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Abstract
Grape production in the Serra Gaúcha region, south of Brazil, is severily constrained by several diseases such as the decline and
death syndrome caused grapevine trunk (fungal) diseases (GTDs) and the grapevine leafroll-associated virus (GLRaV). As
pathogens induce changes in leaf tissue that modify the reflectance, the spectral signature of asymptomatic and symptomatic
grapevine leaves infected by GTDs and GLRaV was analyzed to check whether spectral responses could be useful for disease
identification. This work aims at (a) defining the spectral signature of grapevine leaves asymptomatic and symptomatic to GTDs
and GLRaV; b) analyzing whether the spectral response of asymptomatic leaves can be distinguished from symptomatic; and (c)
defining the most useful wavelengths for discriminating spectral responses. For such, reflectance of leaves in either condition
collected in a “Merlot” vineyard during three growing seasons was measured using a spectroradiometer. Principal components
and partial least square discriminant analyses confirmed the spectral separation and classes discrimination. The average spectra,
difference spectra, and first-order derivative (FOD) spectra indicated differences between asymptomatic and symptomatic leaves
in the green peak (520–550 nm), chlorophyll-associated wavelengths (650–670 nm), red edge (700–720 nm), beginning of near-
infrared (800–900 nm), and shortwave infrared. Hyperspectral data was linked to biochemical and physiological changes
described for GTD and GLRaV. Variable importance in the projection (VIP) analysis showed that some wavelengths allowed
to differentiate the tested pathosystems and could serve as a basis for further validation and disease classification studies.
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Introduction

Brazil ranks fifth in wine production in the Southern
Hemisphere. The Serra Gaúcha region, the most important
wine-producing area in the country, accounts for 85% of the
national wine production (Ibravin 2019). In this region, one of
the biggest obstacles for producing high-quality grape is the
decline and death of plants in vineyards caused by a complex
of agents often associated with fungal and viral diseases
(Basso et al. 2017).

Grapevine trunk diseases (GTDs) are especially important
because of the economic losses that result from branch death
that reduces grape yields, increased costs for controlling the
disease, and reduced vineyard life (Gramaje et al. 2018). The
GTD complex includes Petri disease and Esca disease complex
(Phaeomoniella chlamydospora, Phaeoacremonium spp., and
Fomitiporia spp.), black dead arm (Botryosphaeria spp. and
other fungi of the Botryosphaeriaceae family), Eutypa dieback
(Eutypa spp.), and black foot (Cylindrocarpon spp., Ilyonectria
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spp., Campylocarpon spp.) (Úrbez-Torres et al. 2014; Silva
et al. 2017). The fungi associated with GTDs in the Serra
Gaúcha region have reported in previous studies (Garrido
et al. 2004; Almança et al. 2013).

Among the viral diseases, the grapevine leafroll disease
(GLD) is caused by some viruses known as grapevine
leafroll-associated virus (GLRaV) of the Closteroviridae fam-
ily, of which the GLRaV-3 is the most prevalent and wide-
spread (Naidu et al. 2014, 2015). GLRaV is an economically
important disease that occurs in most grape-growing regions
worldwide (Mac Donald et al. 2016). The economic losses
result from the reduced photosynthetic activity leads to lower
fruit quality, reduced yield, and vine decline (Basso et al.
2017).

Many vineyards show mixed infections by GTDs and
GLRaV, making it challenging to inspect visually all acreage
within the optimal period for disease expression (Mac Donald
et al. 2016). The photosynthetic process and the plant tissue
cell structures attacked by pathogens suffer alterations that
modify the vegetation and electromagnetic radiation interac-
tion and, consequently, leaf and canopy reflectances in the
visible (VIS), near-infrared (NIR), and shortwave infrared
wavelengths (SWIR) (Prabhakar et al. 2012; Calcante et al.
2012; Martinelli et al. 2015; Mahlein 2016; Heim et al. 2018;
Zarco-Tejada et al. 2018; Gold et al. 2019, 2020; Fallon et al.
2020). Light reflection in the VIS, NIR, and SWIR provides a
comprehensive assessment of plant responses to diseases due
to changing in biochemical (e.g., leaf pigments, nutrient com-
position, and secondary metabolism) and physiological (e.g.,
photosynthetic activity and water) aspects (Couture et al.
2018). Therefore, plant spectral properties can assist in the
development of stress signatures for diseases. In fact, there is
a growing interest in using spectral reflectance measurements
to detect and discriminate among plant diseases (Mahlein
2016).

Recent developments in various pathoystems using differ-
ent sensors have shown changes in the spectral behavior as-
sociated with grapevine diseases. For viruses, Naidu et al.
(2009) reported differences in leaf hyperspectral reflectance
of two red-berried wine grape cultivars with and without the
presence of GLRaV-3. For fungal diseases, changes in the
spectral reflectance were reported by several authors:
Calcante et al. (2012) examining “Cabernet Franc” leaves
with downy mildew (Plasmopara viticola) infection; Knauer
et al. (2017) and Pérez-Roncal et al. (2020) studying powdery
mildew (Erysiphe necator) infection levels in “Chardonnay”
and “Carignan Noir” grape bunches; Oerke et al. (2016) to
differentiate grapevine cultivars with distinctive resistance to
P. viticola; Di Gennaro et al. (2016) to GTD’s symptoms in
“Cabernet Sauvignon” vineyard; and Junges et al. (2018) to
GTD’s (Esca Complex) symptoms in “Merlot” leaves. These
studies have confirmed the distinct spectral behavior of
asymptomatic leaves (or canopies) compared to leaves

symptomatic to a specific causal agent and focusing on the
binary discrimination between healthy and diseased plants.
Mahlein et al. (2010) showed specific spectral signatures for
three fungal leaf diseases of sugar beet, suggesting that the
diseases had a differential effect on the reflectance, thus show-
ing the potential of integrating remote sensing methods for
disease detection.

