
molecules

Article

Chemical Composition of Volatile Compounds in Apis mellifera
Propolis from the Northeast Region of Pará State, Brazil

Mozaniel Santana de Oliveira 1,2,* , Jorddy Neves Cruz 1 , Oberdan Oliveira Ferreira 1 ,
Daniel Santiago Pereira 3, Natanael Santiago Pereira 4, Marcos Enê Chaves Oliveira 3, Giorgio Cristino Venturieri 5,
Giselle Maria Skelding Pinheiro Guilhon 6, Antônio Pedro da Silva Souza Filho 3

and Eloisa Helena de Aguiar Andrade 1,2,6

����������
�������

Citation: de Oliveira, M.S.; Cruz,

J.N.; Ferreira, O.O.; Pereira, D.S.;

Pereira, N.S.; Oliveira, M.E.C.;

Venturieri, G.C.; Guilhon, G.M.S.P.;

Souza Filho, A.P.d.S.; Andrade,

E.H.d.A. Chemical Composition of

Volatile Compounds in Apis mellifera

Propolis from the Northeast Region

of Pará State, Brazil. Molecules 2021,

26, 3462. https://doi.org/

10.3390/molecules26113462

Academic Editor: Juraj Majtan

Received: 13 April 2021

Accepted: 20 May 2021

Published: 7 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Programa de Pós-Graduação em Biodiversidade e Biotecnologia—Rede Bionorte, Universidade Federal do
Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil; jorddynevescruz@gmail.com (J.N.C.);
oberdan@museu-goeldi.br (O.O.F.); eloisa@museu-goeldi.br (E.H.d.A.A.)

2 Laboratório Adolpho Ducke-Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901,
Terra Firme, Belém 66077-830, PA, Brazil

3 Empresa Brasileira de Pesquisa Agropecuária-Embrapa Amazônia Oriental, Tv. Dr. Eneas Pinheiro,
s/n—Marco, Belém 66095-903, PA, Brazil; daniel.pereira@embrapa.br (D.S.P.);
marcos-ene.oliveira@embrapa.br (M.E.C.O.); antonio-pedro.filho@embrapa.br (A.P.d.S.S.F.)

4 Laboratory of Soil Water for Irrigation Purposes and Vegetable Tissues, Federal Institute of Education Science
and Technology of Ceará, Limoeiro do Norte 62930-000, CE, Brazil; natanaelsan@hotmail.com

5 Pollination Ecology, Meliponiculture and Beekeeping, NATIVO Company,
Wavell Heights North, QLD 4012, Australia; giorgio@venturieri.com

6 Faculdade de Química, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá,
Belém 66075-900, PA, Brazil; giselle@ufpa.br

* Correspondence: mozanieloliveira@museu-goeldi.br; Tel.: +55-91-988-647-823

Abstract: Propolis is a balsamic product obtained from vegetable resins by exotic Africanized bees
Apis mellifera L., transported and processed by them, originating from the activity that explores and
maintains these individuals. Because of its vegetable and natural origins, propolis is a complex mixture
of different compound classes; among them are the volatile compounds present in the aroma. In
this sense, in the present study we evaluated the volatile fraction of propolis present in the aroma
obtained by distillation and simultaneous extraction, and its chemical composition was determined
using coupled gas chromatography, mass spectrometry, and flame ionization detection. The majority of
compounds were sesquiterpene and hydrocarbons, comprising 8.2–22.19% α-copaene and 6.2–21.7%
β-caryophyllene, with additional compounds identified in greater concentrations. Multivariate analysis
showed that samples collected from one region may have different chemical compositions, which may
be related to the location of the resin’s production. This may be related to other bee products.

Keywords: Amazon; bioproducts; propolis; aroma; bioactive compounds

1. Introduction

Honeybees are among the most studied insects because of their high economic value
and fundamental role in agriculture and ecosystems [1]. The species Apis mellifera is known
worldwide as an important pollinator of agricultural crops [2]. This species is native
to Europe, Africa, the Middle East, and parts of Asia [3,4], and has great potential for
adaptation to different biomes and climatic conditions [3]. Apis mellifera is not restricted
to honey production; it also produces propolis through the addition of saliva and wax to
organic liquids collected from plant sap, resin, gum, and latex [5].

