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Abstract
Physic nut (Jatropha curcas L.), a small oleaginous tree spontaneously occurring in arid and semi-arid tropical regions, is a
sustainable and renewable energy source for biodiesel. However, the J. curcas yield in such areas should consider soil salinity and
its consequences. Transcription factor (TF) proteins recognize cis-regulatory elements in promoters of genes to be expressed. In
the present work, differentially expressed genes (DEGs) encoding putative TFs from physic nut plants responding to NaCl
(150 mM), after 3 h of exposition, covered 23 TF families. The expressed profiles of members from AP2/ERF and NAC families
basically showed induction after the salt stimulus, while members of bHLH, FHY3-FAR1, and ARF families presented repres-
sion. Concerning the induced TF DEGs, the gene ontology (GO) enrichment analysis highlighted terms related to abiotic stress
responses, while those terms representing the repressed TF DEGs stood out the basal metabolism. In turn, the TF enrichment
analysis predicted those TFs targeting promoters of induced TF DEGs. Some of the enriched TFs may be good candidates as
transgenes in transgenic events. Also, RT-qPCR analyses validated the up-regulation of six TF DEGs (RAV1, ERF9, ZAT12,
PTI5, MYB340, and BZIP4) of eight candidates selected from the expressed TFome. The generated data could help breeders to
better understand the molecular basis of physic nut plants responding to salinity, to select potential candidates for transgenic
studies, as well as to develop functional molecular markers to assist selection steps in breeding programs.
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Key Messages
• First TFome expressed by J. curcas roots after 3 h of NaCl exposition
(150 mM)

• TFome covering 148 differentially expressed genes (DEGs) of 23 TF
families

• TF BPC6 was predicted to regulate more than 40 induced DEGs of
J. curcas plants responding to the salt stimulus

• Eight TF DEGs evaluated by a second gene expression technique (RT-
qPCR analysis)
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Introduction

Physic nut (Jatropha curcas L.) is a perennial tropical plant
belonging to the Euphorbiaceae family that has proven an
alternative source of renewable biofuel producer (Openshaw
2000). J. curcas presents some advantages over the so-called
oleaginous biodiesel plant producers, including the high (30–
50%) oil content in its seeds allied to the relatively easy bio-
fuel conversion (Deore and Johnson 2008); in addition, it does
not compete with human food destination. Since it is a spon-
taneous species occurring in arid and semi-arid tropical re-
gions (Johnson et al. 2011), it is important to address twomain
issues: soil salinity and plant salt stress. Crop production in
arid and semi-arid regions must consider natural saline/sodic
soils, high plant evapotranspiration, low rainfall, and unfavor-
able physical/physicochemical soil properties, which associ-
ated with irrigation problems cause soil salinization and con-
sequences to plant growth (Campos et al. 2012). In plants
growing in regions with low water availability, the lower os-
motic potential at the root zone by the high salt levels in the
soil solution is sufficient to reduce water absorption (Dasgan
et al. 2002). Additionally, ions acting on protoplasm disturb
mineral plant nutrition (Munns 2002), limiting the plant
growth (Gurgel et al. 2003).

Plants exposed to environmental stresses change their me-
tabolisms according to the genes properly activated or re-
pressed (Seki et al. 2002). Genes are expressed and
transcriptomes are reprogrammed based on the set of tran-
scription factors (TFs) activated through signal transduction
in response to a stimulus. The TF proteins recognize the cis-
regulatory elements (CRE) in promoters of genes to be
expressed, which, in turn, regulate the expression (Wang
et al. 2009). Therefore, TFs play a key role in biotic and
abiotic stress responses and plant development (Riechmann
et al. 2000) by spatially and temporally regulating their targets
(Zhang et al. 2011; Jin et al. 2014). Thus, characterizing the
expressed TFome of J. curcas plants after a salt stimulus ben-
efits the understanding on the transcriptional dynamic modu-
lation of genes involved in the salt response, in addition to
improving the J. curcas salt tolerance.

Materials and Methods

Plant Material and the Salinity Assay

We performed two Brazilian J. curcas accessions—Jc183 and
Jc171 (Lozano-Isla et al. 2018)—through a salt treatment as-
say using plants growing in a greenhouse (March 2016) at the
Federal University of Alagoas (UFAL/CECA, Rio Largo, AL,
Brazil; geodesic coordinates 09°28′02″S; 35°49′43″W, alti-
tude 127 m). The regional climate is classified according to
Thornthwaite and Mather (1955) as wet, megathermic, and

moderately water deficient in the summer (December to
March), but with some excess water in the winter (July to
September). For the salt assay, we sown homogeneous seeds
(size and weight) of both accessions in pots (50 L) filled with
20 kg of washed sand. The seedlings from the first eophiles
(5–10 days after germination, DAG) were thinned, leaving
only the most vigorous plant per pot. Sampling followed a
completely randomized design containing three half-siblings’
plants of each accession, two accessions, and two treatments
(with and without salt). Cultivation of the plants involved
irrigation (4 p.m.) every 3 days with Hoagland nutrient solu-
tion (20% w/v) (Epstein 1972). A week before the salt treat-
ment, plants received a 100% Hoagland solution (full
strength) on a daily basis. In the salt treatment, the plants
(60 DAG) were provided (9 a.m.) with NaCl added to the
Hoagland solution (150 mM, final concentration) over a 3-h
exposition period. The negative control treatment comprised
plants irrigated only with the Hoagland solution. After the
NaCl exposure time, we collected the root samples to be im-
mediately frozen in liquid nitrogen (N2) and maintained at −
80 °C until RNA extraction.

RNA Isolation, RNA-Seq Libraries, and Its Sequencing

We isolated the total RNA from the root samples using the SV
Total RNA Isolation System (Promega) and estimated the
RNA concentration on NanoDrop spectrophotometer
(Thermo Scientific NanoDrop 2000). The RNA quality as-
sessment developed through absorbance ratios (OD 260/
280 nm ≥ 1.9 and OD 260/230 nm ≥ 1.9) and 1.5% (w/v)
agarose gel electrophoresis. In addition, we verified the integ-
rity of the RNAs using the Agilent Bioanalyzer 2100 system
(Santa Clara, CA, USA). Samples showing RNA Integrated
Number (RIN) ≥ 9.0 generated the RNA-Seq libraries at the
Genomic Center of the “Luiz de Queiroz” College of
Agriculture (ESALQ/USP, Piracicaba, SP, Brazil). The 12 li-
braries (three half-siblings’ plants × two accessions × two
treatments) were sequenced (2 × 100 bp paired-end) using
the Illumina HiSeq2500 Platform (EurofinsMGW, Germany).