It is noteworthy that the spectral reflectance signatures
should be specific to the effects of a plant-pathogen interaction
and then research is required to more fully explore the poten-
tial of this technique for a range of pathosystems and crop
production systems (Heim et al. 2018). In the vineyears of
the Serra Gaúcha, the most common scenario is the co-
occurrence of plants with GTDs and GLRaV symptoms lead-
ing to plant decline, for which no spectral signature data are
available for such situation. The use hyperspectral data to
detect crop diseases is a promising and novel approach for
classifying disease status as well as for nondestructive assess-
ment of specific responses of the plant to disease infection
(Couture et al. 2018; Zarco-Tejada et al. 2018; Fallon et al.
2020). In this study, we hypothesized that (1) leaves infected
by fungal or viral disease symptoms associated with vine de-
cline show a distinct spectral behavior in comparison with
asymptomatic leaves; (2) the hyperspectral reflectance chang-
es in symptomatic leaves is linked to biophysical or biochem-
ical characteristics associated with the specific pathogen in-
fection; (3) it is necessary to reduce the high dimensionality of
hyperspectral data defining the important wavelengths for dis-
eases differentiation. The objective of this work was to define
the spectral signature and the most useful wavelengths for
discriminating grapevine leaves separated into categories
asymptomatic (1), GLRaV symptoms (2), GTDs initial (3),
and advanced (4) symptoms.

Material and methods

Site, crop, and disease characterization

The study area consisted of a commercial vineyard (cultivar
Merlot) in Veranópolis, in the Serra Gaúcha region, Rio
Grande do Sul, Brazil. According to Köppen classification
(Alvares et al. 2013), the regional climate is Cfb: C indicates
temperate climate, f is humid, without a dry season with
monthly average rainfall no less than 60 mm, and b indicates
average air temperature below 22 °C in the hottest month.

In Veranópolis, the 1956–2015 data series shows 1683mm
annual average rainfall with a 140 mmmonthly average, rang-
ing from 109 mm in May to 181 mm in September (Junges
et al. 2019). The annual average temperature is 17.3 °C, rang-
ing from 12.7 °C (July) to 21.8 °C (January) (Junges 2018).
The north-south oriented “Merlot” vineyard is conducted in
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the vertical training system and was studied during all vege-
tative seasons since 2015 (2015/2016 to 2018/2019).

The plants exhitited GTDs and GLRaV symptoms whereas
the presence of pathogens was confirmed in the lab. The
GTDs laboratory diagnosis consisted of isolating the fungi
in PDA (potato-dextrose-agar) culture medium from plant
samples with vascular internal symptoms, as described by
Almança et al. (2013). GTDs were diagnosed by evaluating
the internal symptoms and morphological characterization of
the colony and spores of the isolated fungi, which were then
compared to the literature (Crous and Gams 2000; Yan et al.
2013; Silva et al. 2017; Yang et al. 2017). Occurrences of
Botryosphaeria spp. (black dead arm), Phaeomoniella
chlamydospore, and Phaeoacremonium spp. (Petri disease
and Esca disease complex) were identified.

For the virus diagnosis, extractions from 1 g of petioles,
leaf veins, or scrapings of mature stems were performed for
the viral identification of the total RNA, using the adsorption
of nucleic acids on silica particles (Rott and Jelkmann 2001).
Grapevine plants exhibiting typical leafroll symptoms were
analyzed for six leafroll-related species (Grapevine leafroll-
associated virus, GLRaV-1, -2, -3, -4, -5, and -7) by real-time
RT-PCR (RT-qPCR). In all performed analyses, RNAse-free
water, healthy grapevines, and positive controls were includ-
ed. Real-time RT-PCR reactions (One Step RT-PCR) were
carried out in 96-well plates using the kit TaqMan Fast
Virus 1-Step Master Mix (Life Technologies) and the
thermocycler StepOnePlus Real-time PCR System (Applied
Biosystems) (Dubiela et al. 2013). The primers and fluores-
cent probes used for viruses detections by RT-qPCR have
been previously described (Osman et al. 2007). The shape of
the curves and the quantification cycle obtained during the
amplifications were as expected for virus amplification, and
only GLRaV-3 was detected in the tested samples.

Sampling procedures

To best capture the GLRaV foliar symptoms, which are ap-
parent during the late summer and early fall (MacDonald et al.
2016), leaves were collected in May 2015, 2016, and 2017,
corresponding to the end of 2014/2015, 2015/2016, and
2016/2017 vegetative seasons.

Asymptomatic leaves were green colored, exhibited no dis-
coloration or disease symptoms and morphological character-
istics (color, shape, size) according to the cultivar
ampelography (Galet 2002) (Fig. 1a). Leaves were collected
from the diagnosed plants with the following symptoms,
edge-down curl, red-violet leaf limb, and green-colored main
veins for GLRaV (Fig. 1b); discrete leaf yellowing and begin-
ning of rib discoloration for initial GTDs (Fig. 1c), chlorosis
or interventional necrosis and reddish/purple discoloration
surrounded by yellowish discoloration, standard symptom of
“brindle stripes” for final GTD (Fig. 1d). At the end of the

grapevine cycle (May), it was possible to find leaves with
consolidated GLRaV symptoms and, in case of GTDs, leaves
with consolidated (final) and initial symptoms, so, to represent
the real situation observed in the vineyards, GTDs leaves in
both situations (initial and final) were sampled.