Propolis, also called “bee glue”, is a resinous substance similar in some aspects to
natural wax found in hives [6]. This substance has a dark yellow to brown color and is
formed from materials collected by bees from flower buds, leaves, and other plant parts [7].
Propolis is sticky and adhesive in nature [8]. For bees, propolis is of paramount importance,
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as the insects use it as a coating to seal cracks or spaces in the hive, a base for making
honey [6], colony protection, and defense against infections and parasites [9].

The protection that propolis offers to bees is related to the pharmacological properties
of this bioactive product [10], as indicated by its uses in traditional medicine. Propolis is
mainly used for treating diseases of the vascular and blood system (anemia), respiratory
infections, ulcers, mycoses, and cancer, along with improving the immune system [11]. The
chemical characteristics of propolis are directly related to their biological activity [12,13].
Previous literature has discussed the great potential of propolis as an antimicrobial and an-
tioxidant material [14,15] with immunological, antiparasitic, and cytotoxic properties [16],
as well as antiviral activity against the SARS-Cov-2 virus [17].

Several products based on propolis, mainly as drinks and health foods, have been
commercialized. The function of propolis as a supplement and bioactive food preservative
has caused constant growth in the demand for similar products [9,18]. Users of this
bee product have gained great benefits related to the biological activities and volatile
components of propolis [8].

Propolis is a phytochemical and complex mixture composed of 50% resin (contain-
ing flavonoids and 66 phenolic acids), 30% wax, 10% essential oil, 5% pollen, and 5%
other organic compounds [5,19]. Studies have reported that the volatile compound profile
of propolis comprises a variety of chemicals and volatile compounds such as 1-methyl-
naphthalene, naphthalene, 3-methyl-1-butanol [20], limonene, β-caryophyllene, neroli-
dol [21], (E)-isoeugenol, linalool, butanoic acid [22], and acetophenone [23]. The chemical
composition of propolis is related to the biosynthetic capacity of plants and their secondary
metabolites used by bees [9,24]. In this context, the present study aims to evaluate the
chemical composition of the volatile fraction of seven samples of propolis collected in the
Northeast of Pará, Eastern Amazon.

2. Results and Discussion

The chemical composition of the volatile compounds of the different propolis samples
from Apis mellifera, as analyzed by gas chromatography mass spectroscopy (GC-MS) and gas
chromatography flame ionization detection (GC-FID) are shown in Table 1. In total, 87 com-
pounds were identified, demonstrating the diverse chemical composition of the volatile
compounds in the propolis. Chi et al. [25] identified approximately 406 compounds, mainly
comprising monoterpenes, phenol alcohols, sesquiterpenoids, acid esters, aldoketones, and
hydrocarbons. However, in the present study, the predominant classes were sesquiterpene
hydrocarbons (80.6–89.2%), followed by oxygenated monoterpenes (3.6–8.4%). The class
of phenylpropanoids (0.2%), was identified only in sample 3 (Table 1). Phenyl propanoids
are the predominant class in red propolis from Brazil, followed by hydrocarbon sesquiter-
penes [16]. In propolis from the Cerrado biome (Campo Grande, MS, Brazil), sesquiterpenes,
hydrocarbons, and oxygenated compounds are the main components [26].

Multivariate analyses, principal component analysis (PCA) (Figure 1), and hierarchical
cluster analysis (HCA) were performed to analyze the correlation between the classes of
compounds identified in the different samples, as shown in Figures 1 and 2. As shown in
Figure 1, the principal components (PC) contained the main components analyzed, PC1 and
PC2, which accounted for 42.8% and 26.1% of the variables, respectively. In combination,
both variables accounted for 68.9% of the variance in the analyzed data. In the HCA
analysis, the similarity between the identified classes was evaluated; four groups were
observed. Group I, including samples 1, 4, 5, and 6, showed a similarity of 51.04% (Figure 2),
and comprised oxygenated monoterpenes and hydrocarbon sesquiterpenes (Figure 1).
Groups II, III, and IV contained only one sample each and comprised phenylpropanoids,
oxygenated sesquiterpenes, and hydrocarbon monoterpenes, with similarities of 23.02%,
16.32%, and 0%, respectively (Figure 2). Because of the complex chemical composition of
propolis, chemometric analysis is widely used in studies to define groups of chemically
correlated samples [27–32].
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Figure 1. Biplot (principal component analysis) from the analysis of volatile compound
classes identified in the aromas of seven samples of bee propolis from Apis mellifera.
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Figure 2. Dendrogram presenting the relational similarity of the volatile compound classes identified
in the aromas of seven bee propolis samples from Apis mellifera.

