapfelmeier A, Ulm K. A new variable selection approach using random
forests. Comput Stat Data An. 2013;60:50–69.

53. Perez-Montano F, Alias-Villegas C, Bellogin RA, del Cerro P, Espuny MR,
Jimenez-Guerrero I, Lopez-Baena FJ, Ollero FJ, Cubo T. Plant growth promotion
in cereal and leguminous agricultural important plants: from microorganism
capacities to crop production. Microbiol Res. 2014;169:325–36.

54. de Souza R, Ambrosini A, Passaglia LMP. Plant growth-promoting bacteria
as inoculants in agricultural soils. Genet Mol Biol. 2015;38:401–19.

55. O'Brian MR. Perception and homeostatic control of iron in the rhizobia and
related bacteria. Annu Rev Microbiol. 2015;69:229–45.

56. Krulwich TA, Sachs G, Padan E. Molecular aspects of bacterial pH sensing
and homeostasis. Nat Rev Microbiol. 2011;9:330–43.

57. Perez-Valera E, Goberna M, Faust K, Raes J, Garcia C, Verdu M. Fire modifies
the phylogenetic structure of soil bacterial co-occurrence networks. Environ
Microbiol. 2017;19:317–27.

Lammel et al. Microbiome  (2018) 6:106 Page 13 of 13

https://doi.org/10.1093/nar/gkt1209 51
https://doi.org/10.1186/s40168-017-0237-y
https://doi.org/10.1186/s40168-017-0237-y
https://doi.org/10.1186/1471-2105-11-11
https://doi.org/10.1186/1471-2105-11-11
https://doi.org/10.1111/ecog.02925

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Study area and experimental design
	Sampling
	Chemical analysis
	Gas analysis
	DNA extraction, 16S rDNA amplification, and sequencing
	Sequence analysis
	Statistical analysis
	Hierarchical modeling of species communities (HMSC)
	Random forest (RF)

	Results
	Soil chemistry, plant yield, and gases
	pH effects on the community structures
	HMSC analysis
	RF analysis

	Discussion
	Conclusions
	Additional files
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Competing interests
	Publisher’s Note
	Author details
	References