Every May (2015, 2016, and 2017), fresh leaves were col-
lected (between 9 p.m. and 11 p.m.), grouped by treatment in
paper bags and kept refrigerated (between 6 and 10 °C) until
being transported to the lab. The objective was to maintain
leaf tissue characteristics by preventing freezing or excessive
water loss. The leaves were transported to the lab in the paper
bags stored in a styrofoam box. At the end of the three vege-
tative seasons, in a total of 80 leaves (20 leaves per treatment)
had been submitted to hyperspectral measurements.

Spectral measurements

Leaf reflectance was measured using the non-imaging high-
resolution spectroradiometer FieldSpec 3 (Analytical Spectral
Devices – ASD, Panalytical Company, Boulder, CO, USA)
with 350 to 2500 nm spectral range and 3 nm spectral resolu-
tion (Full-Width-Half-Maximum - FWHM) at 700 nm, 10 nm
FWHM at 1400 nm, and 10 nm FWHM at 2100 nm (ASD
2010). This spectroradiometer operates with three separate
detectors (VNIR: 350 to 1000 nm spectral region; SWIR 1:
1000 to 1830 nm; SWIR 2: 1830 to 2500 nm) and each de-
tector is covered by order separation filters to eliminate second
and higher-order effects (ASD 2010).

Following data acquisition (leaf), the original data was in-
ternally processed and integrated with the calibration mea-
surement previously performed with Spectralon reference
plate (white reference standard) to have a spectrum that
expressed the reflectance over the whole spectral domain con-
tinuously and free of significant jumps between the spectral
domains of each sensor. All spectral measurements were col-
lected from the leaf adaxial surface using a leaf clip assembly
attached to a plant probe. For all treatments, the measurements
were made in the same way: the clip was positioned on two
portions of the leaf with characterized symptoms (symptom-
atic leaves) or two portions without symptoms (asymptomatic
leaves). For each leaf portion, three spectra were obtained (six
measurements per leaf; n = 480). The spectral profile of each
leaf was calculated using the average of the six measurements
per leaf and normalized by the maximum in the Chemostat
software (Helfer et al. 2015).

Data processing

To investigate the possibility of grouping, leaf spectrum data
(average and normalized by the maximum) were transformed
by the first derivative and, after excluding the atypical data (by
the Hotelling T2 method; p < 0.05), submitted to principal
component analysis (PCA) (centered on the mean). PCA is a
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multivariate statistical analysis exploratory method that was
used to analyze the possibility of spectral separation between
leaves with and without the GTDs and GLRaV symptoms.
PCA score graphic shows the grouping tendency and the
PCA loadings show the main wavelengths associated with
the PCA score. PCA was performed by the Chemostat soft-
ware (Helfer et al. 2015). Hotelling T2 is one of the methods
for measuring the variation within the PCA model to identify
possible outliers, based on the generalization of Student’s t
statistic for the multivariate case, according to the sample es-
timates of the covariance matrices (Helfer et al. 2015).

The spectral separation of classes was performed using the
partial least squares discriminant analysis (PLS-DA), with
component 1 and component 2 defined by PCA. In our study,
PLS-DA was performed as a descriptive model using the R
software (Core Team 2018) package “mixOmics” (Rohart
et al. 2017). PLS-DA is an algorithm used for predictive and
descriptive modeling as well as for discriminative variable
selection (Lee et al. 2018). PLS-DA is an extension of the
classical PLS regression algorithm that allows robust model
fitting when the model is overspecified (more predictors than
observations) (Couture et al. 2018).

Differences between classes were subsequently analyzed
using the average spectrum per class (n = 15 to 20), differ-
ence-spectrum, and first-order derivative (FOD) spectra. The
difference spectrum was determined by subtracting the aver-
age spectrum of asymptomatic leaves from the GTDs (initial
and final) and GLRaV average spectrum. The difference spec-
trum shows differences (expressed as normalized reflectance
values) between symptomatic and asymptomatic leaves (con-
sider, in this case, the “zero line”) in every wavelength. FOD
transformation of the spectral curve is a common technique
applied to increase discrimination quality by enhancing spec-
tral features and minimizing random noise (Demetriades-Shah
et al. 1990).

Variable importance in the projection (VIP) analysis was
performed to select the relevant wavelengths for class

separation. Wavelength selection techniques reduce the pre-
dictor space and provide a reduced set of wavelengths that can
be used as efficiently to predict the response variable (Heim
et al. 2018). The VIP analysis was performed from the nor-
malized dataset using the PLS-VIP method. Chong and Jun
(2005) reported that the PLS-VIPmethod excelled when iden-
tifying relevant predictors and outperformed other methods.
For the wavelength selection, the VIP values > 1.0 in compo-
nents 1 and 2 were considered to identify unique features for
each class (VIP values > 1.0 and no overlap) using the soft-
ware R (Core Team 2018) package “vip” (Greenwell et al.
2018). Since the average of squared VIP scores equals 1,
“greater than one rule” is generally used as a criterion for
variable selection (Chong and Jun 2005).

