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Genetic study of litter size and litter 
uniformity in Landrace pigs

ABSTRACT - We aimed to estimate litter size and litter uniformity genetic parameters 
and genetic trends of Landrace pigs at birth and at three weeks by using multitrait 
analyses for 2,787 litters. The following litter traits were evaluated: number of piglets 
born alive (NBA), within-litter weight mean at birth (MBW), within-litter weight 
standard deviation at birth (SDB), within-litter weight coefficient of variation at birth 
(CVB), number of piglets at three weeks (NT), within-litter weight mean at three weeks 
(MT), within-litter weight standard deviation at three weeks (SDT), and within-litter 
weight coefficient of variation at three weeks (CVT). Heritability estimates for NBA, 
MBW, SDB, and CVB were 0.09±0.04, 0.31±0.08, 0.01±0.04, and 0.07±0.05, respectively, 
greater than those obtained at three weeks (0.06±0.04, 0.10±0.06, 0.01±0.04, and 
0.02±0.04 for NT, MT, SDT, and CVT, respectively). The genetic correlations between 
NBA and MBW and between MBW and CVB (−0.73±0.20 and −0.93±0.21, respectively) 
were of moderate to high magnitudes, as well as the genetic correlations between 
CVT and SDT (0.85±0.39). Genetic correlations between MBW and MT, SDB and SDT, 
CVB and CVT, and NBA and NT were 0.73±0.16, 0.69±0.54, 0.36±0.80, and 0.95±0.06, 
respectively. The genetic trends were linear for NBA and CVB and quadratic for MBW 
and SDB, whereas for all traits at three weeks, they were close to zero. Within-litter 
weight coefficient of variation (CV) may be the most appropriate variation measure 
for application in breeding programs, especially at birth, due to its greater heritability 
estimate and high and negative genetic correlation with MBW. The genetic trends 
show that NT does not follow the increase in NBA, emphasizing the need to review the 
breeding goals.
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Introduction

Litter size at birth and weaning are among the reproductive traits of greatest economic impact on pig 
production profitability. Traditionally, pig breeding programs have focused on improving litter size 
(Chen et al., 2019); however, increased litter size may affect litter uniformity, which is another trait of 
great importance on pig production efficiency (Deen, 2002; Sell-Kubiak et al., 2015). High within-litter 
weight variation may be associated with low piglet survival rates, since litters with low uniformity 
present a greater number of piglets with low birth weight. Such piglets have low level of body energetic 
store and impairment of both colostrum intake and access to function and productive teats (Milligan  
et al., 2002b; Quiniou et al., 2002; Zhang et al., 2016). In the integrated production systems widespread 
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in Brazil, piglets may be refused by the companies or the pig producer earns lower remuneration  
when their weights are outside the ideal range recommended for the different growth stages.

Achieving optimal litter uniformity at birth is still a challenge in production systems, since the 
measurement of the individual piglet weight at birth may be laborious, and only the average or total 
litter weights are usually recorded. However, reducing the litter variation at birth is of great importance, 
since uniform litters at birth remain uniform until slaughter (Fix, 2010) and reduce the need of litter 
equalization, known as cross-fostering, which has great operational cost and is questionable from a 
sanitary point of view. In addition, uniform litters enable the all-in/all-out management (Zindove et al., 
2013; Wang et al., 2016), essential for the maintenance of appropriate sanitary conditions on the farm.

Variation within litters is usually measured by the standard deviation (SD) or the coefficient of 
variation (CV) expressed relative to the average litter weight at a specific time (Damgaard et al., 2003; 
Wolf et al., 2008; Zhang et al., 2016). The efficiency of a selection program for these traits will depend on 
knowledge of their genetic (co)variance structure and genetic progress over the years. In this context, 
the estimation of genetic parameters and genetic trends for litter size and within-litter uniformity in 
different production phases becomes crucial, benefiting all the production system. Therefore, we aimed 
to estimate litter size and litter uniformity genetic parameters and genetic trends of Landrace pigs at 
birth and at three weeks.

Material and Methods

Pre-existing databases were used in the analyses; therefore, no approval on the Ethics Committee 
was required. 

