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ABSTRACT: The Fisher’s infinitesimal model is traditionally used in quantitative genetics and 
genomic selection, and it attributes most genetic variance to additive variance. Recently, 
the dominance maximization model was proposed and it prioritizes the dominance variance 
based on alternative parameterizations. In this model, the additive effects at the locus level 
are introduced into the model after the dominance variance is maximized. In this study, the 
new parameterizations of additive and dominance effects on quantitative genetics and genomic 
selection were evaluated and compared with the parameterizations traditionally applied using 
the genomic best linear unbiased prediction method. As the parametric relative magnitude of 
the additive and dominance effects vary with allelic frequencies of populations, we considered 
different minor allele frequencies to compare the relative magnitudes. We also proposed and 
evaluated two indices that combine the additive and dominance variances estimated by both 
models. The dominance maximization model, along with the two indices, offers alternatives to 
improve the estimates of additive and dominance variances and their respective proportions and 
can be successfully used in genetic evaluation.
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Introduction

Genomic selection (GS), as proposed by Meuwissen et al. 
(2001), enables the identification of genetically superior 
individuals before their phenotypic data is collected and 
increases selection accuracy, accelerating and boosting 
the efficiency of genetic improvement (Simeão et al., 
2021). GS emphasizes the simultaneous prediction of 
the genetic effects of thousands of genetic DNA markers 
dispersed throughout the genome of an individual in 
order to capture the effects of all loci and it explains all 
the genetic variance of a quantitative trait (Resende and 
Alves, 2020).

The Fisher’s infinitesimal model (Fisher, 1918) 
attributes most genetic variance to additive variance 
and is traditionally used in quantitative genetics and 
GS. In the process of deriving biometric expressions, 
the additive variance is maximized while the dominance 
variance is the residue of the total genetic variance. 
In the dominance maximization model (Huang and 
Mackay, 2016), the dominance variance is prioritized 
using a parameterization in which the dominant 
homozygote and the heterozygote are weighed equally. 
The additive effects are introduced into the model after 
the dominance variance has been maximized.

The genomic best linear unbiased prediction 
(G-BLUP) is one of the methods commonly used in GS, 
which is suitable for predicting additive and dominance 
effects (Azevedo et al., 2015). G-BLUP predicts the 
genotypic effects of individuals using a mixed linear 
model. The additive-dominance G-BLUP captures the 
additive and dominance effects, allowing the effective 
genetic selection. This process maximizes the use of GS 
in animal and plant breeding (Azevedo et al., 2015).

Here, we analyzed and compared the quantitative 
genetics models proposed by Fisher (1918) and Huang 
and Mackay (2016) in terms of their effectiveness 
in estimating additive and dominance variances, 
heritabilities, and additive and dominance effects 
through the additive-dominance G-BLUP. We also 
proposed and evaluated two indices that combine the 
additive and dominance variances estimated by both 
models.

Materials and Methods

Experimental data

In this study, we used data from the evaluation of 
a Eucalyptus grandis x Eucalyptus urophylla hybrid 
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population. The population involved 756 trees 
distributed in 37 outbred F2 full-sib families derived 
from the breeding of ten unrelated elite interspecific 
F1 hybrids. Trees were deployed in a field trial in a 
randomized complete block design with single-tree plots 
and 24-36 replications per family. At three years after 
planting, we evaluated the traits mean annual increment 
(MAI), basic density, and cellulose yield.

Single nucleotide polymorphism (SNP) markers 
were obtained using the Illumina Infinium (Gunderson 
et al., 2005), EuCHIP60K (Silva Junior et al., 2015). 
SNP markers were called from intensity files obtained 
through GENESEEK using GENOMESTUDIO 2011.1 
following the standard procedures for genotyping and 
quality control with no manual editing of clusters. The 
average SNP call frequency across samples was > 90 % 
and the sample call rate across SNPs was > 95 %. SNP 
markers were then filtered by keeping SNPs with minor 
allele frequency (MAF) > 0.01, totaling 23,129 effective 
SNP markers.