The compounds identified at the highest concentrations are listed in Table 1. Sam-
ple 1 contained the following: naphthalene (4.3%), α-copaene (8.2%), cyperene (12.6%),
β-caryophyllene (11.8%), (E)-β-farnesene (6.6%), β-selinene (9.9%), α-selinene (9.8%), and
δ-cadinene (5.4%). The composition of sample 2 is as follows: α-copaene (15.4%), (Z)-α-
bergamotene (5.3%), β-caryophyllene (9%), (E)-α-bergamotene (22.1%), and δ-cadinene
(4.4%). For sample 3, the components present were: (E)-anethole (5.3%), α-copaene (17.1%),
(Z)-α-bergamotene (4.5%), β-caryophyllene (6.2%), (E)-α-bergamotene (19.1%), β-bisabolene
(7%), and δ-cadinene (5.9%). Sample 4 contained the following: naphthalene (7.4%), α-
copaene (16.2%), β-caryophyllene (7.9%), (E)-α-bergamotene (4.9%), (E)-β-farnesene (7%),
γ-muurolene (6.6%), β-bisabolene (4%), and δ-cadinene (12.6%). In sample 5, naphtha-
lene (5.8%), α-copaene (9.4%), cyperene (10%), β-caryophyllene (21.7%), (E)-β-farnesene
(8%), β-bisabolene (7.8%), and δ-cadinene (4.3%). Sample 6 contained naphthalene (5%),
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α-copaene (14.3%), cyperene (4.6%), β-caryophyllene (13.6%), (E)-α-bergamotene (7.1%),
β-bisabolene (10%), δ-cadinene (7%), β-bisabolene (10%), and δ-cadinene (7%). For sam-
ple 7, naphthalene (4.99%), α-cubebene (5.01%), α-copaene (22.19%), α-gurjunene (7.77%),
β-caryophyllene (17.69%), α-humulene (4.3%), and β-bisabolene (5.46%) were present.
These results are qualitatively similar to those reported in the literature [19,33].

In other studies, the major compounds were thymol (29.61%), its isomer carvacrol
(30.57%) from Kermanshah City in the west of Iran [34], carvone (40.34%), β-bisabolene
(10.6%), β-thujone (11.45%), carvone (40.34%) from Tehran Province, Iran [35], carvacrol
(20.7%), acetophenone (13.5%), spathulenol (11.0%), (E)-nerolidol (9.7%), β-caryophyllene
(6.2%) from Atlantic Forest in São Lourenço MG, Brazil [36], β-pinene (2.0–21.8%), α-
pinene (1.2–46.5%), limonene (11.6%), dihydrosabinene (17.8%), 1,8-cineole (0.1–11.0%),
p-cymene (0.1–5.3%), 2,7-dimethyl-3-octen-5-yne (trace-11.7%), octanal (12.9%), (E)-β-
ocimene (17.8%), α-thujene (trace-11.0%), and styrene (13.5%) from South Africa [37],
δ-cadinene (1.29–13.31%), γ-cadinene (1.36–8.85%) and α-muurolene (0.78–6.59%), β-
eudesmol (2.33–12.83%), T-cadinol (2.73–9.95%) and α-cadinol (4.84–9.74%) from differ-
ent Italian regions [19], and α-pinene, β-pinene, γ-terpinene, α-muurolene, γ-cadinene and
δ-cadinene from different regions of Croatia [38].

Multivariate analysis, principal component analysis (PCA) (Figure 3), and hierar-
chical cluster analysis (HCA) (Figure 4) were applied to the chemical compounds iden-
tified in the different volatile compounds present in the aroma fractions of propolis
samples from Apis mellifera. The first component PC1 accounted for 32.5% of the vari-
ation, while PC2 accounted for 23.3% of the variation. Combined, both components
comprised 55.8% of the variance (Figure 3). HCA, considering the Euclidean distances
and complete bonds, confirmed the formation of two distinct groups, without group I
shown in Figure 1. The first of these, formed by samples I, IV, V, and VI, with a similarity
of 12.29% (Figure 4), comprised 7-epi-sesquithuejene, allo-aromadendrene, δ-cadinene,
sesquicineole, (E)-calamenene, β-sesquiphelandrene, (E)-cadina-1,4-diene, α-cadinene,
α-calacorene, γ-muurolene, (E)-calamenene, (E)-β-farnesene, α-langene, naphthalene, γ-
cadinene, cyperene, aromadendrene, α-selimene, β-selimene, and rutundene (Figure 3).
The second group was formed by grouping samples II, III, VI, and VII, with a similarity
of 16.01% (Figure 4). This arose from the consolidation of the following compounds: arcu-
cumene, (Z)-α-bergamotene, β-acoradiene, (E,E)-α-farmasene, (E)-nerolidol, α-copaene,
(E)-anthole, (Z)-muurola-4(14),5-diene, β-bisabolene, α-cubebene, 6-methyl-5-hepten-2-
one, α-humulene, 2-epi-b-funebrene, linalool, and β-carophyllene (Figure 3).