Transcriptome Assembly and the Transcript
Annotation

We visualized the base sequence quality and content of reads
generated from the RNA-Seq paired-end libraries on FastQC
software (v.0.11.5) pre- and post-adapter filtering and trim-
ming (paired-end) steps using the Trimmomatic tool (v.0.36;
Bolger et al. 2014) and default parameters. We discarded low-
quality reads containing unknown adapters and nucleotides
and used pairs of high-quality reads (Phred ≥ 30, all bases)
to perform the de novo transcriptome assembly performed
on Trinity 2.2.0 software (Grabherr et al. 2011). We estimated
the expression levels of assembled transcripts and unigenes on
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RSEM software (Li and Dewey 2011) and applied the align-
ment package Bowtie (v4.4.7; Langmead et al. 2009) to map
reads back to unigenes. The normalized FPKM (Fragment Per
Kilobase of cDNA Per Million fragments mapped) matrices
derived from the RSEM counts and the differential expression
analyses performed on the edgeR package (Robinson et al.
2010). In turn, putative transcripts encoding TFs appeared
after BLASTx alignments (e-value ≤ e−10) against specific
proteins sets downloaded (August 2018) from the following
public databases: NCBI (J. curcas; https://www.ncbi.nlm.nih.
gov/), Phytozome v.12 (Ricinus communis and Manihot
esculenta; https://phytozome.jgi.doe.gov/pz/portal.html), and
UniProtKB/SwissProt (http://www.uniprot.org/).

Identification of the Differential Expressed Genes

Unigenes showing p value ≤ 0.0001, false discovery rate
(FDR) ≤ 0.005, and Log2FC ≥ 1 (classified as up-regulated,
UR) or ≤ − 1 (down-regulated, DR) were considered differen-
tially expressed genes (DEGs). Fold change (FC) value repre-
sented the unigene abundance modulation in the stressed li-
brary in relation to the negative control (henceforth, S vs. C,
for brevity). Hierarchical clustering analysis performed on
Cluster software (v.3.0; https://cluster2.software.informer.
com/3.0/) based on the ratio of Log2FC values of the
unigenes, comparing two treatments and generated
heatmaps, visualized on JavaTreeview software (v.1.1; http://
jtreeview.sourceforge.net).

The GO and TF Enrichment Analyses

We performed the Gene Ontology analysis using the
PlantRegMap tool (http://plantregmap.cbi.pku.edu.cn; Jin
et al. 2014) and the GO terms enrichment analysis applying
a tool from the same database to identify the over-represented
terms (Fisher’s exact tests, p value ≤ 0.01), considering the
input files individually represented by unigenes encoding
TFs, induced or repressed DEGs, or non-DEGs (n.s.). A sim-
ilar procedure included the TF enrichment analysis from the
same database as well. In turn, we generated the Venn dia-
grams using the online tool Venny (http://bioinfogp.cnb.csic.
es/tools/venny/).

Gene Expression Validation Through RT-qPCR Assay

The gene expression of DEGs encoding TF candidates select-
ed based on the in silico RNA-Seq expression included RAP2-
3 (ethylene-responsive transcription factor RAP2-3), RAV1
(AP2/ERF and B3 domain-containing transcription factor
RAV1), ERF9 (ethylene-responsive transcription factor 9),
DREB1H (dehydration-responsive element-binding protein
1H), ZAT12 (Zinc finger protein ZAT12), PTI5 (pathogene-
sis-related genes transcriptional activator PTI5), MYB340

(Myb-related protein 340), and BZIP4 (basic leucine zipper
4); Table S1. The analyses of such candidates developed
through RT-qPCR assays with the primer pairs designed based
on the transcript sequences using the online Primer 3 tool
(Rozen and Skaletsky 2000) with the following some param-
eters adjusted: amplicon size (between 70 and 200 bp), melt-
ing temperature [50 °C (minimum), 70 °C (optimum), and
80 °C (maximum)], and GC content (45–55%). Primers
(Supplementary Table S1) were synthesized by Invitrogen
Life Technologies (USA) and previously tested amplifying
cDNAs through conventional PCR. Subsequently, we per-
formed RT-qPCR reactions on a real-time thermocycler
LineGene 9600 (Bioer®, Hangzhou, China) using SYBR
Green detection system. The PCR reaction (10 μL) included
5 μL of SYBR Green SuperMix (Applied Biosystems, Foster
City CA, EUA), 1 μL of diluted cDNA (1/10), 0.3 μL of each
primer (5 μM), and 3.4 μL ddH2O. The reactions occurred
according to the following programming settings: initial de-
naturation of 95 °C for 2 min, 40 cycles of 95 °C for 15 s, and
60 °C for 60 s. We conducted the RT-qPCR reactions on 96-
well plates containing the three half-siblings of each acces-
sion, and three technical replicates, negative controls, and
two reference genes properly tested for the assays [β-tubulin
and actin (Ma et al. 2015)]. The dissociation curves resulted
from heating the amplicons from 65 to 95 °C for 20 min after
the RT-qPCR cycles. The LineGene software (v.1.1.10) esti-
mated Cq values and the absolute and relative quantifications,
while REST 2009 software (Relative Expression Software
Tool v.2.0.13; Pfaffl et al. 2002) assessed the relative expres-
sion data through a randomization test including 2000 permu-
tations and the hypothesis of significant differences between
the control and treatment groups. For the purpose of data
reliability, the procedures followed the MIQE (The
Minimum Information for Publication of Quantitative Real-
Time PCR Experiments; Bustin et al. 2009).

Results

The J. curcas De Novo Transcriptome and the DEGs
Encoding TFs

The high-throughput sequencing of the 12 J. curcasRNA-Seq
libraries of roots exposed to NaCl (150 mM, three hours)
generated 238,286,823 raw reads. After removing adapters
and trimming the low-quality bases, 230,140,599 high-
quality reads (Phred ≥ 30, all bases; 96.58% of the reads)
allowed the de novo transcriptome assembly, comprising
145,422 assembled transcripts (101 Mb) or 126,342 unigenes
(76 Mb) with a GC% of 41.55. Concerning the transcripts, the
N50 comprised 1308 bp, while unigenes, 993 bp. Our reports
do not address the global transcriptome, but only the
transcripts/unigenes encoding potential TFs. Thus, based on
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the BLASTx analysis (e-value e−10) of the assembled tran-
scr ip ts agains t the annota ted prote ins f rom the
Euphorbiaceae species (Fig. 1), we identified 1876 transcripts
encoding TF candidates. The inclusion of R. communis and
M. esculenta (Phytozome database), both J. curcas-related
species, provided high sequence similarities (Fig. 1) and
higher annotation process efficiency.

