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Abstract: Regional nutrient ranges are commonly used to diagnose plant nutrient status. In contrast,
local diagnosis confronts unhealthy to healthy compositional entities in comparable surroundings.
Robust local diagnosis requires well-documented data sets processed by machine learning and
compositional methods. Our objective was to customize nutrient diagnosis of peach (Prunus persica)
trees at local scale. We collected 472 observations from commercial orchards and fertilizer trials
across eleven cultivars of Prunus persica and six rootstocks in the state of Rio Grande do Sul (RS),
Brazil. The random forest classification model returned an area under curve exceeding 0.80 and
classification accuracy of 80% about yield cutoff of 16 Mg ha−1. Centered log ratios (clr) of foliar
defective compositions have appropriate geometry to compute Euclidean distances from closest
successful compositions in “enchanting islands”. Successful specimens closest to defective specimens
as shown by Euclidean distance allow reaching trustful fruit yields using site-specific corrective
measures. Comparing tissue composition of low-yielding orchards to that of the closest successful
neighbors in two major Brazilian peach-producing regions, regional diagnosis differed from local
diagnosis, indicating that regional standards may fail to fit local conditions. Local diagnosis requires
well-documented Humboldtian data sets that can be acquired through ethical collaboration between
researchers and stakeholders.

Keywords: compositional entity; Humboldtian data sets; centered log ratio; machine learning;
random forest; nutrient limitations; local diagnosis; peach trees
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1. Introduction

In 2017, peaches and nectarines were produced on 1.5 × 106 ha worldwide [1]. Mainland China
accounted for 51.0% of total area, followed by Spain (5.5%) and Italy (4.4%). Brazil ranked 13th with
17,116 ha, and 21th in total production. The states of Rio Grande do Sul (RS), Santa Catarina and
Paraná accounted for 72% of Brazilian production [2]. Average Brazilian yield was half that of USA
and Europe, and this was attributed in part to regional nutrient guidelines based on a limited number
of fertilizer experiments that may not fit local conditions.

The performance of Brazilian peach orchards could be improved by tackling local yield-limiting
factors. Because the plant explores the soil in deeper layers than the arable layer sampled for soil
testing [3,4], tissue tests are generally more closely related to crop performance than soil tests [5]. Indeed,
the plant integrates site-specific growth-impacting genetic, managerial, and environmental factors [6].
Yield, fruit quality and tissue nutrient composition depend on cultivar, rootstock, phenological stage,
yield, pedoclimatic conditions and crop management [7,8]. To address several factors simultaneously,
Humboldtian system-based data sets integrate records at large scale and as much quantitative data as
possible instead of focusing on data collected in isolated studies [9].

Well-documented data sets relating features to crop performance can be processed by machine
learning methods of artificial intelligence [10]. On the other hand, compositional features are
intrinsically multivariate, and necessitating to address information redundancy and the closure
problem of compositions using log ratio transformation methods [11]. Acknowledging the multivariate
nature of tissue compositions, Lagatu et al. [12] drew a diagnostic yield contour map within an
interactive N × P × K ternary diagram. Holland [13] proposed using multivariate data analysis to
diagnose tissue nutrients holistically rather than separately but did not demonstrate it explicitly nor
did he address nutrient interactions. Assuming data additivity and function reflectivity, Beaufils [14]
suggested adding up standardized nutrient ratios to nutrient indices to conduct regional nutrient
diagnosis, ignoring the large range of mathematically robust multivariate statistical analysis methods
and biasing nutrient standards by non-normal data distribution patterns and false positive specimens.

Aitchison [11] and Egozcue et al. [15] developed the concepts of compositional log ratios amenable
to multivariate analyses. Log ratios are additive in the n-dimensional Euclidean space and address
compositions as unique combinations of parts or entities rather than parts taken in isolation [16]. Using
log ratio techniques, multivariate distances can be computed as Euclidean or Mahalanobis distances
between defective and successful compositional entities for diagnostic purposes [17,18].

Machine learning and compositional data analysis methods provide unprecedented tools to
conduct nutrient diagnosis of tissue compositional entities at local scale if supported by large data
sets. We hypothesized that (1) machine learning methods return accurate classification relating yield to
combinations of features that influence the performance of peach orchards, and (2) regional diagnosis
using state standards differs from local diagnosis that compares the tissue compositional entities of
defective and successful specimens. The objective of this paper was to customize nutrient diagnosis of
peach orchards using site-specific information.