Figure 3. Biplot (PCA) from the analysis of volatile compounds identified in the aromas of seven
samples of bee propolis from Apis mellifera.
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The difference between the chemical composition of the present samples (Table 1) and
those reported in the literature may be related to the geographical origin and the biome
in which the bees collected the raw materials to form the propolis [8]. The isolation and
analysis techniques [39] can also directly influence the chemical composition of both the
volatile compounds and compounds of higher molecular weight, or those with greater
polarity [40]. Olegário et al. [41] used PCA to determine the volatile compounds that
quantitatively constituted propolis samples collected in different regions of Brazil. The
geographic origin of the samples influenced their chemical composition in all the cases
analyzed by the authors.

Because propolis is a product of plant origin, its chemical composition depends on
factors including local flora, place of collection, and the seasonal and circadian period
of collection of raw materials by bees, as the plants producing volatile compounds tend
to produce different compounds at different times. The period of the year, climate and
temperature, and rainfall index, among other factors, can induce variability in the chemical
composition of propolis. Furthermore, the volatile compounds identified in propolis can
be added to other analyses of chemical composition and serve as markers to identify their
botanical origin [8,42]. This was also observed in propolis samples from Morocco [43],
the northeastern states of Brazil [44], Yemen [45], other regions of Brazil, Estonia, China,
Uruguay [46], South Africa [37], and Argentina [21]. Volatile compounds constitute a
small fraction of propolis and are important for characterizing its botanical origin [47].
In addition, volatile compounds can be used as food preservatives in propolis-based
packaging [48] by exploiting their antioxidant [15,25], antifungal [49,50], antibacterial [51],
and other biological activities [23].
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Table 1. Chemical composition (%) of volatile compounds identified in different propolis samples of Apis mellifera collected in the city of São João de Pirabas state of Pará.

Constituent RIL RIC Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7

2-Heptanone 889 a 888 0.4 0.45
α-Pinene 932 a 933 0.2 0.8 0.6 0.4 0.5 0.7 0.86

Benzaldehyde 952 a 953 0.1 1 0.61
6-Methyl-5-hepten-2-one 981 a 985 0.5 0.7 0.7 0.5 1.2 0.8 1.16

p-Cymene 1020 a 1022 0.1 0.1 0.1 0.1 0.1 0.1
Limonene 1024 a 1025 0.1 0.1 0.1 0.1 0.1 0.1

1,8-Cineole 1026 a 1027 0.2 0.1 0.1 0.1
(Z)-Linalool oxide (furanoid) 1067 a 1069 0.1 0.4 0.1 0.1 0.1 0.2

trans-Linalool oxide (furanoid) 1084 a 1090 0.1 0.1 0.1 0.1 0.1 0.33
Linalool 1095 a 1100 0.8 0.6 0.8 0.5 1.3 0.7 1.51

Naphthalene 1178 a 1182 4.3 1.4 1.1 7.4 5.8 5 4.99
Methyl chavicol 1195 a 1197 0.3 0.2 0.8 0.3 0.4 0.3 0.3
β-Cyclocitral 1217 a 1217 0.1

n-Decanal 1201 a 1229 0.3 0.06
Neral 1235 a 1235 0.1

Geranial 1264 a 1266 0.1 0.1
Benzenepropanoic acid. methyl ester 1278 b 1272 0.09

(Z)-Methyl cinnamate 1299 a 1280 0.1
(E)-Anethole 1282 a 1282 5.3

2-Undecanone 1293 a 1292 0.17
Tridecane 1300 a 1300 0.1

α-Cubebene 1345 a 1345 1.3 2.6 3.7 3.4 1.1 2.1 5.01
α-Ylangene 1373 a 1367 1.6 0.9 0.9 1.3 1.5 1.6 0.7
α-Copaene 1374 a 1375 8.2 15.4 17.1 16.2 9.4 14.3 22.19