The difference (Jc171/4646 and Jc183/57) in the number of
DEGs detected per accession [p value ≤ 0.0001, FDR ≤ 0.005,
Log2FC ≥ 1 (UR) or ≤ −1(DR)] in response to the salt stimulus
highlights the great effort of Jc171 accession to minimize
damages, some only visible in its leaves (Fig. 2).

Based on that, the present investigation of TFs differential-
ly expressed in response to the applied salt was restricted to
the Jc171 accession. One hundred forty-eight of the Jc171
DEGs (78 UR and 70 DR; Table S4) potentially encoding
TF candidates, encompassing 23 TF families (Fig. 3), com-
prised the proposed first TFome expressed after the salt stim-
ulus. The following TF families outstanded in isoforms mem-
bers: AP2/ERF, MYB, bHLH, FHY3/FAR1, WRKY, NAC,
ARF, HD-zip, and bZIP (Fig. 3).

Regarding a single TF family, the proportion of induction
to the repressed DEGs varied (Fig. 4). The following TF fam-
ilies had more induced DEGs: AP2/ERF (22), MYB (14),
NAC (9), and WRKY (7), while the families containing more
repressed DEGs were FHY3/FAR1 (15), bHLH (13), ARF
(9), and MYB (6) (Fig. 4). Additionally, some TF families
presented only UR or DR isoforms members (Fig. 4).

The GO Enrichment Analysis

The PlantRegMap tool identified 71 of the 78 induced DEGs
encoding TF candidates indicating 128 as the enriched GO terms

(p value ≤ 0.01). For 57 of the 70 repressed TF DEGs (TFs)
identified, the enriched GO terms reported 143. The analysis of
the 958 non-DEGs encoding potential TFs revealed enriched GO
terms of 435. Supplementary Table S2 provides the enriched
terms distributed into the three main GO categories [Biological
Process (BP),Molecular Function (MF), andCellular Component
(CC)]. Comparing the three sets of enriched terms using a Venn
diagram associated with the URTF DEGs, the following six GO
terms stood out: metabolic process (GO:0008152), response to
wounding (GO:0009611), death (GO:0016265), cell death
(GO:0008219), heterocyclic compound binding (GO:1901363),
and organic cyclic compound binding (GO:0097159) (Fig. 5a).
The following enriched GO terms (eight) highlight in the DRTF
DEGs (Fig. 5a): single-organism cellular process (GO:0044763),
vegetative phase change (GO:0010050), cell proliferation
(GO:0008283), single-organism process (GO:0044699), negative
regulation of growth (GO:0045926), regulation of cell prolifera-
tion (GO:0042127), cell fate commitment (GO:0045165), and
regulation of circadian rhythm (GO:0042752).

The TF Enrichment Analysis

By defining the induced TF DEGs as the target genes (72), the
TF enrichment analysis predicted 1164 regulations by 245
TFs, but the TFs considered enriched numbered 126. Upon
the repressed TF DEGs comprising the target genes (58), the
analysis predicted 729 regulations/185 TFs, while the
enriched ones numbered 55. When the non-DEGs codifying
TFs (n.s.) comprised the target genes (1000), the analysis pre-
dicted 11,936 regulations/302 TFs, out of which 123 were
enriched TFs. Supplementary Table S3 lists the enriched
TFs, their TF families, and number of predicted target genes
from the UR, DR, or non-DEGs. A comparison of the three

Fig. 1 Venn diagram showing
numbers of Jatropha curcas
RNA-Seq transcripts (from roots
of plants after a 3-h NaCl
exposition; 150 mM) encoding
transcript factor proteins similar
(e-value ≤ e−10) to those from
different public proteins databases
(NCBI, https://www.ncbi.nlm.
nih.gov/.; Phytozome, https://
phytozome.jgi.doe.gov/pz/portal.
html; UniProt, https://www.
uniprot.org/)
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sets of enriched TFs in a Venn diagram revealed 39 enriched
TFs interacting exclusively with promoters of induced TF
DEGs (as their targets), while those interacting only with the
repressed TF DEGs numbered 19 TFs, and those associated
only with the non-DEGs counted for 34 TFs (Fig. 5b).
Enriched TFs from the ERF family (22) comprised most of
those predicted interacting exclusively with induced TF
DEGs, but ERF family members (28) also stood out in the
non-DEGs codifying TFs. In turn, Dof family members (9)
interacted mostly with the DR TF DEGs. Figure 6 illustrates
the TF families and their enriched TFs predicting targeting
promoters of unigenes (UR or DR DEGs, or non-DEGs)
codifiers of TF candidates expressed in J. curcas roots after
the salt stimulus. Additionally, Supplementary Table S3 pro-
vides the number of possible target genes.

Expressed Profiles of the Most Representative TF
Families Associated with Salt Response

Figure 7 shows the heatmaps indicating the expressed
profiles of the most representative TF family members.
In addition, Supplementary Table S4 provides the expres-
sion data based on the ratio of Log2FC values modulated
by the Jc171 accession after the salt stimulus in relation to
the negative control. The nt sequences are also provided.
Almost all AP2/ERF family members were up-regulated
after the salt stimulus (Fig. 7a). Similar profile was ob-
served in members of the NAC family (Fig. 7e). Members
of MYB (Fig. 7b), WRKY (Fig. 7f), and bZIP (Fig. 7h)
family showed more up- than down-regulation. A balance
with up- and down-regulation comprised the HD-ZIP

Fig. 3 Transcription factor (TF) families associated with differentially expressed genes [DEG: p value ≤ 0.0001, FDR ≤ 0.005, Log2FC ≥ 1 or ≤−1] from
Jatropha curcas Jc171 accession after salt treatment (150 mMNaCl). The TF family name is followed by the total of DEGs and the corresponding percentage

Fig. 2 Visual damages on leaves
of Jatropha curcas Jc171
accession, after a 3-h NaCl
exposition (150 mM), and not
found in the Jc183 accession
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family members (Fig. 7i). In turn, almost all members of
the bHLH family were down-regulated (Fig. 7c) and the
totality of the FHY3-FAR1 (Fig. 7d) and ARF (Fig. 7g)
members exhibited down-expression after the salt
stimulus.