2. Material and Methods

2.1. Experimental Data Set

The peach data set comprised 472 mature tree specimens representing eleven cultivars of Prunus
persica collected between 2009 and 2014 on commercial or experimental farms in Rio Grande do
Sul, southern Brazil. Three major peach producing mesoregions were represented (i.e., Nordeste
Rio-Grandense (Bento Gonçalves, Caxias do Sul, Farroupilha and Flores da Cunha), Porto Alegre
(Eldorado do Sul) and Sudeste Rio-Grandense (Pelotas)). The number of specimens varied widely
among cultivars. There were 226 “Maciel”, 108 “Chimarrita”, 54 ‘Chiripá’, 36 ‘Eragil’, 12 ‘Pialo’, and 6
each of ‘Dela Nona’, ‘BRS Fascínio’, ‘BRS Kampai’, ‘PS10711’, ‘PS25399’ and ‘Barbosa’. Rootstocks were
“Aldrighi”, ‘Capdeboscq’, ‘Flordaguard’, “Nemaguard”, ‘Okinawa’ or “Japanese apricot” (P. mume).
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The tree training method was open vase. Plantation density ranged between 770 and 1358
trees ha−1. Orchards were managed following national standards for integrated peach orchard
management [19,20]. One of the most sensitive features controlling peach yield is winter chill hour
requirement for bud break [21], measured in Brazil as the number of hours where temperature is
lower than 7.2 ◦C during the winter period. Meteorological data were obtained from regional weather
stations ([22] in Bento Gonçalves, Farroupilha, Flores da Cunha, Caxias do Sul, [23] in Pelotas and [24]
in Eldorado do Sul). Orchards were not irrigated. Soils were Typic Hapludalf and Udorthent [25]. Soil
between rows was covered by vegetation year-round.

Fertilization followed the Brazilian guidelines for mature (≥4 years old) peach orchards [26] based
on tissue tests (0–110 kg N ha−1, 0–52 kg P ha−1 and 0–83 kg K ha−1). Hence, the effects of fertilizer
dosage and tissue tests were confounded. By comparison, nitrogen was applied at three occasions (i.e.,
50% at bud break, 25% at fruit thinning, and 25% after harvest (except in years of low production or
excessive vigor)). In comparison, phosphorus was applied once together with the first application of
nitrogen. Potassium was applied once except on coarse-textured soils where K was split-applied. The
crop was harvested yearly from November to February. Yield was measured in three central trees in
experimental areas.

2.2. Soil and Tissue Analyses

Soil nutrients were extracted for K, P, Cu, Zn and Mn using the Mehlich1 method [27]. The
Ca, Mg and Na were extracted using KCl 1 M. The Fe was extracted using DTPA. Exchangeable
acidity was measured using the Shoemaker–McLean–Pratt (SMP) method. Organic matter content was
determined by oxidization in a sulfo-chromic solution. Soil pH was measured in water. Clay content
was determined by sedimentation.

Diagnostic leaves were collected in June from the middle tier of annual growth, dried in at ±65 ◦C,
ground to pass through a 1 mm sieve. A subsample was digested using sulfuric acid and quantified
for N by micro-Kjeldahl [27]. Another subsample was digested in a mixture of nitric and perchloric
acids and quantified by ICP-OES for S, P, K, Ca, Mg, Zn, Cu, Mn, Fe and B concentrations. Fruit quality
was measured as fruit weight, dimension (average length and width), firmness, Brix index and acidity
using 30 fruits per experimental unit [28].

2.3. Isometric Log-Ratio Transformation

Isometric log ratios (ilr) are orthogonal arrangements of D components into D-1 balances, the
exact number of degrees of freedom available in D-part compositional entity [29]. Isometric log ratios
were computed as follows [30]:

ilri =

√
rs

r + s
ln

(GN

GD

)
(1)

where r and s are the numbers of components at numerator and denominator, respectively, and GN and
GD are the geometric means of components at numerator and denominator, respectively. Components
were arranged as meaningful balances in a sequential binary partition or SBP (Table 1). We first
contrasted nutrients against the filling value computed by difference between measurement unit and
the sum of quantified components. While N, K, Mg, P, S, Cl and Na are phloem-mobile, the Fe, Zn, Cu,
B and Mo have intermediate mobility and the Ca and Mn are relatively immobile [31]. Concentrations
of Cu, Zn and Mn may vary widely due to fungicide applications [32]. Orthonormal balances allowed
computing Mahalanobis distance as follows:

M =

√√√ D∑
i=1

(
ilri − ilr∗i

)T
COV−1

(
ilri − ilr∗i

)
(2)
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where ilri and ilr∗i are orthonormal balances for the specimen under diagnosis and reference balances,
respectively, COV is the covariance matrix, and T indicates that the ilr vector is transposed. TheM2 is
distributed like a χ2 variable.

Table 1. Sequential binary partition of components of the dry tissue mass.