Data of 2,787 litters (34,790 piglets) from 893 Landrace sows of first to eighth parity orders were 
recorded on farms located in Paraná State, southern Brazil (longitude 49o45'18.10" W, latitude 
24o12'52.00" S, and elevation of 961 m above sea level), from January 2009 to April 2016.

The following litter traits were evaluated: number of piglets born alive (NBA), within-litter weight mean 
at birth (MBW), within-litter weight standard deviation at birth (SDB), within-litter weight coefficient 
of variation at birth (CVB), number of piglets at three weeks (NT), within-litter weight mean at three 
weeks (MT), within-litter weight standard deviation at three weeks (SDT), and within-litter weight 
coefficient of variation at three weeks (CVT).

For traits evaluated at three weeks, the weights were pre-adjusted to 21 days, as follows:

WT = {[(WW – BW)/WA] × 21} + BW;

in which WT is the piglet weight adjusted to 21 days of age, WW is the piglet weight at weaning, BW is 
the piglet weight at birth, and WA is the piglet age at weaning.

The within-litter weight SD and CV at birth and at three weeks were calculated for the variation traits. 
The CVB and CVT, expressed in percentage (%), were calculated as follows:

CVB (%) = [(SDB/MBW) × 100];

CVT (%) = [(SDT/MT) × 100];

wherein CVB and CVT are the within-litter weight CV at birth and at three weeks, respectively; SDB and 
SDT are the within-litter weight SD at birth and at three weeks, respectively; and MBW and MT are the 
within-litter weight mean at birth and at three weeks, respectively.

The reduction in the within-litter weight CV from 18.38 (6.58) at birth to 9.52 (7.50) at three weeks 
(Table 1) may have occurred due to cross-fostering, which consists of standardizing the weight and 
number of piglets according to the sow capacity. Most of the evaluated litters came from gilts (n = 891), 
and litter size ranged from 5 to 20 piglets at birth, with almost 80% of data coming from litters with 9 
to 16 piglets (Table 2).
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Litters with 5 to 20 NBA or NT and contemporary groups (CG) with more than 10 sows were 
considered in the analyses. The CG was composed by herd (farms 1, 2, or 3), year (2009 to 2016), 
and season of birth (1 - January to March, 2 - April to June; 3 - July to September, 4 - October to 
December). The complete pedigree file had a total of 1,267 animals, 124 sires, and 349 dams over 
five generations.

The genetic connectedness among CG was assessed using the AMC software (Roso and Schenkel, 2006), 
based on the total number of direct genetic links between CG due to the number of common offspring 
of boars and/or sows. Ten direct genetic links were required as minimum to include a CG in the set of 
connected CG. In total, 71 CG were included in the connectedness analysis.

Genetic parameters were estimated by multitrait analyses (4×4) at birth for NBA, MBW, SDB, and CVB 
and at three weeks for NT, MT, SDT, and CVT using a repeatability animal model in ASReml software 
(Gilmour et al., 2009). In addition, genetic correlations between NBA and NT, MBW and MT, SDB and 
SDT, and CVB and CVT were estimated by bitrait analyses.

The analyses were performed by applying the following model: 

y = Xβ + Z1a + Z2s + Z3p + ε,

Table 1 - Descriptive statistics of litter traits in Landrace pigs
Trait (unit) N1 Average2 SD Min3 Max4

NBA (piglets) 2,787 12.48 3.24 5.00 20.00

MBW (kg) 2,787 1.48 0.23 0.70 2.49

SDB (kg) 2,787 0.26 0.09 0.01 0.63

CVB (%) 2,787 18.38 6.58 0.70 48.73

NT (piglets) 2,787 11.38 3.07 5.00 20.00

MT (kg) 2,787 6.14 0.76 3.51 9.86

SDT (kg) 2,787 0.58 0.46 0.00 2.20

CVT (%) 2,787 9.52 7.50 0.07 36.47

NBA - number of piglets born alive; MBW - within-litter weight mean at birth; SDB - within-litter weight standard deviation at birth; CVB - 
within-litter weight coefficient of variation at birth; NT - number of piglets at three weeks; MT - within-litter weight mean at three weeks; SDT - 
within-litter weight standard deviation at three weeks; CVT - within-litter weight coefficient of variation at three weeks; SD - standard deviation. 
1 Number of observations.
2 Average values of litter traits.
3 Minimum trait value.
4 Maximum trait value.