Expression Validation of TF DEGs Through RT-qPCR
Analysis

We assessed eight DEGs encoding TF candidates through RT-
qPCR assays to confirm the in silico expressed profiles. The

Fig. 4 Families of transcription
factors showing differentially
expressed genes [DEG: p value ≤
0.0001, FDR ≤ 0.005, Log2FC ≥
1 or ≤ − 1] from Jc171 accession
after salt treatment (150 mM
NaCl): the induced DEGs are
represented by red bars and the
repressed DEGs by the green bars

Fig. 5 Venn diagram comparing
the enriched GO terms (a) or the
enriched TFs (b) identified by the
respective PlantRegMap tool
using individually different input
gene list: the UR DEGs, the DR
DEGs, or the non-DEGs. DEG.
differentially expressed gene
(thresholds: p value ≤ 0.0001,
FDR ≤ 0.005, Log2FC ≥ 1 (UR,
up-regulated) or ≤ − 1 (DR,
down-regulated))
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selected DEGs (RAP2-3, RAV1, ERF9, DREB1H, ZAT12,
PTI5, MYB340, and BZIP4) and the reference genes (β-
tubulin and actin) presented the expected amplicon, according
to the respective dissociation curves (Supplementary Fig. S1).
The RT-qPCR parameters [amplification efficiency (E), slope
(S), and correlation coefficient (R)] derived from standard
curves generated using serial dilution of cDNAs samples
and each primer pair presented acceptable values (Table 1),
following the recommendation in the MIQE protocol (Bustin
et al. 2009). In general, most of the RT-qPCR results (75%)
confirmed the in silico gene expression (except for RAP2-3
and DREB1H), suggesting the reliability of the expressed
TFome (Fig. 8, and Table 2).

Discussion

Transcriptomic studies have been performed in plants and
some of the identified TFs associated with plant abiotic stress
responses, showing interactions with the transcriptional
reprogramming activation in living cells (Seki et al. 2002).
Since many TFs described in plant abiotic stress responses
play a crucial role in stress tolerance processes (Lata and
Prasad 2011), the expressionmodulated by TFs usually results
in dramatic metabolic changes (Liu et al. 1998). Here, a de
novo RNA-Seq transcriptome analysis uncovered the pro-
posed first TFome differentially expressed in roots of
J. curcas plants (Brazilian Jc171 accession) early responding
a NaCl stimulus (150 mM). Jc171 seeds presented a particular
ability in germination, despite the presence of NaCl until that

concentration (Lozano-Isla et al. 2018). In the present study,
10 weeks after germination plants of the Brazilian J. curcas
accessions were exposed to 150 mM NaCl, during 3 h. Since
TFs are involved in gene regulation, the work aimed to study
the early response of the two previously known cultivars dif-
ferentially responding to salt stimulus. Thus, the repertory of
the identified FT candidates (the TFome) and their respective
gene expression modulation by each cultivar could reflect the
salt perception and the early salt response. Considering the
transcriptomic approaches applied to J. curcas plants in re-
sponse to abiotic stresses, the literature includes low temper-
atures (Wang et al. 2013; Wang et al. 2014), flooding
(Juntawong et al. 2014), drought (Cartagena et al. 2015;
Sapeta et al. 2015; Zhang et al. 2015), and salinity (Zhang
et al. 2014). Concerning salinity, Zhang et al. (2014) reported
transcriptomic data (Illumina 21 bp tags) from roots and
leaves of the cultivar GZQX0401 (the GenBank reference
genome, GCA_000696525.1, 8 weeks germinating plants),
after 100 mM NaCl exposition (2 hs, 2 days, and 7 days).
The mentioned authors described more regulated genes in
roots, 2 h after the stress, than after 2 days.

Also concerning the present salt assay, it should be men-
tioned that an automatic weather station monitored the tem-
perature and the relative air humidity inside the greenhouse,
and vapor pressure deficit (VPD) values were calculated
based on those data. Besides, pyranometers measured the
photosynthetically active radiation (PAR). Taking all these
into account, in the day of salt application, the values of
average daytime air temperature (27.93 °C), vapor pressure
deficit (VPD of 0.99 kPa), and integrated global radiation

Fig. 6 Distribution of enriched FT family members predicting targeting
promoters of different sets of TF genes: the up-regulated DEGs (a), the
down-regulated DEGs (b), and the non-DEGs (c) expressed in roots of

J. curcas after salt treatment (150 mM NaCl, 3 h). DEGs (threshold: p
value ≤ 0.0001, FDR ≤ 0.005, Log2FC ≥ 1 or ≤ − 1)
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over 24 h (5.50MJ.m−2.day−1) remained within the range of
the days before the salt treatment (M. Pompelli, personal
communication, August, 30, 2019), and the analyzed plants

were considered in their steady-state condition. In this way,
if the transcriptomic analyses showed significant transcrip-
tional modulations after the salt treatment, the changes

Fig. 7 Heatmaps based on gene
expression modulation of TFs
family members identified in
Jatropha curcas Jc171 roots after
a 3-h NaCl exposition (150 mM),
in relation to the negative control
without salt (ratio of Log2FC
values). The up- and down-
regulation of the differentially
expressed genes are indicated in
red and green, respectively, and
the intensity of the colors follows
the legend
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could be consequence of the salt stimulus. Phenotypically,
after 3 h of the salt exposure (150 mM NaCl), visible

symptoms (wilting, dehydration, and necrosis) were ob-
served on leaves of Jc171 (the salt-sensitive accession).
Similar visible damages (wilting and leaves dehydration)
on G. hirsutum leaves of the cotton salt-sensitive Nan Dan
Ba Di Da Hua genotype were associated to the saline stress
(200mMNaCl) after 0.5 h of the salt treatment (after 4 h, the
wilting was more severe; Peng et al. 2014).

Considering the generated RNA-Seq transcriptome, the iden-
tified TFs candidates differentially expressed after the salt stimu-
lus provided insights on metabolic strategies of plants early
responding to salinity. From the annotated assembled transcripts
encoding TFs (1876), almost 8%were declared DEGs (p value ≤
0.0001, FDR ≤ 0.005, Log2FC ≥ 1 or ≤− 1) after the salt treat-
ment. The gene ontology characterization of the two set of TF
DEGs, those comprising the up-expressed TFs or the down-
expressed TFs, showed distinct enriched GO terms. In addition
to the enriched GO terms related to stress responses, as expected,
terms related to cell death were also highlighted considering the
up-expressed TF DEGs. Programmed cell death (PCD) is a crit-
ical process in eukaryotic cells (Lam 2008) mediating adaptive
responses of plants to environmental stresses (Shabala 2009). The
ionic imbalance induced by salt stress may promote PCD
(Katsuhara and Shibasaka 2000; Huh et al. 2002). Plants of the
Jc171 accession after 3 h of the salt stimulus presented visible
damages on their leaves; some of them are likely to progress to
necrosis. Otherwise, the transcription factor MYB108, despite
suppressing PCD dissemination in A. thaliana injury sites
(Mengiste et al. 2003), associated with oxidative stress, salinity,
and water deficit responses. In this study, two DEGs MYB108-
related showed up-expression after the salt stimulus
(DN31858_c0_g1 and DN20826_c0_g1).