Ilr N P K Mg Ca Cu Zn Mn Fe Fv r s

1 1 −1 0 0 0 0 0 0 0 0 1 1
2 0 0 1 −1 0 0 0 0 0 0 1 1
3 1 1 −1 −1 0 0 0 0 0 0 2 2
4 1 1 1 1 −1 −1 −1 −1 −1 0 4 5
5 0 0 0 0 1 −1 −1 −1 −1 0 1 4
6 0 0 0 0 0 1 −1 0 0 0 1 1
7 0 0 0 0 0 0 0 1 −1 0 1 1
8 0 0 0 0 0 1 1 −1 −1 0 2 2
9 1 1 1 1 1 1 1 1 1 −1 9 1

2.4. Centered Log-Ratio Transformation

The centered log ratio (clr) integrates all pairwise log ratios in a composition [11], as follows for N:

clrN = ln
(N

G

)
= ln

 11

√
N
N
×

N
P
×

N
K
×

N
Mg
×

N
Ca
×

N
B
×

N
Cu
×

N
Zn
×

N
Mn
×

N
Fe
×

N
Fv

 (3)

where G is geometric mean across components including Fv, and Fv is the filling value computed by
difference between measurement unit and the sum of quantified nutrients. The clr transformation has
Euclidean geometry. The Euclidean distance ε between two D-part compositions of equal length is
computed at local scale as follows:

ε =

√√√ D∑
i=1

(
clri − clr∗i

)2
=

√√√ D∑
i=1

(
clri − clr∗i

)T
I−1

(
clri − clr∗i

)
(4)

where clri is the clr transformation of the diagnosed composition, I is the identity matrix and clr∗i is
the clr transformation for reference local compositions. Nutrients are classified in the order of their
limitation to yield along the clri − clr∗i gradient and illustrated in histograms.

Nutrient diagnosis can be conducted as Mahalanobis distance at regional scale as follows, assuming
independence among clr variables [33]:

M =

√√√ D∑
i=1

(
clri − clr∗i

)T
VAR−1

(
clri − clr∗i

)
(5)

where clri and clr∗i refer to diagnosis and reference compositions and VAR is variance matrix excluding
the clr value for the filling value to avoid generating a singular matrix. Hence, the reference compositions
(Equation (4)) and weighted (Equation (5)) clr differences as well as assumptions differed between
local and regional diagnoses.

Machine learning (ML) analysis was run using freeware Orange 3.24. Fruit yield categories were
separated at cut off yield of 16 Mg ha−1, the world average in 2017, yet above the 14.5 Mg ha−1 average
in Brazil [1]. Exploratory analysis was conducted using the classification tree algorithm and the tree
viewer. The survey data set was split into training (70%) and testing (30%) sets to test precision and
across the data set by cross-validation to select a subset of balanced specimens. Precision metrics were
accuracy (proportion of instances predicted as true negative or true positive) and area under curve
(AUC) [17]. We expected AUC of 70–90% [34]. In exploratory analysis, random forest (RF), support
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vector machine, neural networks, adaboost, and stochastic gradient decent models returned similar
accuracies in cross-validation (data not shown). However, we selected RF to deal with over-fitting of
partition trees, but RF may be affected by data transformation [35]. The significance of the partition
in the confusion matrix for the testing data set was assessed as a χ2 homogeneity test with Yates’
correction. Classification prediction and risk analysis for independent specimens were provided by the
prediction module of Orange 3.24 using the same features as in the training set. Descriptive statistics
were computed using Excel Microsoft 365.

3. Results

3.1. Features

The meteorological indices and soil and tissue tests used to run machine learning models are
presented in Tables 2–4. There were large ranges of properties, allowing to model fruit yields across a
large range of features. Soil pH varied from 5.0 to 5.9 with a median value of 5.3. High soil P, Cu and
Zn contents are due in part to the application of organic residues of diverse origins. Foliar nutrient
composition is presented by cultivar in Table 4. Exploratory analysis using the classification tree
algorithm indicated that the number of chilling hours, the cultivar and tissue K were driving variables
at high yield level (data not shown), indicating genetic–environment–management interactions at
local scale.

Table 2. Synthetic meteorological variables and fruit yield in the peach orchard data set of Rio Grande
do Sul, Brazil (2009–2014).

Unit Minimum Median Maximum

Bento Gonçalves

Mean annual air
temperature

◦C 12.95 17.15 22.30

Mean annual
precipitations mm 1401 1810 2043

Average number of
chilling hours < 7.2 ◦C

◦C 263 360 435

Fruit yield Mg ha−1 0.2 7.1 30.4

Pelotas

Mean annual air
temperature

◦C 14.40 17.90 23.68

Mean annual
precipitations mm 1096 1398 1833

Average number of
chilling hours < 7.2 ◦C

◦C 173 350 440

Fruit yield Mg ha−1 0.5 14.1 38.8

Eldorado do Sul

Mean annual air
temperature

◦C 12.77 18.28 24.75

Mean annual
precipitations mm 1333 1530 2011

Average number of
chilling hours < 7.2 ◦C†

◦C 282 376 469

Fruit yield Mg ha−1 0.4 5.0 10.1
† Number of chilling hours available in 2009 and 2010 only.
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Table 3. Soil analyses reported in peach orchards of experimental sites, Rio Grande do Sul, Brazil.