Results

In the PCA analysis, PC1 and PC2 explained 60.5% of the
spectral variance, forming four groups in the PC1 (39.55%)
versus PC2 (20.99%) projection (Fig. 2a). Asymptomatic
leaves and final GTD symptomatic leaves were positioned in
the PC1 with an opposite projection: positive to the first ones
and negative to the latter. PC2 assigned positive scores to
leaves with GLRaV symptoms and negative scores to leaves
with initial GTD symptoms (Fig. 2a). The variables used for
grouping the samples are observed in the principal component
loading graphs (Fig. 2b, c). In PC1, the variables with the
highest contribution were wavelengths between 700 and
740 nm, centered at 720 nm (Fig. 2b), whose positive weight
can be strongly associated with asymptomatic leaves whereas
the wavelength 690 nm (negative weight) may be associated
with leaves with final GTD symptoms. In PC1, the contribu-
tion of wavelengths between 560 and 630 nm may also be
associated with leaves displaying both initial GTD and
GLRaV symptoms since both samples are in the negative
portion of PC1. In PC2, there was a greater contribution of

Fig. 1 Examples of grapevine (V. vinifera cv. Merlot) leaves without (a)
and with (b, c, d) symptoms of diseases associated to plant decline in
vineyards: (a) asymptomatic leaves exhibited green colored, no
discoloration, and disease symptoms; (b) symptomatic leaves to
grapevine leafroll-associated virus (GLRaV) exhibited edge-down curl,
red-violet leaf limb, and green-coloredmain veins; symptomatic leaves to
grapevine trunk diseases (GTDs) exhibited discreet leaf yellowing and

beginning of rib discoloration for initial GTDs (c); chlorosis or
interventional necrosis and reddish/purple discoloration surrounded by
yellowish discoloration, standard symptom of “brindle stripes” for final
GTD (d). Open black circles indicate the leaf clip positions during the
hyperspectral measurements with spectroradiometer (spectral range 350
to 2500 nm)
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wavelength 570 nm (Fig. 2c), whose positivity is strongly
associated with leaves with GLRaV symptoms. Negative
weights of 520 and 700 wavelengths were strongly associated
with the initial GTD, although the contribution of asymptom-
atic and final GTD leaves cannot be excluded.

Like the first non-supervised analysis, PCA results showed
a tendency to the spectral separation of the grapevines leaves
in classes. Zhang et al. (2002), through PCA, observed a high
positive linear correlation of the first component with the can-
opy spectra of healthy tomato plants and the second compo-
nent with the Phytophthora infestans infected plants.
Likewise, our PCA score indicated that the percentage of
samples in negative PC1 increased with the advancing GTD
symptoms (initial to final) and most GTD and all GLRaV
samples were PC2 positive (Fig. 2a), showing that this com-
ponent (PC2) can be associated with symptomatic leaves.

In this study, the twomain components defined by the PCA
(Fig. 2a) were used to adjust the PLS-DA. The results of the
PLS-DA score indicated the separation in groups, confirming
the existence of a spectral distinction between asymptomatic
and GTD and GLRaV symptomatic leaves (Fig. 3). The PLS-
DA scores formed four separate groups in the dispersion space
that were associated with the previously identified classes
(Fig. 3). Leaves with GRLaV symptoms were considered
spectrally distinct from the others due to X positive score
while the final GTD is spectrally distinguished from the
asymptomatic and GLRaV classes by the positive score in Y
and negative in X. Two classes were positioned in the nega-
tive X and negative Y quadrants, the asymptomatic and initial

GTD (Fig. 3). This result was considered coherent because
leaves with GTD initial symptoms exhibit portions of green-
colored leaf area (Fig. 1c); therefore, comparatively, these
leaves are more similar to asymptomatic leaves.

The average normalized spectra also indicated differences
between grapevine leaf classes (Fig. 4a). The average normal-
ized spectra of asymptomatic leaves had the typical spectral

Fig. 2 Principal components analysis (PCA) score (a) showing the
tendency of spectral separation of the grapevines (V. vinifera cv.
Merlot) leaves in classes: asymptomatic (S, symbols in green) and
symptomatic to grapevine leafroll-associated virus (GLRaV) (V,
symbols in blue) and to grapevine trunk diseases (GTDs) with initial

(MTI, symbols in orange) and final (MTF, symbols in red) symptoms;
(b) Principal component 1 (PC1) and principal component 2 (PC2)
loadings for hyperspectral reflectance (350–2500 nm) of asymptomatic
(S) and symptomatic (V, MTI and MTF) grapevine leaves with the main
wavelengths associated with the PCA score (a) in highlight

Fig. 3 Ordination plot of the mean and standard deviation of first two
spectral axes (X and Y) resulting from partial least squares discriminant
analysis (PLS-DA) showing the hyperspectral dissimilarity between
grapevine leaves (V. vinifera cv. Merlot) asymptomatic (symbols in
green) and symptomatic to grapevine leafroll-associated virus (GLRaV,
symbols in blue) and grapevine trunk diseases (GTDs) with initial (GTD
initial, symbols in orange) and final (GTD final, symbols in red)
symptoms
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behavior of photosynthetically active green vegetation with
absorption bands of electromagnetic radiation by chlorophylls
in blue (450 nm) and red (650–670 nm), green reflectance
peak (520–540 nm), and higher reflectance values compared
to visible light in the near-infrared (Fig. 4a). The reflectance
values were different in leaves with disease symptoms related
to vine decline compared to asymptomatic leaves (Fig. 4a, b),
showing that the structural and physiological changes promot-
ed by the pathogens modified the interaction between the
electromagnetic radiation and the leaf tissue.