In turn, enriched GO terms associated with the down-
expressed DEGs highlighted more plant developmental activ-
ities, despite regulation of circadian rhythm, which is also
involved in adaptive stress responses (Hotta et al. 2007;
Legnaioli et al. 2009; Grundy et al. 2015; Seo and Mas
2015). Some of the metabolic and biochemical processes af-
fected by circadian rhythms include cellular Ca2+ levels oscil-
lations (Johnson et al. 1995), water uptake by roots (Takase
et al. 2011), stomatal opening (McClung 2001), and photo-
synthesis and respiration (Kreps and Kay 1997). In this study,
the MYB-related TF CCA1 (circadian clock associated1) was
encoded by the DEG DN29723_c0_g2. CCA1 is a transcrip-
tional activator strictly involved in circadian rhythm regula-
tion binding promoters of at least two genes encoding proteins
related to the photosystem II (Lhcb, light-harvesting chloro-
phyll a/b-protein; Wang and Tobin 1998). Saline stress is
known to cause disturbances in photosynthesis since salinity
increases soil osmotic potential, reduces water uptake by
roots, and leads to a decrease in plant growth (Sudhir and
Murthy 2004; Barhoumi et al. 2007) by compromising roots
and leaves growth rates (Munns and Tester 2008), finally re-
ducing the photosynthesis (Julkowska and Testerink 2015).

Table 1 RT-qPCR parameters [amplification efficiency (E), slope (S),
correlation coefficient (R), and Y intercept] derived from the standard
curves using serial dilution of Jatropha curcas root cDNAs samples
(accessions and treatments) and each primer pair

Gene (candidate/referencea) E (%) R S Y intercept

RAP2-3 91.51 − 0.994 − 3.54 27.78

RAV1 91.30 − 0.998 − 3.55 36.14

ERF9 105.45 − 0.992 − 3.20 34.68

DREB1H 98.69 − 0.996 − 3.35 33.64

ZAT12 104.71 − 0.927 − 3.21 33.88

PTI5 104.91 − 0.915 − 3.21 32.55

MYB340 109.78 − 0.974 − 3.11 34.12

BZIP4 91.03 − 0.999 − 3.56 32.59

β-tubulina 96.00 − 0.986 − 3.42 30.90

Actina 90.15 − 0.998 − 3.58 26.99

a Reference gene: actin (Tang et al. 2016) and β-tubulin (Xu et al. 2016)

Fig. 8 RT-qPCR results of eight candidate genes encoding TFs using
cDNAs of Jatropha curcas root after a 3-h of NaCl exposition
(150 mM). Expression data calculated by the REST software (v.2.0.13)
(Pfaffl et al. 2002) considering biological (half-siblings’ plants) and tech-
nical triplicates, and actin and β-tubulin as the reference genes
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Concerning the TFs possible regulating the observed
TFome, the enriched TFs showing predicted interactions with
the up-expressed TF DEGs were more comprehensive and
broadly distributed into TF families than those based on the
down-expressed TF DEGs, probably indicating an increased
demand for particular TFs regulating the Jc171 salt response.
In the analysis, two enriched TFs from the BBR-BPC family
[BPC1 (BASIC PENTACYSTEINE1) and BPC6 (BASIC
PENTACYSTEINE6)] stood out inducing 29 and 41 UR TF
DEGs, respectively, including 25 common DEGs. The TF
BPC1 regulates the floral homeotic STK gene (seedstick),
which controls tissue identity through the regulation of several
processes (Kooiker et al. 2005), while TF BPC6 is a transcrip-
tional regulator of LHP1 (like heterochromatin protein1) gene,
which is associated with a polycomb repressive complex
(PRC) component involved in plant epigenetic control by his-
tone methylation (Schuettengruber and Cavalli 2013; Hecker
et al. 2015). Additionally, enriched TFs members of the Dof
family presented meaningful interactions with the UR TF
DEGs. The enriched Dof zinc finger proteins DOF3.1 and
DOF3.6 probable induced 28 and 33 of the UR TF DEGs
targeting common promoters of 22 of those DEGs. The TF
DOF3.6 acts in plant growth and development targeting genes
induced by salicylic acid, such as ORG1, ORG2, and ORG3
(OBP3-responsive genes; Kang et al. 2003). OBP3 is also a
Dof TF. Additional enriched TFs from the Dof family were
DOF5.6 and DOF3.4, inducing 23 UR TF DEGs (13 shared
targets). DOF5.6 acts on the regulation of vascular tissue de-
velopment (Guo et al. 2009), while DOF3.4 is involved in the
cell cycle regulation (Skirycz et al. 2008). Two enriched TFs
members of the AP2/ERF family, ERF1B (Ethylene-
responsive transcription factor 1B) and ERF5 (Ethylene-re-
sponsive transcription factor 5), also stood out, regulating 15
and 16 UR TF DEGs, respectively (sharing 12 targets). The
TF ERF1B associated to salinity tolerance in Avicennia
officinalis (Krishnamurthy et al. 2017), while ERF5 associat-
ed with drought and salinity responses in Solanum
lycopersicum (Pan et al. 2012). Concerning the TF C2H2
family, the enriched TF IIIA probable regulates 23 UR TF

DEGs; the over expression of TFIIIA gene was previously
associated with the salt tolerance in Medicago truncatula
(De Lorenzo et al. 2007). From the TF WRKY family, inter-
actions of three enriched TFs were predicted for two/three UR
DEGs, e.g., the TF WRKY1, already associated with salinity
and drought tolerance in Triticum turgidum (Mondini et al.
2012), can target promoters of ERF1B and ZAT10 (Zinc finger
protein ZAT10) DEGs. All the above-mentioned enriched TFs
could be candidates, as transgenes in events of transgeny in
breeding programs. Since pyrimidization of transgenes is a
valuable strategy, combining desirable characteristics of each
transgene, the use of the proposed candidates could also im-
prove the expected response to the salt stimulus.