Minimum Median Maximum

%

Clay 14 17 25
Organic matter 1.0 1.8 3.9
Base saturation 36 48 78

cmolc dm−3

Cation exchange capacity 4 11 16
Sum of bases 23 73 92

mg dm−3

K 44 128 330
Ca 160 1400 2000
Mg 48 108 648
Na 3 10 33
P 2 27 84

Cu 4.5 6.3 30.1
Zn 1.8 5.7 16.7
Mn 14 17 48
Fe 1000 2000 5000

3.2. Model Precision

The AUC of the RF model varied between 0.834 and 0.844 in test and 0.894–0.901 in cross-validation,
in the range of 0.7–0.9 considered acceptable by Delacour et al. [34] for diagnostic purposes (Table 5).
Classification accuracy was close to 80% as reached by most fruit crops [36]. There was no apparent
advantage using log-ratio transformations before processing compositional data with RF. At the step
of model building, raw compositions were; thus, preferable because they did not require full-length
compositions needed to log-ratio transform the data, hence avoiding to impute data, replace values
lower than detection limits or remove observations.

The confusion matrix showed 142 true negative (high-yield, well-balanced) specimens producing
more than 16 Mg ha−1, providing a diversity of factor combinations leading to high performance of
peach orchards. There were 254 true positive (low-yield, imbalanced), 39 false negative (low-yield,
well-balanced indicating yield-limiting factors other than nutrients) and 37 false positive (high-yield,
imbalanced due to luxury consumption or contamination) specimens. The partition was significant at
p = 0.01 according to the χ2 homogeneity test with Yates’ correction.

Boxplots of foliar macro- and micro-nutrient concentrations and of centered log ratios of true
negative specimens are presented in Figures 1 and 2. There were some outliers among P and Ca
expressions. The number of outliers was larger among micronutrient expressions likely due to variable
soil composition, site-specific applications of organic amendments, and different timings between
tissue sampling and fungicide applications (Zn and Mn in carbamate formulations, copper sulfate).
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Table 4. Tissue nutrient concentrations of eleven peach cultivars in the peach orchard data set of Rio Grande do Sul. Brazil.

Minimum Median Maximum Minimum Median Maximum Minimum Median Maximum Minimum Median Maximum

g kg−1 g kg−1 g kg−1 g kg−1

Maciel Chimarrita Chiripá Eragil

N 10.60 29.25 39.04 19.26 27.55 41.32 14.36 21.80 29.24 18.04 22.02 27.40
P 1.20 2.26 3.40 1.36 2.16 2.57 1.92 2.58 3.99 1.99 2.62 3.16
K 1.94 22.5 37.18 14.58 22.5 38.45 12.92 19.45 29.25 13.14 25.80 34.97
Ca 9.43 17.25 32.88 8.07 16.95 31.10 11.42 26.65 43.90 9.70 25.11 33.60
Mg 2.00 4.86 8.20 2.00 3.92 7.45 3.57 5.72 9.16 2.61 5.26 6.85
Cu 0.001 0.005 0.011 0.001 0.005 0.020 0.007 0.010 0.061 0.008 0.011 0.032
Zn 0.003 0.017 0.036 0.013 0.025 0.050 0.025 0.047 0.148 0.030 0.078 0.352
Mn 0.023 0.081 0.262 0.050 0.100 0.200 0.012 0.176 0.535 0.060 0.195 0.482
Fe 0.043 0.097 0.190 0.023 0.144 0.570 0.045 0.074 0.139 0.049 0.077 0.112

Pialo Delanona Fascínio Kampai

N 21.54 24.73 26.96 20.66 22.59 24.43 20.31 21.63 22.33 18.04 19.83 21.89
P 2.25 2.42 2.73 2.04 2.18 2.53 2.16 2.33 2.59 2.64 2.75 3.11
K 11.48 14.91 21.69 13.28 14.24 16.03 16.11 17.62 19.06 13.78 15.89 17.76
Ca 11.18 15.64 19.09 21.04 24.13 27.32 12.67 16.85 18.08 13.43 24.12 27.97
Mg 3.48 4.33 5.27 5.08 5.42 6.43 3.77 4.43 4.63 3.96 5.22 5.62
Cu 0.008 0.009 0.011 0.069 0.080 0.103 0.012 0.014 0.018 0.010 0.010 0.011
Zn 0.032 0.038 0.048 0.145 0.192 0.215 0.018 0.020 0.026 0.045 0.054 0.066
Mn 0.179 0.244 0.272 0.428 0.538 0.627 0.095 0.102 0.136 0.127 0.154 0.171
Fe 0.058 0.073 0.082 0.064 0.075 0.094 0.101 0.113 0.134 0.058 0.063 0.083

PS10711 PS-Tardia São Barbosa General

N 23.73 25.96 27.14 20.23 21.71 22.94 21.89 23.77 24.16 10.6 26.11 41.32
P 2.29 2.80 3.08 2.03 2.10 2.24 2.13 2.17 2.22 1.20 2.30 3.99
K 13.81 14.99 16.62 18.24 20.71 21.63 12.98 18.80 20.27 19.40 21.90 38.45
Ca 13.63 18.13 20.52 32.95 35.27 40.58 26.13 31.06 40.11 8.07 18.42 43.90
Mg 4.57 6.40 7.33 5.08 5.36 6.63 5.35 6.34 7.52 2.00 4.85 9.16
Cu 0.009 0.010 0.012 0.013 0.015 0.016 0.009 0.009 0.010 0.001 0.006 0.103
Zn 0.047 0.054 0.064 0.110 0.141 0.183 0.045 0.058 0.079 0.003 0.026 0.352
Mn 0.186 0.224 0.247 0.321 0.428 0.492 0.134 0.256 0.394 0.012 0.130 0.627
Fe 0.072 0.118 0.224 0.074 0.082 0.112 0.068 0.084 0.099 0.043 0.092 0.204
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Table 5. Comparison between expressions for tissue nutrient compositions of peach trees using the
random forest model.