In the visible range, at the green edge (520–550 nm), the
normalized average spectra (Fig. 4a) and the difference spec-
tra (Fig. 4b) indicated that the reflectance increased, varying
between 26.5% (final symptoms) and 43% (initial symptoms)
(Fig. 4c), in leaves with GTD symptoms compared to asymp-
tomatic ones. On the other hand, leaves with GLRaV symp-
toms had very low reflectance values in the visible light wave-
lengths, including the green edge (Fig. 3a), equivalent to 62%
of asymptomatic reflectance (Fig. 4d).

The results also show that leaf reflectance behaved differ-
ently in the red range. In the presence of GTD symptoms, leaf
reflectance increased in the 650 nm wavelength (Fig. 4a, b,
and c), especially in those with advanced symptoms due to
markedly reduced absorption by chlorophyll b (650 nm). In
this wavelength, leaf reflectance was 44% and 184% higher in
the GTD initial and final stages compared to the asymptomatic
leaves (Fig. 4c). At 670 nm (wavelength associated with chlo-
rophyll a), leaf reflectance increased 24% and 158% for initial
and final GTD symptoms, respectively (Fig. 4c). Furthermore,
reflectance also increased in GLRaV leaves at wavelengths
650 nm (18% increase) and 670 nm (8% increased) albeit to
a lesser extent compared to those with GTD symptoms (Fig.
4c). Reflectance increases near 700 nm wavelengths were ev-
idenced in all symptomatic leaves (Fig. 4b, c).

Asymptomatic leaves had spectral behavior typical of
green vegetation in the near-infrared (NIR, 700 to 1300 nm)
(Fig. 4a). The spectral behavior of leaves with final GTD and
GLRaV symptoms changed the most at the beginning of near-

Fig. 4 Hyperspectral behavior (350–2500 nm) of grapevine leaves
(V. vinifera cv. Merlot), asymptomatic, symptomatic to grapevine
leafroll-associated virus (GLRaV), and symptomatic to grapevine trunk
diseases (GTD) with initial symptoms (GTD initial) and final symptoms
(GTD final) expressed in terms of (a) normalized reflectance; (b)
normalized difference reflectance that indicated the differences between
symptomatic and asymptomatic leaves (consider, in this case, the “zero
line”); (c) percentage of reflectance of symptomatic leaves (GLRaV,
GTD initial, and GTD final) considering asymptomatic equal 100% in

important wavelengths associated to spectral behavior of vegetation in
visible (VIS) range (green edge 520 nm, chlorophyll b 650 nm,
chlorophyll a 670 nm, red edge 700 nm), near-infrared (NIR) range
(represented, in this case, by 800 nm), and shortwave infrared (SWIR)
range (represented, in this case, by 1660 nm and 2200 nm) and (d) first-
order derivative (FOD) that enhancing spectral features of the
hyperspectral behavior of asymptomatic and GLRaV, GTD initial. and
GTD final symptomatic grapevine leaves
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infrared (700 to 900 nm) (Fig. 4b). Lower reflectance values
were observed for GLRaV and final GTD in leaves character-
ized by consolidated disease symptoms. At 800 nm, reflec-
tances were 2.6% and 5.6% lower in leaves with final GTD
and GLRaV symptoms, respectively, compared to asymptom-
atic leaves (Fig. 4c).

In the shortwave infrared (SWIR, 1300 to 2500 nm), re-
flectance values increased in leaves with GTD symptoms,
especially initial GTD, while reducing for the GLRaV symp-
toms (Fig. 4a). At 1660 nm and 2200 nm, wavelengths asso-
ciated with plant phenolic absorption (Kokaly and Skidmore
2015), the reflectance was 4% higher in leaves with initial
GTD symptoms compared to asymptomatic leaves, and
6.2% lower in GLRaV leaves.

In remote sensing, the first-order derivative of reflectance
spectra is used to locate the wavelength of maximum slope of
the reflectance in the red-edge spectral region (RESR) (680–
730 nm). In this study, the FOD spectrum peaks were ob-
served at 705 nm (asymptomatic leaves), 700 nm (initial
GTD and GLRaV), and 698 nm (final GTD) (Fig. 4d), indi-
cating a spectral blueshift of the red edge. The FOD spectrum
peaked also at 520 nm for asymptomatic and GTDs symptom-
atic leaves; however, no peak was detected to GRLaV symp-
tomatic leaves (Fig. 4). The FOD spectra of asymptomatic,
GTD, and GLRaV symptomatic leaves also indicated one
positive (~ 1500 nm) and three negative (1400 nm,
1900 nm, and 2500 nm) peaks. The negative peaks are asso-
ciated with the strong water absorption bands found in the
SWIR region, centered on 1450, 1940, and 2500 nm.

The VIP results indicated the important wavelengths for
identifying and projecting characteristic reflectance values
for asymptomatic as well as GTD and GLRaV symptomatic
leaves (Fig. 5). Asymptomatic and symptomatic leaves could
be discriminated in component 1 as a function of VIPs > 1 at
the 520–600 nm, 1000–1060 nm ranges, and SWIR region
(Fig. 5a, b, c), allowing to assign these bands as spectral
markers of leaves without the evaluated diseases’ symptoms.
The 640–660 nm range has been identified in the PCA loading
(Fig. 2b) and, finally, confirmed as an important VIP in com-
ponent 2 (Fig. 5d, e, f) for identifying changes in the spectral
signature of grapevine decline-related diseases, although it
does not differentiate between diseases.