Although the TF involvement in abiotic stress tolerance has
been established (Reyes et al. 2004; Yanhui et al. 2006; Du et al.
2009; Yang et al. 2011; Cabello et al. 2012; Xie et al. 2012; Zhu
et al. 2014; Zhang et al. 2014b), and TFs families reported to
orchestrate stress responses in plants, such as MYB, AP2/ERF,
bZIP, MYC, NAC, HD-zip, and WRKY (Singh et al. 2002;
Shameer et al. 2009), a comprehensive TFome covering TFs
differentially expressed in J. curcas roots after salt stimulus has
not been presented. Concerning the almost 70 TF families iden-
tified in plants (Pérez-Rodríguez et al. 2010; Hong 2016), based
on the DNA-binding domains (Riechmann et al. 2000), the pre-
sented TFome covered 23 TF families and encompassed 148
members differentially expressed after the salt stimulus. Until
now, TF families presenting a J. curcas genome-wide analysis
include WRKY (Xiong et al. 2013), NAC (Wu et al. 2015),
MYB (Zhou et al. 2015), and AP2/ERF (Tang et al. 2016).
Basically, in the mentioned reports, the authors explored Digital
Gene Expression (DGE) analysis identifying TFs from the fam-
ilies in tissues (root, stem, leaf, or seed) of plants under stress
(drought, phosphate or nitrogen starvation, and salinity). In the
case of salinity, the salt stress involved plants/seedlings under
100 mM NaCl for 2 h, in addition to 2 or 7 days. In this study,
plants presented similar development were submitted to 150mM
NaCl for a 3-h exposition. Additionally, gene expression includ-
ing validation developed through semi-quantitative RT-PCR
(Xiong et al. 2013; Zhou et al. 2015; Tang et al. 2016) or RT-
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Table 2 Selected putative transcript factor genes (DEGs) with the respective in silico expressions based on RNA-Seq data and their expression by RT-
qPCR analysis with Jatropha curcas cDNAs from roots after 3 h of NaCl exposition (150 mM)

Method RAP2-3 RAV1 ERF9 DREB1H ZAT12 PTI5 BZIP4 MY340

In silicoa 2.665 (UR) 2.413 (UR) 3.390 (UR) 2.294 (UR) 3.659 (UR) 2.738 (UR) 2.072–2.260 (UR) 4.392 (UR)

RT-qPCRb 1.512 (n.s.) 2.023 (UR) 2.555 (UR) 1.849 (n.s.) 2.468 (UR) 2.225 (UR) 2.634 (UR) 2.346 (UR)

DEGs (differentially expressed genes: p value ≤ 0.0001, false discovery rate (FDR ≤ 0.005), and fold change (FC) based on Log2 (FC) ≥ 1 (up-regulated,
UR) or ≤ − 1 (down-regulated, DR))
a Log2FC values (FC: ratio of normalized transcript abundance observed in the stressed library in relation to the respective abundance in the control
library)
b Relative expression by REST software (v.2.0.13) (Pfaffl et al. 2002), UR (p ≤ 0.05) considering biological (half-siblings’ plants) and technical
triplicates, and actin and β-tubulin as the reference genes



qPCR analysis (Wu et al. 2015; Tang et al. 2016). In our case,
selected RNA-Seq assembled transcripts were validated only
through RT-qPCR analysis using at least two reference genes.
However, despite the wide distribution covering 23 TF families,
some described plant from TF families did not present declared
DEGs responding to the salt stimulus. Such TF families included
ABI3VP1, LFY, SBP, Alfin-like, CCAAT, LIM, Sigma70-like,
CPP, LOB, SRS, CSD, TAZ, ARR-B, DBP, mTERF, TCP,
BBR/BPC, E2F-DP, Tify, BES1, EIL, TIG, BSD, FHA,
NOZZLE, TUB, G2-like, OFP, ULT, GeBP, SAP, VARL, Dof,
PBF-2-like, VOZ, GRF, PLATZ, YABBY, RWP-RK, HRT,
S1Fa-like, Zn-clus, and C3H. Among these families, TFs mem-
bers of Dof (Li et al. 2016;Wen et al. 2016;Ma et al. 2015), TCP
(Zhou et al. 2013; Yin et al. 2018), and CCAAT families (Nelson
et al. 2007; Kuromori et al. 2014) had been associated with
abiotic stress tolerance, including salinity in specific cases.
Furthermore, regarding those families, a broad RNA-Seq analy-
sis on Hippophae rhamnoides plants under drought stress pre-
sented induced TFsmembers from the familiesmTERF, PLATZ,
TUB, and LIM, while repressed TF members appeared in the
families ABI3VP1, Dof, YABBY, CCAAT, FHA, G2-like, and
C3H (Ye et al. 2018). In our RNA-Seq analysis, the main results
covering the proposed TFome included the following:

AP2/ERF Family Members have fundamental roles in plant
development and biotic or abiotic stress responses (Tang
et al. 2017). Some potential members encoded by DEGs in-
clude the following:

& ERF3 (Ethylene-responsive transcription factor 3;
DN37072_c1_g1): Gene over-expression confirmed in
plants under cold and drought stresses (Cao et al. 2006;
Trujillo et al. 2008); TF probably promoting positive reg-
ulation of the physiological adaptive response to drought/
salinity tolerance by increasing proline content, chloro-
phyll accumulation, and cell redox homeostasis regula-
tion, as determined in wheat (Triticum aestivum) transgen-
ic plants (Rong et al. 2014).

& ERF1 (Ethylene-responsive transcription factor1;
DN7846_c0_g1): Gene expression modulated by
jasmonic (JA; Dombrecht et al. 2007), gibberellic acid
(GA; Liu and Hou 2018), and some abiotic stress
(Vergnolle et al. 2005); TF contains a repressor domain
that interacts with dehydration-responsive element (DRE)
in the ACS2/5 (1-Aminocyclopropane-1-carboxylic acid
synthase) gene promoter, affecting the ETH biosynthesis
under higher ABA levels (Li et al. 2011).

& ERF21 (Ethylene-responsive transcription factor 21;
DN51470_c0_g1): TF binding to the promoter of RD29A
gene (Mitsuda et al. 2010), known to regulate mechanisms
of perception and fast induction in water deficit situations
(Yamaguchi-Shinozaki and Shinozaki 1993).

& ERF12 (Ethylene-responsive transcription factor ERF12,
also known as DREB26; DN27804_c0_g1): TF highly
responsive to salt (200 mM NaCl), heat, and drought
(Krishnaswamy et al. 2011); as a DREB subfamily mem-
ber (Guo et al. 2005) has an amphiphilic repressionmotive
(Zhao et al. 2014), characteristic to repressor proteins that
inhibit the expression of stress-related genes (Kazan
2006).