Expression Testing Data (30% of the Data) Cross-Validation (100% of the Data)

Area under
Curve

Classification
Accuracy

Area under
Curve

Classification
Accuracy

Raw concentration data 0.844 0.801 0.894 0.826
Centered log ratios 0.834 0.794 0.901 0.835
Isometric log ratios 0.844 0.794 0.901 0.836

Figure 1. Boxplots of foliar concentrations of (a) macronutrient and (b) micronutrient subcompositions
of true negative specimens peach orchards in Rio Grande do Sul, Brazil.
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Figure 2. Boxplots of foliar centered log ratios of (a) macronutrient and (b) micronutrient
subcompositions of true negative specimens peach orchards in Rio Grande do Sul, Brazil. Minus signs
indicate that that nutrient concentration is lower than geometric mean.

Ranges of nutrient concentrations, centered log ratios and isometric log ratios in boxplots are
presented in Table 6. Among macronutrients, the lower and upper limits of N boxplots differed
the most from Brazilian standards that could lead likely to N over-fertilization. The P ranges were
similar between standards and boxplots, while the ranges of K, Mg and Ca concentrations were wider.
Macronutrients, which showed narrower ranges of concentrations compared to micronutrients, were
diagnosed as a separate subset to facilitate comparison with Brazilian standards (Table 6). The means
and covariance matrix across 181 balanced (TN + FN) specimens are presented in Table 7.
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Table 6. Foliar nutrient levels for state standards and in 142 true negative specimens of peach orchards in Rio Grande do Sul, Brazil, compared to current standards.

Nutrient State Standards (Brunetto et al [26]) True Negative Specimens Centered Log Ratio

g kg−1 Unitless

Insufficient Normal Excessive Minimum Median Maximum Minimum Median Maximum

N <20.0 33.0–45.0 >60.0 16.5 27.4 39.0 0.344 0.965 1.422
P <0.5 1.5–3.0 >4.0 1.2 2.5 3.4 −1.804 −1.337 −1.171
K <5.0 14.0–20.0 >28.0 11.5 23.1 35.0 0.063 0.755 1.144

Mg <2.0 5.0–8.0 >12.0 2.1 4.7 8.3 −1.511 −0.804 −0.393
Ca <6.5 17.0–26.0 >36.0 11.2 19.1 35.0 0.236 0.590 1.270

mg kg−1

Cu ? 6–30 >50 2 6 18 −2.112 −1.671 −1.209
Fe <50 100–230 >330 53 83 148 −1.122 −0.346 0.430
Zn <10 24–37 >50 4 31 84 0.404 1.245 1.874
Mn <20 30–160 >400 38 139 422 −0.281 0.637 2.087
B <3 30–60 >90 - - - - - -
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Table 7. Covariance matrix and means of isometric log ratios (balances) of 181 nutritionally balanced
specimens of peach trees in Rio Grande do Sul, Brazil.

Balance P|N Mg|K K,Mg|N,P Ca|N,P,K,Mg

Mean

1.692 1.081 −0.202 −0.702

Covariance matrix

P|N 0.04991 0.04247 0.01101 0.03489
Mg|K 0.04247 0.10014 0.02391 0.04505

K,Mg|N,P 0.01101 0.02391 0.03912 0.03483
Ca|N,P,K,Mg 0.03489 0.04505 0.03483 0.06803

3.3. Regional vs. Local Diagnosis

The ilr values of state standards [26] and the Mahalanobis distance from regional standards
computed in the present study were measured using state standard median (M), first quartile (Q1),
third quartile (Q3) and six sequential combinations thereof as Q1M, MQ3, Q3M, Q1Q3 and Q3Q1
(Table 7). TheM2 values from the present TN subset were 13.36 (MM), 13.76 (Q1Q1), 13.07 (Q3Q3),
14.20 (MQ1), 12.71 (MQ3), 12.96 (Q1M), 13.76 (Q3M), 12.35 (Q1Q3) and 14.63 (Q3Q1). The Q1Q3
sequence (NQ1, PQ3, KQ1, MgQ3, CaQ1) that showed the smallest Mahalanobis distance was retained to
compare regional to local diagnosis (Table 8).