The VIP analysis component 2 discriminated between dis-
eases by wavelength ranges: initial GTD presented VIPs > 1
for wavelengths greater than 1140 nm (up to 2400 nm) so that
the SWIR could be considered an important spectral feature
for initial GTD symptoms (Fig. 5d). The VIP peak in the 950–
1000 nm region (Fig. 5e) identifies this range as a spectral
marker for GTD final symptoms, as well as at 1900 nm peak
(Fig. 5e). Wavelengths in the 500–520 nm range appear as
VIP to GLRaV, as did the peaks at 1400 nm and 1880 nm
(Fig. 5f). Previously identified as important by the PCA load-
ing (Fig. 2c) and confirmed by the VIP analysis, the green

peak indicated the 500–520 range could be an important
marker to discriminate GRLaV symptomatic leaves (Fig. 5f).

Discussion

In this study, we showed that spectral response of asymptom-
atic grapevine leaves can be distinguished from symptomatic
to two important diseases associated with vineyard decline.
The successful leaves discrimination is based on the charac-
teristic effect of the pathogens, being also possible to establish
a link between the hyperspectral information and the biochem-
istry and physiology changes described in the literature for
GTD and GLRaV, highlighting the disease physiology like
the origin of the capacity to use spectroscopy for plant-
pathogen interaction understanding.

The reflectance increase observed in leaves with GTD
symptoms at the green edge was especially associated with
the reduced total chlorophyll and, to a lesser extent, with ca-
rotenoids, since the carotenoid content is reportedly stable
during a GTD infection (Petit et al. 2006; Magnin-Robert
et al. 2011). Additionally, Gitelson and Merzlyak (1996)
showed that traces of chlorophylls a and b and significant
content of carotenoids did not change leaf reflectance at
540 nm, suggesting a lesser spectral contribution of caroten-
oids compared to chlorophylls. The increase in VIS reflec-
tance noted in GTD symptomatic leaves was also reported in
other studies that described the hyperspectral behavior of
leaves with fungal disease symptoms, like in downy mildew
symptomatic grapevine leaves (Calcante et al. 2012; Oerke
et al. 2016), sugar beet leaves with symptoms of Cercospora
leaf spot, powdery mildew and sugar beet rust (Mahlein et al.
2010), and olive leaves obtained from Xylella fastidiosa in-
fected trees (Poblete et al. 2020).

Leaves with GLRaV symptoms had very low reflectance
values in the visible light wavelengths; thus, the spectral be-
havior indicates very little pigment absorption, agreeing with
Gutha et al. (2010) and Basso et al. (2017) that also reported
fewer total chlorophylls and carotenoids in GLRaV leaves
compared to healthy green leaves. Likewise, Naidu et al.
(2009) also indicated near 540 nm wavelengths as important
for GLRaV-3 spectral discrimination in “Cabernet
Sauvignon” leaves. The lack of reflectance at 520 nm high-
lights the antagonistic behavior among classes in this wave-
length and may be due to the purplish coloration associated
with anthocyanin accumulation in GLRaV symptomatic
leaves. Gutha et al. (2010), using a spectrophotometer, did
not detect anthocyanins in virus-free green leaves whereas
anthocyanins and increased flavanols were apparent in virus-
infected leaves.

The reflectance increase observed at wavelengths related to
photosynthetic pigments (650 and 670 nm) was associated
with the reduced chlorophyll index in GTD leaves (Junges
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et al. 2018) and the strong drop of both yields, the maximum
fluorescence, and effective Photosystem II quantum, due to
GTD pathogens (Petit et al. 2006; Magnin-Robert et al. 2011).
Vanegas et al. (2018) also reported that “Chardonnay” vines
infested with phylloxera (Daktulosphaira vitifoliae) have
higher reflectance levels in the wavelengths associated with
chlorophyll while the 680 nm wavelength highlights the main
differences between uninfested and infested spectral signa-
tures. Delalieux et al. (2007) demonstrated that apple trees
with biotic stress (Venturia inaequalis) impacted the most

the reflectance values in the 580–660 nm range, correspond-
ing to the chlorophyll absorption regions. Mahlein et al.
(2010) reported an increase in VIS mostly in green and red
ranges (500–700 nm) in sugar beet leaves infected with
Cercospora betiola leaf spot and powdery mildew whereas a
lesser increase was detected in leaves with sugar beat rust,
probably due to the mild symptoms observed in the leaf
area. For viruses, Naidu et al. (2009) also defined that the
two maximum differences in the visible region occur at the
green (540 nm) and red (680 nm) peaks indicating less

Fig. 5 Scores of variable importance in the projection (VIP) in
component 1 (a, b, c) and component 2 (d, e, f) to grapevine leaves
(V. vinifera cv. Merlot) asymptomatic (gray area) and symptomatic to
grapevine leafroll-associated virus (GLRaV) and grapevine trunk
diseases (GTDs) with initial symptoms (GTD initial) and final

symptoms (GTD final) (black lines). Values > 1.0 indicate the most
important wavelengths to class separation. Wavelengths with VIP
values > 1.0 in components 1 and 2 and no overlap were highlighted to
identify unique features to each class
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chlorophyll absorption by the GLRaV-3 infected leaves.
Gutha et al. (2010) indicated that total chlorophylls and carot-
enoids were, respectively, 20.1% and 19.8% less in GLRaV-3
symptomatic leaves compared to green ones.