Table 2 - Number of litters analyzed according to sow parity order and litter size at birth
Parity order Number of litters

1 891

2 681

3 481

4 319

5 204

≥6 211

Litter size at birth

≤8 340

9-10 390

11-12 658

13-14 659

15-16 453

≥17 287
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wherein y is the vector of observations; β is the vector of fixed effects (CG) and linear and quadratic 
effects of the covariate parity order; a is the vector of direct additive genetic effects; s is the vector of 
paternal genetic effects; p is the vector of permanent environmental effects; ε is the vector of random 
residual effects; X, Z1, Z2, and Z3 are the incidence matrices of fixed, direct additive genetic, paternal 
genetic, and permanent environmental effects, respectively.

It was assumed that a~N(0, A ⊗ G), s~N(0, A ⊗ S), p~N(0, I ⊗ P), and e~N(0, I ⊗ R); ⊗ is the direct 
product operator; G, S, P, and R are the covariance matrices for the direct additive genetic, paternal 
genetic, permanent environmental, and residual effects, respectively; A is the pedigree-based 
relationship matrix; and I is an identity matrix.

Genetic trends were obtained by the linear or quadratic regression of the average of estimated breeding 
values for males and females on birth year, weighted by the number of observations.

Results

The connectedness analysis revealed a percentage of CG connectedness of 100%, i.e., no contemporary 
groups or animals were found disconnected. 

The additive genetic variances ranged from 0.00007 to 2.69300 for traits at birth, with the minimum 
additive genetic variance for SDB and the maximum additive genetic variance for CVB (Table 3). At three 

Table 3 - Estimates of (co)variance components from multitrait models for litter traits at birth
Trait NBA MBW SDB CVB

Additive genetic (co)variance

NBA 0.89910

MBW −0.08355 0.01461

SDB −0.00018 −0.00009 0.00007

CVB 0.99580 −0.18380 0.00630 2.69300

Permanent environmental (co)variance

NBA 0.14080

MBW 0.00043 0.00509

SDB 0.00025 0.00125 0.00044

CVB −0.04144 0.01841 0.01437 0.84370

Paternal genetic (co)variance

NBA 0.13900

MBW −0.00620 0.00161

SDB −0.00040 0.00032 0.00009

CVB 0.04243 0.00250 0.00230 0.12540

Residual (co)variance

NBA 8.83400

MBW −0.15230 0.02614

SDB 0.02385 −0.00227 0.00586

CVB 3.65600 −0.47270 0.42250 35.2400

Phenotypic (co)variance

NBA 10.01200

MBW −0.24159 0.04745

SDB 0.02352 −0.00079 0.00646

CVB 4.65230 −0.63559 0.44544 38.90200

NBA - number of piglets born alive; MBW - within-litter weight mean at birth; SDB - within-litter weight standard deviation at birth; CVB - 
within-litter weight coefficient of variation at birth.
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weeks, the additive genetic variances ranged from 0.00068 to 0.52980, with the minimum variance for 
SDT and the maximum variance for NT (Table 4). 

Heritabilities ranged from 0.01 to 0.31 for traits evaluated at birth and from 0.01 to 0.10 for traits 
evaluated at three weeks. In general, traits measured at birth presented greater heritability estimates 
when compared with traits evaluated at three weeks (Tables 5 and 6). 