The closest successful Euclidean neighbors were detected by comparing foliar compositions
and other features of TN specimens (municipality, cultivar, rootstock, number of chilling hours and
some soil analyses where available in the data set) to those of the diagnosed specimens. For the
compared defective and successful peach orchards at Bento Gonçalves and Pelotas, soil texture and
classification, clay and organic matter contents, and number of chilling hours were similar, but yield,
cultivar, rootstock and tissue composition differed.

A defective specimen of “Chimarrita” grafted on “Aldrighi” (8.9 Mg ha−1) was grown in Bento
Gonçalves. The closest successful orchards (29.5–30.4 Mg ha−1) were “Chimarrita” and “Maciel” grafted
on “Nemaguard”. Because both successful orchards returned similar diagnosis, the “Chimarrita”
orchard was selected as the closest successful neighbor. Regional diagnosis across factors indicated
N, K and Mg shortage and P sufficiency (Table 8). The diagnosed tissue specimen was classified
as true positive with χ2

5 value (squared Mahalanobis distance) of 17.47 across ilr variables and a
highly significant probability to respond to a more appropriate fertilization regime. At local scale, the
nearest neighbor returned an inverse K and Mg diagnosis (Figure 3), indicating site-specific factor
interactions that were not depicted by nutrient standards at regional scale. While the apparent K:Mg
imbalance detected at local scale may also be attributed not only to different rootstocks (“Aldrighi” vs.
“Nemaguard”), comparable rootstock for successful “Chimarrita” was not available, emphasizing the
importance of acquiring larger data sets.



Agronomy 2020, 10, 900 12 of 21

Table 8. Reference concentration and clr values for macronutrients from state standards and closest true negative specimens in two contrasting regions of Rio Grande
do Sul (RS), Brazil.

Reference Values Concentration Values (g kg−1) Centered Log Ratios (Unitless) Fruit Yield

N P K Mg Ca clr_N clr_P clr_K clr_Mg clr_Ca Mg kg−1

State “normal” concentrations (Rio Grande do Sul)

Median value † 39.0 2.3 17.0 6.5 21.5 1.214 −1.639 0.384 −0.578 0.619 -
Q1_Q3 † 36.0 2.6 15.5 7.3 19.3 1.138 −1.481 0.295 −0.465 0.512 -

Bento Gonçalves—RS (Nordeste Rio-Grandense)

Defective trees 23.2 1.7 18.3 4.7 26.2 0.873 −1.772 0.635 −0.731 0.995 8.9
Closest successful

neighbors 25.0 1.7 25.3 3.5 26.8 0.917 −1.773 0.926 −1.056 0.986 30.4

Pelotas—RS (Sudeste Rio-Grandense)

Defective trees 31.4 2.8 18.9 3.9 11.7 1.200 −1.218 0.692 −0.886 0.212 0.4
Closest successful

neighbors 33.4 3.2 23.2 4.5 13.8 1.120 −1.226 0.755 −0.885 0.236 21.5

† Median, Q1, Q3 = median and alternate values of the first and third quartiles, respectively, for regional “normal” standards (Brunetto et al., 2016).
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Figure 3. Histograms showing contrasting macronutrient diagnoses of a low-yielding peach orchard
between (a) state standards and (b) the closest neighbor in Bento Gonçalves, Rio Grande do Sul, Brazil
(same location and cultivar, similar soil properties and number of chilling hours). The centered log ratio
(clr) differences are computed as clr values of the diagnosed specimen (yield of 8.9 Mg ha−1) minus
the corresponding clr values of (left) state standards (no yield target indicated) or (right) the closest
successful specimen (yield target of 30.4 Mg ha−1). The Euclidian distance is computed across clr
differences. Negative differences between defective and successful specimens indicate relative shortage.
Positive differences indicate relative excess.

In Pelotas, state standards indicated considerable nutrient imbalance (Figure 4). Hence, regional
diagnosis classified the specimen as true positive potentially responsive to K and Ca additions and to
the reduction the N, P and Mg fertilization. At local scale, in contrast, the nearest successful neighbor,
where other features were close to those of the diagnosed specimen, indicated negligible nutrient
imbalance. Hence other factors likely limited yield at local scale but this was not indicated by the
regional diagnosis.
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Figure 4. Histograms showing contrasting macronutrient diagnoses of a low-yielding peach orchard
between (a) state standards and (b) the closest neighbor in Pelotas, Rio Grande do Sul, Brazil (same
location and cultivar, similar soil properties and number of chilling hours). The centered log ratio
(clr) differences are computed as clr values of the diagnosed specimen (yield of 8.9 Mg ha−1) minus
the corresponding clr values of (left) state standards (no yield target indicated) or (right) the closest
successful specimen (yield target of 30.4 Mg ha−1). The Euclidian distance is computed across clr
differences. Negative differences between defective and successful specimens indicate relative shortage.
Positive differences indicate relative excess.