& DREB1H (Dehydration-responsive element-binding
protein 1H; DN11306_c0_g1): TF playing a crucial
role in plant development and gene expression medi-
ated by abiotic stresses (Zhao et al. 2014); however,
the RT-qPCR analysis did not confirm the DEG up-
regulation.

& DREB2C (Dehydration-responsive element-binding pro-
tein 2C; DN18083_c0_g2): Transcriptional activator of
genes, such as COR15A (cold-regulated 15a; salinity tol-
erance; Song et al. 2014), HsfA3 (heat shock factor a3;
heat stress response; Chen et al. 2010), NCED9 (9-cis-
epoxycarotenoid dioxygenase 9; ABA biosynthesis; Je
et al. 2014a), CYS4 (phytocystatin 4; thermotolerance; Je
et al. 2014b).

& ERF1B (Ethylene-responsive transcription factor 1B;
DN74024_c0_g1): TF related to the ETH signaling
(Corbacho et al. 2013); the transcript up-regulation has
been reported in plant responding to drought in soybean
(Ferreira Neto et al. 2013) and tomato (Egea et al. 2018).

& RAV1 (AP2/ERF and B3 domain-containing transcription
factor RAV1; DN49504_c0_g1): Acts in ABA signaling
during seed germination and early seedling development
(Feng et al. 2014); the RT-qPCR analysis validated the
DEG up-regulation.

& ERF9 (Ethylene-responsive transcription factor 9;
DN31778_c0_g1): The respective gene is induced in
leaves and roots at different development stages under
saline stress in tomato (Gharsallah et al. 2016); the RT-
qPCR analysis confirmed the DEG up-regulation.

& RAP2-3 (Ethylene-responsive transcription factor
RAP2-3; DN5779_c0_g1): TF modulating osmotic
tolerance inducing genes like PDC1 (pyruvate decar-
boxylase1), SUS1, and SUS4 (sucrose synthases) when
associated with ABA signaling (Gibbs et al. 2015;
Papdi et al. 2015); unfortunately, the RT-qPCR analy-
sis did not confirm the DEG up-regulation.

& PTI5 (Pathogenesis-related genes transcriptional activator
PTI5; DN43242_c3_g1): TF activating genes regulated
by salicylic acid (SA), such as PR1 and PR2
(pathogenesis-related genes) (Gu et al. 2002), involved
in the systemic acquired resistance (SAR) process during
phytopathogen infection (Ryals et al. 1996; Feys and
Parker 2000); the RT-qPCR analysis confirmed the DEG
up-regulation.
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WRKY FamilyMembers of this family are involved in the con-
trol of biotic and abiotic stress responses (Ulker and Somssich
2004; Rushton et al. 2010). Some potential members encoded
by DEGs include the following:

& WRKY40 (WRKY t r an s c r i p t i o n f a c t o r 40 ;
DN51829_c0_g1, and DN85701_c0_g1): TF negatively
modulating the expression of JA repressors signaling
pathway (JAZ7, JAZ8, and JAZ10) and participating in
the defense systems (Glazebrook 2005). It acts primarily
on plant defense susceptibility, but is influenced by previ-
ous stresses (stressors may have an antagonistic,
synergistic, or additive effect on plant; Anderson et al.
2004; Asselbergh et al. 2008).

& WRKY70 (DN63330_c0_g1): This TF is a saline stress-
response regulator interacting with another TF (Cys2/His2
zinc finger Zat7); both TFs were involved in higher salt
tolerance (Ciftci-Yilmaz et al. 2007).

& WRKY45 (DN99021_c0_g1): The respective gene is in-
duced in ABA hormone-related response and stress re-
sponses, including NaCl, dehydration, cold, heat, and
pathogens infections (Yu and Qiu 2009).

& WRKY57 (DN40050_c0_g1): TF interacting with pro-
moters of genes, such as RD29A (Yamaguchi-Shinozaki
and Shinozaki 1993) and NCED3 (Chernys and Zeevaart
2000), assisting the plant adaptation regarding water stress
tolerance by increasing ABA levels (Finkelstein et al. 2002);
the phytohormone ABA regulates essential processes in
plants (germination, seed dormancy, and stomatal behavior;
Liotenberg et al. 1999); under ABA influence and abiotic
stress (osmotic, salinity, and drought; Jiang et al. 2012),
which TF affects A. thaliana germination.

MYB Family Members of this family have been investigated
regarding their biotic and abiotic stress responses (Denekamp
and Smeekens 2003; Seo et al. 2009). Some potential TF
encoded by DEGs include the following:

& MYB108 (DN20826_c0_g1): TF regulating abiotic
stresses responses (e.g., salinity, drought, and cold)
through the JA pathway and the ROS-mediated cellular
signaling (Mengiste et al. 2003; Schmid et al. 2005).

& KUA1 (DN61071_c0_g1): Transcriptional repressor of
genes encoding peroxidases (PRXs; Lu et al. 2014);
PRXs also promote ROS generation, such as H2O2, which
can cleave the polymers of the cell wall, restricting plant
growth (Passardi et al. 2004).

& MYB340 (DN41011_c2_g4): This TF activates the PAL
gene (phenylalanine ammonia-lyase) transcription bind-
ing to its promoter (Moyano et al. 1996); the PAL enzyme
is involved in the phenylpropanoid metabolism, and
stresses (e.g., drought, and salinity) stimulating such

metabolism (Cabane et al. 2012) generate precursors for
lignin biosynthesis (Davin and Lewis 1992), which also
associates with stress tolerance (Liu et al. 2018); the RT-
qPCR analysis confirmed the DEG up-regulation.

& MYBS1 (DN15053_c0_g1): TF recognizes the TATCCA
motif in promoters of genes (e.g.,α-amylase gene), induc-
ing its expression (Lu et al. 2002); however, during salt
stress, the α-amylase activity degrading starch and releas-
ing soluble sugar molecules is reduced (Lin and Kao
1995; Siddiqui and Khan 2011), affecting processes such
as germination and plant growth (Mei and Song 2008).

& SRM1 (Salt-Related MYB1; DN50735_c0_g1): This TF
regulates the synthesis and signaling of ABA during ger-
mination and seed development in salinity conditions ac-
tivating the expression of the NCED3/STO1 gene, a me-
diator of the ABA biosynthesis (Iuchi et al. 2001; Barrero
et al. 2006).