Table 4 - Estimates of (co)variance components from multitrait models for litter traits at three weeks
Trait NT MT SDT CVT

Additive genetic (co)variance

NT 0.52980

MT −0.14620 0.05574

SDT 0.00867 −0.00336 0.00068

CVT 0.36110 −0.13520 0.01454 0.43210

Permanent environmental (co)variance

NT 0.25690

MT 0.08590 0.03102

SDT 0.03278 0.00960 0.00531

CVT 0.41100 0.11480 0.07140 0.99870

Paternal genetic (co)variance

NT 0.07209

MT −0.00895 0.00277

SDT 0.00691 −0.00100 0.00102

CVT 0.13740 −0.02134 0.01937 0.37540

Residual (co)variance

NT 7.90400

MT −0.15440 0.44400

SDT 0.04661 −0.00574 0.07982

CVT 0.91990 −0.74560 1.30200 23.08000

Phenotypic (co)variance

NT 8.76260

MT −0.22363 0.53353

SDT 0.00950 −0.00049 0.08682

CVT 1.82930 −0.78736 1.40730 24.88800

NT - number of piglets at three weeks; MT - within-litter weight mean at three weeks; SDT - within-litter weight standard deviation at three 
weeks; CVT - within-litter weight coefficient of variation at three weeks.

Table 5 - Heritability estimates ± standard errors (†, diagonal), genetic (below diagonal), and phenotypic (above 
diagonal) correlations obtained from multitrait model for litter traits at birth

Trait NBA MBW SDB CVB

NBA 0.09±0.04† −0.35±0.03 0.09±0.03 0.24±0.03

MBW −0.73±0.20 0.31±0.08† −0.04±0.034 −0.47±0.03

SDB −0.02±0.96 −0.09±0.75 0.01±0.04† 0.89±0.01

CVB 0.64±0.34 −0.93±0.21 0.45±0.66 0.07±0.05†

NBA - number of piglets born alive; MBW - within-litter weight mean at birth; SDB - within-litter weight standard deviation at birth; CVB - 
within-litter weight coefficient of variation at birth. 
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Genetic correlations between NBA and MBW and between MBW and CVB (−0.73±0.20 and -0.93±0.21, 
respectively) were moderate to high, whereas the other traits at birth presented low and negligible 
genetic correlations (Table 5). Most of the genetic correlations for traits at three weeks could not be 
considered different from zero considering an interval of 1.96 standard errors either side of the genetic 
correlation estimates, which results in a 95% confidence interval (Zuidema and Wynne, 1989). Only 
the genetic correlation between SDT and CVT (0.85±0.39) was high and different from zero (Table 6). 
Genetic correlations between NBA and NT, MBW and MT, SDB and SDT, and CVB and CVT were 0.95±0.06, 
0.73±0.16, 0.69±0.54, and 0.36±0.80, respectively.

The genetic trends were linear for NBA (Figure 1) and CVB (Figure 2) and quadratic for MBW (Figure 3) 
and SDB (Figure 4), whereas for all traits at three weeks, they were close to zero (Figures 1 to 4).

Discussion

Litter size and uniformity are among the traits of greatest importance in pig production systems. The 
NBA has been traditionally considered in the selection goals of pig breeding programs (Högberg and 
Rydhmer, 2000; Zindove et al., 2014), while litter uniformity is commonly neglected (Banville et al., 
2015). The reasons for the variation in the birth weight of piglets are complex and include, among 
others: degree of oocyte maturation, time required for ovulation, uterine capacity for implantation and 
placentation, position in uterine horn, uteroplacental size and efficiency in nutrient transportation, 
uterine and placental angiogenesis, sow nutritional status, and other genetic and epigenetic effects 
(Wu et al., 2006; Yuan et al., 2015). Among the dispersion measures used to describe the litter weight 

Table 6 - Heritability estimates ± standard errors (†, diagonal), genetic (below diagonal), and phenotypic (above 
diagonal) correlations obtained from multitrait model for litter traits at three weeks

Trait NT MT SDT CVT

NT 0.06±0.04† −0.10±0.03 0.11±0.03 0.12±0.03

MT −0.85±0.45 0.10±0.06† −0.00±0.03 −0.22±0.03

SDT 0.46±1.39 −0.55±1.85 0.01±0.04† 0.96±0.00

CVT 0.75±0.94 −0.87±1.02 0.85±0.39 0.02±0.04†

NT - number of piglets at three weeks; MT - within-litter weight mean at three weeks; SDT - within-litter weight standard deviation at three 
weeks; CVT - within-litter weight coefficient of variation at three weeks.