β-Patchoulene 1379 a 1378 0.5 0.2
2-epi-α-Funebrene 1380 a 1380 0.3 0.6 0.26
α-Duprezianene 1387 a 1387 0.3
β-Bourbonene 1387 a 1387 0.3 0.1 0.3
β-Elemene 1389 a 1389 0.5

7-epi-Sesquithuejene 1390 a 1391 0.7 1.5 0.5 0.6
Cyperene 1398 a 1398 12.6 1.1 3.2 3.6 10 4.6

α-Gurjunene 1409 a 1400 0.8 0.7 0.5 0.7 0.5 7.77
(Z)-α-Bergamotene 1411 a 1411 5.3 4.5 2 2.5 2.3
2-epi-β-Funebrene 1411 a 1412 2 3.3
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Table 1. Cont.

Constituent RIL RIC Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7

β-Caryophyllene 1417 a 1418 11.8 9 6.2 7.9 21.7 13.6 17.69
β-Cedrene 1419 a 1421 0.4 0.4 0.5 0.25
β-Copaene 1430 a 1426 0.3 0.1 0.3 0.4 0.4 0.26

(E)-α-Bergamotene 1432 a 1430 1.4 22.1 19.1 4.9 2.8 7.1 1.81
α-Guaiene 1437 a 1434 0.31

6,9-Guaiadiene 1442 a 1437 0.6 0.4 0.7 0.6 0.4 0.13
Aromadendrene 1439 a 1439 1.7 0.1 0.1 0.2

trans-Muurola-3,5-diene 1451 a 1445 0.88
α-Humulene 1452 a 1451 0.9 0.5 0.1 1 3 4.3

(E)-β-Farnesene 1454 a 1454 6.6 1 2.8 7 8 3
Rotundene 1457 a 1456 2 0.7 0.1 1 0.1 0.83

Allo-aromadendrene 1458 a 1458 0.5 0.6 1.7 0.4 0.07
(Z)-cadina-1(6),4-diene 1461 a 1467 0.8 0.9 0.9 0.68

(Z)-Muurola-4(14),5-diene 1465 a 1470 1.7 1.9 2.9 1.49
4,5-di-epi-Aristolechene 1471 a 1471 0.5

β-Acoradiene 1469 a 1474 0.9 0.8 1 0.7 1 0.7
γ-Gurjunene 1475 a 1475 0.5

ar-Curcumene 1479 a 1477 0.4 1 1 1.5 0.7 1.7 0.49
γ-Muurolene 1478 a 1478 1 6.6 3.3
β-Selinene 1489 a 1483 9.9 0.6 0.7 1 2.2 1.6 1.53

(E)-Muurola-4-(14),5-diene and 1493 a 1486 0.5 0.8 0.7 0.4 0.3 0.48
α-Selinene 1498 a 1489 9.8 1.3 1.3 1.5 2.3 2.3 1.64

α-Muurolene 1500 a 1493 0.3 0.6 0.9 0.4 0.7 0.45
Cis-cadina-1,4-diene 1495 a 1495 0.8

(E)-β-guaiene 1502 a 1497 0.2 0.4 0.3 0.19
β-Bisabolene 1505 a 1504 2.3 3.4 7 4 7.8 10 5.46

(E,E)-α-Farnesene 1505 a 1505 1.1
γ-Cadinene 1513 a 1507 1.2 0.1 0.7 1.1 1.3 0.8 0.48
δ-Cadinene 1522 a 1513 5.4 4.4 5.9 12.6 4.3 7 3.76

Sesquicineole 1515 a 1515 0.1
(E)-Calamenene 1521 a 1516 1.9 1.1 2.3 2.4 1.2 1.9 1.64

β-Sesquiphelandrene 1521 a 1521 0.5
(E)-cadina-1,4-diene 1533 a 1527 0.3 0.4 0.3 0.5 0.3 0.25

α-Cadinene 1537 a 1530 0.4 0.1 0.2 0.3 0.6 0.2 0.12
α-Calacorene 1544 a 1535 0.6 0.4 0.6 1 0.6 0.1 0.28
β-Calacorene 1564 a 1544 0.6
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Table 1. Cont.