Sensitivity to chlorophyll concentrations and to metabolic
disturbances can be identified near the 700 nm wavelengths,
range that belongs to the red edge, a unique feature of green
vegetation resulting from two optical properties of asymptom-
atic leaves, the high absorption of chlorophyll a in the 670 nm
and the high reflectance due to the internal leaf scattering in
longer wavelengths (near-infrared) (Gitelson and Merzlyak
1996). Likewise, Carter and Knapp (2001) showed in earlier
studies that, frequently, the steep slope of reflectance curves in
the far-red spectrum can produce the illusion that stress-
induced differences are negligible near 700 nm. However,
the simple subtraction of control curves (asymptomatic
leaves) from curves representing the stressed condition (symp-
tomatic leaves) shows clearly the far-red response.

Hyperspectral studies have used derivatives to define the
wavelength position of the red edge and illustrate the relation-
ships between the red edge and total chlorophyll concentration
in leaves. FOD indicated a spectral blueshift of the red edge in
the grapevine leaves analyzed in this study. Because leaf re-
flectance red edge was highly correlated with chlorophyll, the
shift of the red edge towards the blue wavelengths is associ-
ated with lower chlorophyll content (Demetriades-Shah et al.
1990). Therefore, the difference between asymptomatic and
GTD and GLRaV symptomatic red edge position was likely
associated with the reduction in chlorophyll due to the pres-
ence of pathogens. However, the blue shift to the red edge
indicates the occurrence of plant stress, being not a specific
disease spectral marker. In this study, FOD spectra also indi-
cated a negative peak in 353 nm especially in GLRaV symp-
tomatic leaves, a wavelength associated with flavonols (Gutha
et al. 2010); however, this result needs to be viewed with
caution because wavelengths below 400 nm have more spec-
tral noise and this part of the spectra tends to be removed in
some studies (Heim et al. 2018; Gold et al. 2019; Mahlein
et al. 2010).

In the NIR range, the spectral behavior of green vegetation
is characterized by high reflectance values compared to visible
light so that higher reflectance values were expected in asymp-
tomatic leaves resulting from non-absorption of radiation to
avoid heating and damage to the plant tissue (Jensen 2007).
Leaves with well-defined symptoms (final GTD and GLRaV)
displayed decreased reflectance in NIR and no near-infrared
changes for initial GTD. This NIR decrease has been reported
in several studies on changes in leaf spectral signatures asso-
ciated with occurring pathogens (Mahlein et al. 2010;
Calcante et al. 2012; Knauer et al. 2017; Heim et al. 2018;
Couture et al. 2018). Even if smaller than those observed in
visible light, the depressions at near-infrared reflectance are
indicators of changing or general loss of functionality of leaf

tissue. Chlorosis and necrosis of leaf tissues are the main
symptoms of final GTD so the obvious hypothesis is that leaf
chlorophyll content decreases (therefore, changing the photo-
synthetic process) while cells die as well. In fact, it has been
shown that leaf stripe symptoms (GTD) are preceded and/or
accompanied and even followed by morphological and phys-
iological modifications of both leaf tissue and photosynthetic
apparatus (Masi et al. 2018). Valtaud et al. (2009) reported
that the intracellular structures of symptomatic GTD leaves
were damaged more extensively in the chlorotic parts, as the
tonoplasts were disrupted. Like other trunk disease pathogens,
Phaeoacremonium spp. and P. chlamydospore produce toxic
metabolites as scytalone, isosclerone, flavioline,
hydroxybenzoic acid, some exopolysaccharides, and the most
common action mode of these metabolites are related to their
oxidant property (Andolfi et al. 2009).

Spectral signatures of symptomatic GTD and GLRaV
leaves compared with asymptomatic differed in the SWIR
range, while SWIR reflectance increased in GTD symptomat-
ic leaves, the spectral signature of GLRaV symptomatic
leaves decreased. Reflectance increments in shortwave infra-
red are likely associated with a lower water content in the leaf
as the SWIR reflectance is influenced by the leaf chemical
composition and water (Carter and Knapp 2001). Masi et al.
(2018) reported that GTD symptomatic leaves exhibited clo-
sure of stomata, damage to cellular organelles, decrease in
starch grains, and a strong decrease of the stomatal conduc-
tance values. The GTD-affected plants suffer from slight wa-
ter stress and modified concentration of the chemical markers,
which increased over time as if there was a progressive accu-
mulation of toxic substances in the leaves (Masi et al. 2018).
Botryosphaeriaceous species (Botryosphaeria spp.) can pro-
duce toxic metabolites from different compound classes in-
cluding aromatic compounds, isocoumarins, jasmonates,
naphthalenones, polyketides, and phenols (Martos et al.
2008; Masi et al. 2018; Reveglia et al. 2019). Heim et al.
(2018) also reported increased SWIR reflectance in the
hyperspectral signature of untreated lemon myrtle trees com-
pared to fungicide-treated to eliminate myrtle rust while
linking the SWIR reflectance changes to changing leaf water
content due to the water loss from lesions observed in untreat-
ed leaves. Knauer et al. (2017) also reported a shift between
the mean spectral signatures of healthy detached berries and
those with severe powdery mildew infection due to higher
reflectance of the diseased berries throughout the SWIR re-
gion. Our results showed decreased SWIR reflectance in
GRLaV symptomatic leaves. Thus, leaves with GLRaV
symptoms appear to have higher water content and, since
water is a good energy absorber, the higher the turgidity of
plant tissue, the lower the reflectance values in SWIR. In this
spectral range, the green vegetation reflectance peaks occur
mainly at 1600 nm and 2200 nm, the wavelengths between
two atmospheric water main absorption bands (1440 nm and
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1940 nm) whereas leaves with GLRaV symptoms had lower
reflectance values in 1600 and 2200 nm, compared to
asymptomatic ones. Naidu et al. (2009) also identified reflec-
tance reduction at wavelengths close to 1600 and 2200 nm,
which may be associated with sugar and starch accumulation
in leaves with GLRaV symptoms. Cell-to-cell viral movement
occurs through plasmodesmata, mediated by the viral move-
ment protein. This fact coupled with virus replication and
concentration preferentially in phloem tissues could disorga-
nize these tissues, with negative effects on photoassimilate
translocation, leading to starch accumulation in GLRaV
leaves (Basso et al. 2017).