4. Discussion

4.1. Compositions as Separate Parts or Interactive Systems?

Johnson et al. [37] reported that nutrient concentration ranges, the Diagnosis and Recommendation
Integrated System or DRIS [14] and the deviation from optimum percentage or DOP [38] have been
used with some success to diagnose the nutrient status of peach trees. Normally distributed nutrient
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concentration ranges addressed simultaneously to diagnose tissue nutrient status collapse in the
ellipsoidal multivariate hyperspace of nutrients and are thus useless as the number of diagnosed
nutrients increases [39]. On the other hand, dual ratios such as P:Zn [40], N:P, N:S and S:P [41]
are important in peach tree nutrition. Nutrient interactions such as N × P synergism and K × Mg
antagonism [32,42] should also be considered. However, D-part tissue compositions can return up
to D × (D− 1)/2 dual ratios, most of them being redundant, hence useless for correlation analysis
with yield. For example, the N:P, N:S and S:P ratios are redundant because N

P = N
S ×

S
P . Tissue

compositions should be rather viewed as entities (i.e., unique combinations of nutrients). Aitchison [11]
integrated pairwise log ratios into centered log ratios to secure the unique character of combinations of
components in a composition (Equation (3)). The tissue nutrient clr variables are multivariate in nature
and affected by farm nutrient management, climate and soil composition that vary widely regionally.
Moreover, because adding one nutrient through fertilization may affect several others by resonance
within the compositional space of tissue dry matter, other nutrients are also impacted by fertilization.
Downscaling regional clr descriptive statistics (mean, variance) to site-specific level may be hazardous.
Direct comparison between two equal-length compositions (Equation (4)) lumped into the Euclidean
distance [11] at local scale where soil, management and meteorological factors are comparable; thus,
appeared to be a more appropriate diagnostic method than computing clr indices using means and
standard deviations at regional scale. In addition, differences between clr values adding up to the
Euclidean distance allow classifying nutrients numerically in the order of their apparent limitation
to yield [16]. The perturbation vector between two compositions computed as nutrient-wise ratios
(Xide f ective /Xisuccess f ul ) between defective and successful compositions is an alternative expression to rank
nutrients in a numerical order at local scale [43].

Compositional data distribution of successful specimens needs not have a specific shape. Successful
specimens in “enchanting islands” [10,43] may be even harbored close to the composition of defective
specimens but outside the regional critical hyper-ellipsoid. Regional and local diagnoses thus involve
different references (regional centroids vs. local enchanting islands), and weighting matrices (identity,
variance, covariance) that may lead to contrasting nutrient diagnoses (Figures 3 and 4). An additional
benefit of selecting the closest successful neighbors (smallest Euclidean distance) is to provide reliable
means to correct controllable growth-limiting factors and reach the trustful potential yields recorded in
comparable surroundings.

4.2. From Regional to Local Diagnosis

In the early 1800′s, Alexander von Humboldt championed the principles of quantitative
biogeography [9] that illuminated a cascade of key concepts in agronomy and soil science such
as Boussingault’s nutrient budgets [44], Sprengel’s law of the minimum, Liebscher’s law of the
optimum, Mitscherlich’s law of diminishing returns [45], as well as Dokutchaev’s morphogenetic
soil classification system. Bernhard Baule combined interactive nutrients into a multiplicative law of
diminishing returns that was later extended by Wallace and Wallace [46] to ≈70 multiplicative growth
factors, a concept known as the law of the maximum. At local scale, it is unlikely that 70 growth
factors can reach non-limiting conditions but in some illusory “Gardens of Eden”. However, several
near-optimum conditions could be reached in enchanting islands showing uncontrollable factors
comparable to those found in defective orchards.

Difficulties to fit deterministic models to facts and data and to derive economically optimum
nutrient dosage led to the development of empirical polynomial models by economists [47]. However, to
make predictions, calculations required not only response models but also assumptions on the likelihood
of future events and of uncontrollable and controllable factors [48,49]. Kyvegyga et al. [48,50,51]
showed that the historical difficulties to tackle optimum nutrient rates using a limited number of
fertilizer experiments could be alleviated by collecting large amounts of on-farm data.

Natale et al. [7] emphasized the importance of considering local conditions for nutrient
management of orchards. The low-performing “Chimarrita” in Bento Gonçalves was grafted on
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“Aldrighi” and the high-performing one on “Nemaguard”, indicating possible nutrient imbalance
attributable either to inadequate nutrient management or to difference in rootstock. Mestre et al. [52]
and Jimenez et al. [53] showed that rootstock could regulate the nutrition of peach trees. In contrast,
Mayer et al. [54] did not find any difference in leaf nutrient content of “Maciel” grafted on “Nemaguard”
and “Aldrighi”, although nutrient levels were generally below state standards. Galarça et al. [55]
concluded, from field trials on “Chimarrita” and “Maciel” grafted on “Aldrighi”, ‘Capdeboscq’,
‘Flordaguard’ or “Nemaguard”, that scion, rootstock and soil nutrient supply can impact on leaf content
of peach trees but not necessarily on tree performance. Only well-documented data sets can fully
capture the combined effects of yield-driving variables at local scale.