Constituent RIL RIC Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7

Elemicin 1555 a 1555 0.2
(E)-Nerolidol 1561 a 1558 0.2 1.2 0.3 0.1 0.3 0.43

Caryophyllenyl alcohol 1570 a 1570 0.1
Caryolan-8-ol 1571 a 1571 0.1

Caryophyllene oxide 1582 a 1576 0.4 0.1 0.1 0.2 0.5 0.3 0.2
Sphatulenol 1577 a 1577 0.1

Gleenol 1586 a 1590 0.1 0.1
Hexadecane 1600 a 1600 0.1 0.1

Junenol 1618 a 1603 0.2 0.3 0.1 0.3 0.3 0.6 0.18
α-Corocalene 1622 a 1622 0.1 0.1 0.2

1,10-di-epi-Cubenol 1618 a 1623 0.2 0.2 0.2 0.3 0.1 0.3 0.17
Cubenol 1514 a 1638 0.2 0.2 0.2 0.3 0.4 0.19
α-Cadinol 1652 a 1650 0.2 0.1 0.1 0.1 0.1 0.2 0.11
Cadalene 1675 a 1667 0.2 0.09
β-Bisabolol 1674 a 1674 0.4 0.1 0.1

epi-α-Bisabolol 1683 a 1683 0.1 0.1 0.2 0.1 0.2
α-Bisabolol 1685 a 1685 0.1 0.1 0.12

Hydrocarbon monoterpene 0.9 3 1.4 1 1.7 1.6 3.18
Oxygenated monoterpene 5.7 3.6 8.4 8.6 7.5 6.4 7.78

Hydrocarbon sesquiterpene 84.9 80.6 85.5 88.3 87 89.2 85.49
Oxygenated sesquiterpene 1.6 2.5 1 1.8 1.3 2.6 1.5

Phenylpropanoids 0.2
Others 0.1 0.37
Total 93.2 89.7 96.5 99.7 97.5 99.8 98.32

Org = organic; Min = mineral; Cont. = control; RI(C): Calculated Retention Index; RI(L): Literature Retention Index. (a) Adams [52]; and (b) Nist [53].
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3. Materials and Methods
3.1. Collection Area

Apis mellifera propolis samples were collected in apiaries located in the city of São
João de Pirabas, which is in the northeastern region of the state of Pará-Eastern Amazon
(geographic coordinates: 0◦46′08′′ S 47◦10′26′′ O). The samples were collected from seven
different hives from a producer. The hives were arranged at a distance of 2 m from each
other in a forest with different types of plants, as shown in the Supplementary Material
S1. Propolis was collected with the aid of sterile spatulas. According to the methodology
described by Dutra et al. [54], the samples were placed in sterile plastic bags and kept at
a temperature of 5–10 ◦C after collection, see Supplementary Material S1.

3.2. Aroma Extraction

Before the aroma extraction process, the propolis samples were frozen and crushed.
For aroma extraction, 10 g of the sample was mixed with water (20 mL) and subjected
to simultaneous distillation–extraction (SDE) for 3 h using a Chrompack Micro-Steam
Distillation Extractor (Likens–Nickerson) and pentane (2 mL) as the organic mobile phase,
as described in the literature [55,56].

3.3. Analysis of Chemical Composition of Volatile Compounds

The chemical compositions of the volatile fraction of the seven propolis samples
was analyzed using GC-MS via a Thermo DSQ-II system equipped with a DB-5MS silica
capillary column (30 m × 0.25 mm; 0.25 mm). For this analysis, the following conditions
were used: the temperature was increased from 60 to 240 ◦C at a rate of 3 ◦C/min; the
injector temperature was set to 240 ◦C; helium was used as the carrier gas (linear velocity of
32 cm/s, measured at 100 ◦C); aqueous 2:1000 n-hexane was injected in one step (0.1 mL);
the temperature of the ion source and other parts was set at 200 ◦C. The quadrupole
filter was swept in the range of 39–500 Da every second. Ionization was achieved by
using an electronic impact technique at 70 eV. The volatile components were identified
by comparison with the literature [52,53]. The volatile constituents were quantified by
peak-area normalization using the FOCUS GC/FID, as previously reported by our research
group [42].