Moreover, the wavelengths 1660 nm and 2200 nm are
associated with phenolic compounds that can be
accumulated in the cell in response to pathogens. Kokaly
and Skidmore (2015) observed that the narrow features at
1660 nm and 2140 nmwere consistent with absorption caused
by aromatic C-H bond in the chemical structure of phenolic
compounds and non-hydroxylated aromatics. A study by
Gold et al. (2020) showed wavelengths around 2100 nm
allowed to discriminate potato leaves symptomatic to late
blight (Phytophthora infestans) and early blight (Alternaria
solani), highlighting that differences in phenolic concentration
are important to detect and differentiate disease. The lower
reflectance of GRLaV symptomatic leaves at 1660 nm and
2200 nm could be associated with the presence of
anthocyanins, a phenolic compound belonging to the
flavonol group. Gutha et al. (2010) found 24% higher levels
of flavonols in virus-infected symptomatic leaves than in
virus-free green leaves, with quercetin followed by myricetin
as the predominant compounds. The flavonoid biosynthetic
pathway occurred in GLRaV-3-infected leaves of a red-
fruited wine grape cultivar (cv. Merlot) leading to de novo
synthesis of two classes of anthocyanins. These anthocyanins
have contributed to the expression of the reddish-purple color
of virus-infected grapevine leaves exhibiting GLRD symp-
toms (Gutha et al. 2010).

The spectral signatures of symptomatic GTD and GLRaV
leaves in SWIR and the selection of some VIP wavelengths in
this range indicated that the pathogen probably induced im-
portant biochemical, physiological, and morphological chang-
es in the leaf tissue that allow discriminating symptomatic
from asymptomatic leaves. However, due to the several nar-
row bands of absorption located in SWIR associated to pro-
tein, cellulose, lignin, and starch (Curran 1989), more studies
and, probably, physiological testing are necessary to establish
the relationship between the compounds specific to plant-
pathogen interaction and the spectral reflectance before a
strong conclusion.

The successful discrimination between spectral signatures
of asymptomatic and GTD and GLRaV symptomatic leaves is
the first step towards using spectral approaches to detect and
monitor diseases associated with the decline and plant death in

vineyards. Our results defined that the spectral signatures of
symptomatic leaves are different from the asymptomatic while
being always possible to link the reflectance changes in VIS,
NIR, and SWIR to the plant-pathogen interactions described
for a deeper understanding of optical properties during patho-
genesis. VIP analyses reduced the high dimensionality of the
hyperspectral data by eliminating irrelevant or redundant
wavelengths or spectral ranges, defining spectral patterns that
can be employed for identifying and monitoring disease in
vineyards. Some wavelength ranges appointed in this study
were also cited as VIP by other authors and could be consid-
ered important to discriminate between healthy and diseased
leaves (Heim et al. 2018; Knauer et al. 2017; Gold et al. 2019,
2020). The 500–520 nm and wavelengths near 1660 nm (as
VIP 1690 nm) for GLRaV symptomatic leaves and the 950–
1000 nm range for final GTDs could be highlighted. Here, a
first set of the most important wavelengths to discriminate
asymptomatic and GTD’s and GLRaV symptomatic grape-
vine leaves was identified to provide future studies a starting
point for validation or further classification tests and, likewise,
a disease-specific vegetation index could be developed by
refining this first set of wavelengths. According to Mahlein
(2016), regardless of all the positive and future benefits of
using sensors for plant disease detection and monitoring, it
must be taken into consideration that interpreting the sensor
data is crucial. Depending on the goals, just a few regions of
the spectral range may be of interest. Using a relatively small
number of wavelengths, the detection equipment can be tai-
lored to suit a specific plant-pathogen interaction, reducing the
cost of the final sensor (Mahlein 2016).

Establishing spectral signatures and the feasibility of spec-
tral discrimination between asymptomatic and symptomatic
GTD and GLRaV grapevine leaves have not been previously
investigated. The results suggest that the spectral approach
could be useful to promote the quantitative and qualitative
analysis of the spatiotemporal distribution of affected plants,
in the context of precision viticulture, or to regional disease
monitoring and mapping by remote sensors. This conclusion
is very important to the Serra Gaúcha region since there are no
estimates on the vineyard areas affected by diseases related to
grapevine decline and death. Further studies should be con-
ducted on the potential use of hyperspectral reflectance for
diagnosing grapevine decline diseases considering the pheno-
logical cycle, disease severity stages, and differences between
cultivars in terms of response to pathogens, especially because
unlike red-wine cultivars (like “Merlot”), the white-wine cul-
tivars do not have the phenotypic expression of reddish-purple
coloration of leaves with GLRaV symptoms.
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