Figure 1 - Genetic trends for number of piglets born alive (NBA: y = −12.081829897 + 0.006012733x) and for 
number of piglets at three weeks (NT: y = −0.2173564814 + 0.0001097269x) in Landrace pigs.
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Figure 3 - Genetic trends for within-litter weight mean at birth (MBW: y = −5570.121 + 5.534981x − 0.001375011x2; 
maximum point: 2012.7) and for within-litter weight mean at three weeks (MT: y = −0.256777930 + 
0.000125653x) in Landrace pigs.
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Figure 2 - Genetic trends for within-litter weight coefficient of variation at birth (CVB: y = −8.73681352 
+ 0.00435192x) and for within-litter weight coefficient of variation at three weeks (CVT: 
y = −0.745251708 + 0.000372422x) in Landrace pigs.
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Figure 4 - Genetic trends for within-litter weight standard deviation at birth (SDB: y = −1106384 + 10.99419x 
− 0.002731235x2; maximum point: 2012.7) and for within-litter weight standard deviation at three 
weeks (SDT: y = −0.8362231511 + 0.0004142746x) in Landrace pigs.
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uniformity, the CV and/or the SD have been the most applied (Hermesch et al., 2001; Milligan et al., 
2002b; Quiniou et al., 2002; Damgaard et al., 2003; Wolf et al., 2008; Canario et al., 2010; Zindove et al., 
2013; Banville et al., 2015; Wang et al., 2016; Zhang et al., 2016). 

Heritability estimates obtained for NBA, SDB, and CVB were low and similar or lower than those 
reported in literature (Roehe, 1999; Högberg and Rydhmer, 2000; Hermesch et al., 2001; Wolf et al., 
2008; Canario et al., 2010; Banville et al., 2015; Lázaro et al., 2015). Roehe (1999) estimated heritability 
of 0.08±0.04 for NBA in 14,950 pigs. Högberg and Rydhmer (2000) and Banville et al. (2015) reported 
heritability estimates of 0.09±0.03 and 0.19±0.04 for NBA in Yorkshire sows and in a composite Chinese 
dam line, respectively. Lázaro et al. (2015) compared statistical models with different polynomial 
degrees and homogeneous and heterogeneous residual variance structures to evaluate the genetic 
trajectories of litter size in pigs. These authors estimated heritabilities ranging from 0.04 to 0.29 for 
NBA in Landrace pigs. Canario et al. (2010) estimated heritabilities of 0.11±0.02 and 0.10±0.05 for 
NBA and SDB, respectively, for a Norwegian Landrace nucleus population.  Wolf et al. (2008) reported 
heritabilities of 0.14±0.020, 0.03±0.009, and 0.05±0.011 for NBA, SDB, and CVB, respectively, in a 
hyperprolific pig line. Hermesch et al. (2001) reported heritabilities of 0.11±0.03 for CVB in commercial 
pig lines. In our study, CVB presented higher heritability compared with SDB (0.07±0.05 and 0.01±0.04, 
respectively), which is desirable for selection strategies.

The heritability value for MBW was moderate and similar to the values reported by Canario et al. 
(2010) (0.32±0.06) and Varona et al. (2007) (0.24±0.06). On the other hand, the estimate was higher 
than that reported by Wolf et al. (2008) (0.16±0.020) and lower than that reported by Banville et al. 
(2015) (0.51±0.06). The moderate heritability found for MBW in the present study shows that genetic 
improvement for this trait by selection might be feasible.

The heritability estimates at three weeks were lower compared with estimates at birth and with 
those reported in literature (Högberg and Rydhmer, 2000; Damgaard et al., 2003; Canario et al., 
2010; Banville et al., 2015, Zhang et al., 2016). Högberg and Rydhmer (2000) estimated heritabilities 
of 0.13±0.03 and 0.30±0.04 for NT and MT, respectively, in Yorkshire sows. Canario et al. (2010) 
estimated heritabilities of 0.17±0.02 and 0.08±0.01 for MT and SDT, respectively, in a Norwegian 
Landrace nucleus population. Damgaard et al. (2003) reported heritability of 0.06±0.03 for SDT, while 
Banville et al. (2015) found higher heritability for the same trait (0.15±0.05). Zhang et al. (2016) 
reported heritability of 0.07±0.03 for CVT, which was higher than the CVT heritability reported in the 
present study (0.02±0.04). 