& ETC1 (enhancer of try and cpc 1; DN98044_c0_g1):
MYB-like transcription factor ETC1 acts as a negative
regulator of trichome development, but also promotes an
increased root hair development (Kirik et al. 2004).

& MYB59 (DN20471_c0_g1): TF involved in cell cycle
regulation and root growth (Mu et al. 2009); TF also
responding to ETH and JA (Razzaque et al. 2017).

HD-ZIP Family Members of this family play a significant
role in plant growth and development responding to sev-
eral phytohormone stimuli and stresses (Ge et al. 2015;
Mao et al. 2016); in wheat (Triticum aestivum) plants, the
salt-sensitive CS genotype presented 21 induced HD-Zip
genes, while the salt-tolerant DK presented 18 (Yue et al.
2018). Potential members encoded by DEGs include the
following:

& HAT5 (DEGDN25199_c0_g1): This TF (homeobox-leucine
zipper protein) associated with salt stress tolerance in
Thellungiella halophila (halophytic plant; Wang et al. 2004).

& ATHB-12 (DN61457_c0_g1): In transgenic plants under
drought conditions, ATHB-12 and ATHB-7 act as nega-
tive plant development regulators in response to the ABA
levels (Olsson et al. 2004); plants in salinity conditions
induce ABA biosynthesis (Mahajan and Tuteja 2005)
responding to the osmotic and water deficit stresses
(Popova et al. 1995; He and Cramer 1996).

& ATHB-7 (DN73459_c0_g1): The respective gene was
strongly induced by drought and ABA (Söderman et al.
1996); in addition, the ectopic expression of ATHB7 gene
in tomato provided drought tolerance (Mishra et al. 2012).

NAC Family Members of the NAC (NAM, ATAF, and CUC)
family present crucial roles in plant development (Kunieda
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et al. 2008; Ohtani et al. 2011) and stress responses (Takasaki
et al. 2015). Potential NAC members encoded by DEGs in-
clude the following:

& NAC72 (NAC domain-containing protein 72;
DN34336_c0_g): The respective gene was induced
by ABA (100 μM ABA), salinity (250 mM NaCl),
and drought (Tran et al. 2004), which was associated
with stress level (Wu et al. 2016); the TF NAC72
(Poncirus trifoliata) is the transcriptional repressor
of ADC (arginine decarboxylase) gene (Wu et al.
2016), whose enzyme is critical to putrescine (Put)
biosynthesis (Put is an osmoprotectant compound
reducing oxidative damages in roots; Zhang et al.
2014a); the TF NAC72 binds to the CATGTG motif
in promoters of genes, such as ERD1 (early respon-
sive to dehydration stress 1) gene whose protein
(ClpA, ATP-dependent CLP protease ATP-binding
subunit clpA; Tran et al. 2004) is essential for the
maintenance of the chloroplast enzymatic apparatus
(Sjögren and Clarke 2011).

& NAC100 (DN30888_c0_g1): TF binding promoters of
cell expansion-related genes, such as CESA2 (cellulose
synthase2), and PIP (Plasma Membrane Intrinsic
Protein) aquaporins (Pei et al. 2013), gateways for cell
membrane water exchange (Yaneff et al. 2015).

& NAC2 (DN23154_c0_g2, and DN23154_c0_g3):
Induction of NAC2 gene in roots of A. thaliana plants
responding to saline stress (200 mM NaCl) has been re-
ported previously (He et al. 2005).

bZIP FamilyMembers of this family mediate several biolog-
ical processes, including energetic metabolism (Baena-
González et al. 2007), cell expansion (Fukazawa et al.
2000), tissue and organ differentiation (Silveira et al.
2007), seed maturation, and embryogenesis (Lara et al.
2003); bZIP members also participate in biotic (Thurow
et al. 2005) and abiotic stress responses (Ji et al. 2018),
including drought and salinity (Ying et al. 2012; Liu et al.
2014). Potential bZIP members encoded by induced DEGs
comprised the following:

& bZIP43 (Basic leucine zipper 43; DN36296_c4_g1): A
positive regulator of bHLH109 gene (Nowak and Gaj
2016), associated with increasing LEA (late embryogene-
sis abundant) protein and enhancing plant stress tolerance
(Nowak and Gaj 2016).

& bZIP4 (DN10303_c0_g1, and DN41139_c0_g2): In addi-
tion, a positive regulator of the bHLH109 gene (Nowak
and Gaj 2016), the up-regulation of the DEG
(DN41139_c0_g2) corroborated with the RT-qPCR
results.

C2H2-ZFP (C2H2 Type Zinc Finger Protein) FamilyMembers of
this family are involved in several biological processes
(Gourcilleau et al. 2011), including growth mediation, plant
development, and abiotic stress responses (Ding et al. 2016).
The following potential member was encoded by DEG:

& ZAT12 (Zinc finger protein 12; DN26908_c0_g1): TF
regulating the expression of several oxidative-stress-
response genes, including APX (Ascorbate Peroxidase),
CAT (Catalase), GR (Glutathione Reductase), POD
(Guaiacol Peroxidase) , and SOD (Superoxide
Dismutase) (Rizhsky et al. 2004; Davletova et al. 2005;
Rai et al. 2012); the RT-qPCR analysis confirmed the
DEG up-regulation.

Conclusions

This study represents the first TFome differentially expressed in
roots of J. curcas plants after salt stimulus (3 h of NaCl exposi-
tion, 150 mM), based on RNA-Seq de novo assembly strategy
followed by gene expression validation in RT-qPCR assays. The
proposed TFome comprised 148 DEGs (78 UR and 70 DR)
codifying TFs encompassing 23 TF families. The gene ontology
enrichment analysis identifying over-represented terms exclu-
sively associated with the UR DEGs indicated GO terms related
to stress responses, while those representing the DR DEGs were
more related to the basal metabolism. In addition to pointing the
cognate TFs regulating the DEGs bound to their promoters, the
TF enrichment analysis emphasizing themost representative TFs
regulating the expression of TF DEGs also highlighted enriched
TFs showing predicted interactions with over 40 URDEGs. The
enriched TFs, some sharing over 20 targets (UR DEGs), are
promising candidates, such as the transgenes in transgenic events
simulating the strategy of transgenes pyrimidization. In turn, the
RT-qPCR analysis confirmed the in silico gene expression of
75% of eight selected DEGs (from different TF families) reveal-
ing that some could be functional molecular markers for marker-
assisted selection on plant breeding programs benefiting the de-
velopment of J. curcas salt-tolerant accessions. The results also
improve the understanding on the molecular mechanisms in-
volved in J. curcas plants responding to salt exposure.
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