3.4. Statistical Analysis

Multivariate analysis was performed according to a previously reported methodol-
ogy [42,57,58] using Minitab 17® software (free version, Minitab Inc., State College, PA,
USA). The chemical constituents of the essential oils were used as the variables. The raw
data were first standardized to the same “weight.” PCA was then performed using the ma-
trix type correlation configuration in the software. In the HCA of the samples, the Euclidean
distance options were used for distance measurement, and the connection method used
was complete. Multivariate analysis was applied to the samples, where the concentration
of the compounds was ≥1%.

4. Conclusions

Different volatile compounds present in the aroma were obtained from the analyzed
samples of propolis. Compounds belonging to the sesquiterpene class were present in the
highest concentrations. Variability of the samples was observed using multivariate analysis.
This may be related to the bee collection area. Based on the analyzed data, different groups
were delineated, both for the classes of compounds and for the compounds analyzed in the
form of a correlation matrix. These data are important because they can provide guidelines
for future studies on the botanical origins of propolis.

Supplementary Materials: The following are available online, Figure S1: Collection of propolis samples.
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and Essential Oil Composition of Polish Propolis, Black Poplar and Aspens Buds. Molecules 2018, 23, 1262. [CrossRef] [PubMed]

29. Falcão, S.I.; Freire, C.; Cristina Figueiredo, A.; Vilas-Boas, M. The volatile composition of Portuguese propolis towards its origin
discrimination. Rec. Nat. Prod. 2015, 10, 176–188.

30. Pant, K.; Thakur, M.; Chopra, H.K.; Nanda, V.; Javed Ansari, M.; Pietramellara, G.; Pathan, S.I.; Datta, R.; Almoallim, H.S.;
Alharbi, S.A. Characterization and discrimination of indian propolis based on physico-chemical, techno-functional, thermal and
textural properties: A multivariate approach. J. King Saud Univ. Sci. 2021, 101405. [CrossRef]

31. Bittencourt, M.L.F.; Ribeiro, P.R.; Franco, R.L.P.; Hilhorst, H.W.M.; de Castro, R.D.; Fernandez, L.G. Metabolite profiling,
antioxidant and antibacterial activities of Brazilian propolis: Use of correlation and multivariate analyses to identify potential
bioactive compounds. Food Res. Int. 2015, 76, 449–457. [CrossRef]

32. Jiang, X.; Tao, L.; Li, C.; You, M.; Li, G.Q.; Zhang, C.; Hu, F. Grouping, Spectrum–Effect Relationship and Antioxidant Compounds
of Chinese Propolis from Different Regions Using Multivariate Analyses and Off-Line Anti-DPPH Assay. Molecules 2020, 25, 3243.
[CrossRef]

33. Melliou, E.; Stratis, E.; Chinou, I. Volatile constituents of propolis from various regions of Greece—Antimicrobial activity. Food
Chem. 2007, 103, 375–380. [CrossRef]

34. Shavisi, N.; Khanjari, A.; Basti, A.A.; Misaghi, A.; Shahbazi, Y. Effect of PLA films containing propolis ethanolic extract, cellulose
nanoparticle and Ziziphora clinopodioides essential oil on chemical, microbial and sensory properties of minced beef. Meat Sci.
2017, 124, 95–104. [CrossRef] [PubMed]

35. Khodayari, M.; Basti, A.A.; Khanjari, A.; Misaghi, A.; Kamkar, A.; Shotorbani, P.M.; Hamedi, H. Effect of poly(lactic acid)
films incorporated with different concentrations of Tanacetum balsamita essential oil, propolis ethanolic extract and cellulose
nanocrystals on shelf life extension of vacuum-packed cooked sausages. Food Packag. Shelf Life 2019, 19, 200–209. [CrossRef]

36. Quintino, R.L.; Reis, A.C.; Fernandes, C.C.; Martins, C.H.G.; Colli, A.C.; Crotti, A.E.M.; Squarisi, I.S.; Ribeiro, A.B.; Tavares, D.C.;
Miranda, M.L.D. Brazilian Green Propolis: Chemical Composition of Essential Oil and Their In Vitro Antioxidant, Antibacterial
and Antiproliferative Activities. Braz. Arch. Biol. Technol. 2020, 63. [CrossRef]

37. Kamatou, G.; Sandasi, M.; Tankeu, S.; van Vuuren, S.; Viljoen, A. Headspace analysis and characterisation of South African
propolis volatile compounds using GCxGC–ToF–MS. Rev. Bras. Farmacogn. 2019, 29, 351–357. [CrossRef]
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