In a review addressing the sow nutritional impact on the within-litter variation of piglets’ weight, 
Yuan et al. (2015) considered that the genetic influences on litter homogeneity in pigs could be verified 
by the genetic correlations among the analyzed traits. According to Hermesch et al. (2001), the MBW 
should be considered in pig breeding programs to avoid increased mortality rates due to larger litter 
sizes. Several studies have been performed aiming to increase survival rates in pigs; however, this 
trait showed a negative genetic correlation (−0.73±0.20) with NBA, also confirmed in the studies 
performed by Wolf et al. (2008) and Banville et al. (2015), in which genetic correlations of −0.39±0.09 
and −0.60±0.09, respectively,  were reported between  NBA and MBW. This result is unfavorable, since 
the traditional selection for increased NBA would be decreasing the MBW as a correlated response and, 
consequently, decreasing litter uniformity, since the genetic correlation between MBW and CVB was 
high and negative (−0.93±0.21).

Genetic correlations between NBA and SDB or CVB were low and not different from zero (−0.02±0.96 
and 0.64±0.34, respectively), which indicates that selection for hyperprolificity would have no 
influence on within-litter weight variation at birth. Banville et al. (2015) also reported negligible 
genetic correlation between NBA and SDB (0.17±0.17), while Wolf et al. (2008) reported low to 
moderate genetic correlations between NBA and SDB or CVB (0.17±0.14 and 0.38±0.11, respectively). 
On the other hand, genetic correlation between MBW and CVB (−0.93±0.21) was high and favorable, 
indicating that selection strategies focused on increased MBW would decrease within-litter weight 
variation. This result was different from the genetic correlation estimated between MBW and 
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CVB reported by Hermesch et al. (2001) (−0.26±0.12). The other traits at birth presented low and 
negligible genetic correlations, which is in agreement with the results of Canario et al. (2010). 

Most of the genetic correlations for traits at three weeks were negligible, except for the high and 
positive genetic correlation between SDT and CVT (0.85±0.39). Therefore, it is not recommended 
to simultaneously use these traits in a selection index. Högberg and Rydhmer (2000), Banville et al. 
(2015), and Damgaard et al. (2003) also estimated negligible genetic correlations between NT and 
MT (−0.03±0.14), NT and SDT (−0.35±0.25), and MT and SDT (0.22±0.25), respectively. On the 
other hand, Canario et al. (2010) estimated high and positive genetic correlation between MT and 
SDT (0.77±0.27).

Regarding the genetic correlations between traits at birth and at three weeks, only NBA and NT 
and MBW and MT presented moderate to high and positive correlations (0.95±0.06 and 0.73±0.16, 
respectively), which was favorable, since selection for greater NBA would increase NT, as well as greater 
MBW would present a positive correlated response on MT. Genetic correlation between NBA and NT 
was higher than those reported by Banville et al. (2015) (0.39±0.19) and Su et al. (2007) (0.72±0.06). 
Direct selection for NT is usually impaired due to cross-fostering, which also makes it difficult to 
adequately estimate genetic parameters for this trait (Su et al., 2007). Therefore, based on the high 
genetic correlations between NBA and NT estimated in this study, improvement of NT can be achieved 
by selecting for NBA. Regarding the genetic correlation between MBW and MT, Damgaard et al. (2003) 
also reported moderate estimates (0.61±0.09) for Swedish Yorkshire sows, indicating that selection 
for higher MBW may increase MT as well. Canario et al. (2010) used multitrait models to evaluate 
combinations of MBW, MT, SDB, and SDT and also reported moderate genetic correlations between 
MBW and MT (0.60±0.16). Banville et al. (2015) estimated a correlation of 0.71±0.09 between these 
traits, similar to the result of the present study. In this way, a simple breeding strategy would be 
the selection for greater MBW with a correlated response on MT, without impairing the uniformity, 
since MBW showed moderate heritability (0.31±0.08) and favorable genetic correlations with CVB 
(−0.93±0.21) and MT (0.73±0.16).