It may be argued that nutrient dosage has been optimized by curve fitting in a few well-conducted
fertilizer experiments but has not been optimized in growers’ enchanting islands. Successful specimens
provide nutrient dosage at local scale where uncontrollable and controllable growth factors interact
and where controllable factors have been combined successfully. It is common that growers compare
unhealthy and healthy specimens on their own property and in comparable surroundings. Trustful data
sets and effective data-processing methods can allow growers to compare defective to well-documented
successful specimens, avoiding extra analytical costs. Proximity between defective and successful
specimens makes corrective measures more trustful. However, regional standards insure more
protection against outliers that may contaminate some unsupervised enchanting islands (several
enchanting islands in the TN data subset should be compared as compositional references for defective
specimens). Nutrient diagnosis at regional scale then becomes a subsidiary tool in the decision-making
process. Because soil fertility classes are established across growth-limiting factors, such as soil texture,
compaction, and stoniness as well as soil conservation measures, regional guidelines could be upgraded
or downgraded to adjust fertilization to local conditions.

4.3. Machine Learning and Big Data

In this study, we compared defective and successful compositional entities at local scale where all
factors but the ones limiting yield were comparable. While yield cut-off was fixed at 16 Mg fruit ha−1,
local organizations may select another yield cut-off and a minimum set of features to run their own
machine learning and compositional models. As data sets build up, machine learning methods could
assess more accurately the contribution of each feature to crop yield by removing them sequentially to
test parsimoniously their impact on yield prediction (razor of Occam). To facilitate data collection,
minimum data sets can be selected from meaningful quantitative and qualitative data easily available
at farm level.

Nowadays, large data sets can be processed by machine learning and compositional data analysis
methods directly from data input rather than being supervised by deterministic response models to
conduct nutrient diagnosis. Given local uncontrollable factors such as climate, soil depth, stoniness
and texture, enchanting islands may be documented where controllable factors have been already
addressed successfully by local growers. It should be noted that any change in fertilization regimes of
peach orchards may take more than one season to be effective because nutrient reserves accumulated
in off years can be remobilized in large amounts in fruiting years [31,56] and at high rate [57].

4.4. Citizen Science and Precision Farming

The concept of site-specific nutrient management has been developed to increase crop yield and
quality at local scale [54,58] and to minimize environmental damages from unwise fertilization [39,59].
Precision maps indicated that fruit quality may decrease at high-yield level [60]. [61] demonstrated
the importance to adopt profitable site-specific nutrient management and disease control in Brazilian
fruit orchards.

Citizen science to collect high-quality data is challenging because it requires close and ethical
collaboration between researchers and stakeholders to build trustful and informative data sets [62,63].
Data sets are developing rapidly in North America from continental [64] to regional [9,51,65,66] and
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local [50] scales. A recent survey showed positive attitude of American fruit growers toward
precision agriculture if supported by research and extension programs [67]. Researchers and
growers can document, store and track analytical and managerial records. Spectroscopic techniques
may facilitate collecting proximate soil analyses at low cost [68–70]. While plant tissue analysis
has long been non-competitive with soil analysis for price and the facility of data collection
and interpretation, high-throughput inductively-coupled plasma (ICP) technology [71], low-cost
visible-infrared-ultraviolet (VIS-IR-UV) spectroscopy [68] and laser-induced breakdown technology [72]
may increase the use of both plant and soil analysis in the near future. Large data sets can be processed
rapidly by machine learning and compositional methods to tackle local production problems. The
larger and more diversified the data set, the more accurate the prediction. Our study combined the
efforts of Brazilian growers and research institutions to build knowledge on the site-specific nutrient
management of peach orchards.

5. Conclusions

There is a great challenge in Brazil and many other fruit-producing countries to increase the
production of high-quality fruits by improving nutrient management of orchards at local scale. Up till
now, regional nutrient standards based on field trials have been used to interpret the results of soil and
tissue analyses. In the present study, machine learning models relating fruit yield to tissue composition
returned classification accuracy >80% from a set of growth-impacting features at yield cutoff of 16
Mg ha−1. The collection of state-wide data sets from experimental farms and commercial orchards
allowed setting apart nutritionally balanced specimens to provide updated tissue nutrient standards
from ever-growing data sets.

At regional scale, site attributes are assumed to be equal and yield targets are not documented.
At local scale, several attributes are reported, and trustful yield targets and corrective measures are
provided in close enchanting islands. Nutrient imbalance diagnosis at regional scale may; thus, differ
from local diagnosis. Such discrepancy may explain in part why several Brazilian peach orchards
produced deceiving yields using the present regional standards. Due to high cost of field trials, local
diagnosis requires a close and ethical collaboration between researchers and stakeholders to acquire
large-size and diversified sets of high-quality trustful data. As data sets mature in size and diversity,
machine learning and compositional methods could solve more complex and subtle factor interactions
at local scale. This will be possible only by combining the efforts of researchers, extension specialists,
crop advisers and growers.
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