The genetic correlations between the variation traits at birth and at three weeks were not different 
from zero (0.69±0.54 and 0.36±0.80 between SDB and SDT and CVB and CVT, respectively), which was 
different from the results of Damgaard et al. (2003), Canario et al. (2010), and Banville et al. (2015), 
who reported moderate to high genetic correlations between SDB and SDT (0.71±0.21, 0.51±0.31, and 
0.53±0.17, respectively). Different statistical models, amount of data, and pig breeds evaluated may 
explain some differences in genetic parameter estimates for traits at birth and at three weeks compared 
with those reported in the literature.

The genetic trend analysis is a useful tool for assessing genetic changes over the years (Santana 
Júnior et al., 2010), aiding to verify the need for adjustments in breeding programs (Euclides Filho et al., 
1997). In this study, NBA and CVB showed linear and positive genetic trends, while the genetic trends 
for MBW and SDB were quadratic, increasing from the year 2009 until reaching the maximum point 
between 2012 and 2013, followed by a decreasing trend until 2016 (Figures 3 and 4). 

Despite the low heritability estimate for NBA, its genetic trend was positive, with annual genetic gains 
of 0.006 piglets, lower than that observed by Chen et al. (2003), who analyzed several pig breeds and 
verified genetic gains of 0.018 piglets per litter per year. Pires et al. (2000) estimated greater genetic 
gains (0.0509 piglets) for the same trait in Landrace pigs from 1993 to 1996; however, the annual 
genetic gain for litter size at weaning estimated by these authors was only 0.0084.

According to Wolf et al. (2008), greater NBA may lead to greater birth weight variability, which can be 
compensated by cross-fostering. This practice may justify the virtually unchanged genetic gain for MT 
over the years. On the other hand, the quadratic effect observed for MBW showed that the selection for 
hyperprolificity was not followed by gains in uterine capacity, placental efficiency, and other factors 
influencing this trait. 
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The linear genetic trends found for NBA and CVB corroborate the results obtained by Wolf et al. (2008), 
who observed lower piglet uniformity with an increase in litter size at birth. However, the quadratic 
genetic trends for MBW and SDB over the years, followed by the linear genetic trends for NBA, lead us 
to presume that there is an optimal intermediate NBA value that provides maximum MBW, although 
this may be also associated with greater SDB. According to Zaleski and Hacker (1993), litters with nine 
piglets at birth provided lower stillbirth. On the other hand, Canario et al. (2006) observed that litters 
with 12 piglets showed the lowest percentage of stillborn piglets. The selection for larger litters results in 
a greater number of piglets with low birth weight, and the improvement of the piglet survival rates should 
be considered (Milligan et al., 2002a). 

In this context, the development of strategies that decrease the within-litter variation at birth and other 
traits negatively related to piglet survival is essential for pig production feasibility (Yuan et al., 2015). 
The unfavorable genetic trends for MBW and CVB showed the need to review the breeding goals to 
evaluate the consequences of increased litter size.

All traits at three weeks showed genetic trends close to zero (Figures 1 to 4). These results were 
different from those of Chen et al. (2003), who verified annual genetic gains of 0.004 piglets per litter at 
weaning. In addition, Pires et al. (2000) and Chen et al. (2003) observed positive annual genetic gains 
for litter weights at birth and at 21 days in Landrace pigs (0.0232 and 0.1118 kg, respectively). The 
economic impact of the within-litter variation of piglet weight has not received the proper attention by 
the breeding companies (Wolf et al., 2008; Zindove et al., 2014), which is evidenced by the low genetic 
progress observed in the last years for within-litter uniformity traits at three weeks.

Conclusions

The within-litter weight coefficient of variation may be the most appropriate variation measure for 
application in breeding programs, especially when evaluated at birth, due to its greater heritability 
estimate and high and negative genetic correlation with within-litter weight mean. The genetic trends 
show that the number of piglets weaned does not follow the increase in the number of piglets born 
alive, emphasizing the need to review the breeding goals, mainly evaluating the economic losses due to 
the reduction of the within-litter weight mean and the increase of its coefficient of variation.
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