Genetic models

The standard approach for genetic evaluation is the 
mixed model methodology (Mrode and Thompson, 
2014; Resende et al., 2014). This methodology needs 
individual genetic relationship matrices, which are A 
(pedigree based genetic relationships) for the BLUP 
(Henderson, 1975) and G (genomic based genetic 
relationships) for G-BLUP (Meuwissen et al., 2001). 
The original basic models for obtaining A and a 
modified G were raised by Fisher (1918) and Huang 
and Mackay (2016), respectively. In the Fisher’s era, 
there was no G-BLUP but the basics for structuring 
A was already clearly stated and then inspired 
the development of G. Inspired by both studies 
mentioned, we used two) parameterizations of G in 
G-BLUP in this study.

G-BLUP method

The additive-dominance genomic model for predicting 
the genotypic values of individuals was given as:

y Xb Zu Zu ea d== ++ ++ ++  	  (1)

where: y is the vector of phenotypes (N × 1, where N 
is the number of individuals); b is the vector of fixed 
effects (p × 1, where p is the number of fixed effects) 
with incidence matrix X (N × p); ua and ud are the 
vectors of additive and dominance effects (N × 1), 
respectively, with incidence matrix Z (N × N), assuming 
the existence of observations for all individuals; and e is 
the vector of residuals.

The variance structures were given u N Ga a a ( , )0 2σ , 
where σa

2 is the additive variance, and Ga (N × N) is the 
genomic kinship matrix between individuals for additive 
effects; u N Gd d d ( , )0 2σ , where σσd

2 is the dominance 

variance, and Gd (N × N) is the genomic kinship 
matrix between individuals for dominance effects; and 
e N I e ( , )0 2σσ , where σσe

2 is the residual variance, and I is 
an identity matrix (N × N). 

The mixed model equations allowed predicting the 
additive ( ûa ) and dominance ( ûd ) effects through the 
additive-dominance G-BLUP method, as follows:
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where: the components of variance were estimated 
via restricted maximum likelihood (REML) method 
(Patterson and Thompson, 1971). Thus, the genotypic 
value for each individual was given as:

GV u ua d
 == ++ˆ ˆ  	  (3)

Traditional modeling

The traditional model uses the G-BLUP method with 
conventional parametrizations for the additive and 
dominance effects (Resende et al., 2014). The genomic 
relationship matrices for additive (Ga) and dominance 
(Gd) effects were given as:
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where: pi and qi are the allele frequencies, W is the 
additive incidence matrix, and S is the dominance 
incidence matrix.

For the additive incidence matrix (W), the 
following parameterization was used:
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There are several parameterizations for the 
additive and dominance incidence matrices (Da et al., 
2014; Resende et al., 2012; Resende et al., 2014; Varona 
et al., 2018; Vitezica et al., 2013). In this study, we 
followed the guidelines given by Huang and Mackay 
(2016).
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Alternative modeling

The new model uses the G-BLUP method with alternative 
parameterizations for the additive and dominance effects 
and a novel way of calculating genomic relationship 
matrices (Huang and Mackay, 2016). Thus, the genomic 
relationship matrices for additive (Ga) and dominance 
(Gd) effects were given as:

G WW
p q

q

a
i i

i

n
==

′′

++==∑∑ 2
1

2

1

and 	  (8)

G SS
p q

q

d
i i

i

n
==

′′

++

′′

==∑∑ 4
1

2

1

	  (9)

where: W and S contemplate the parameterizations 
proposed by Huang and Mackay (2016) for the additive 
and dominance effects. The additive incidence matrix 
(W) was given as: 
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For the dominance incidence matrix (S), the 
dominant homozygote and heterozygote were coded 
with a value of 2, while the recessive homozygote was 
given a value of 0. Thus, S was defined as:
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The codes 2, 2 and 0 is just because, under a 
complete dominance model, the AA and Aa genotypes 
give rise to same effects on phenotypes. Table 1 shows 
the notations and definitions of the genetic variance 
components at the locus level used in this study.

Indices

Based on the results obtained from both models 
(traditional and alternative), two other genetic variance 
estimates were calculated: Index 1, which uses the 
average of the estimates obtained by traditional and 
alternative modeling and Index 2, which uses a weighting 
based on the standard deviation (measured from various 
samples of cross validation) of the estimates obtained by 
traditional and alternative modeling. Table 2 presents a 
summary of the four estimators used in this study.

Cross validation

The process of cross validation consisted of dividing 
the population into k groups. The individuals that 

belonged to the k-1 groups were used as the estimation 
population and the remaining group was used as the 
validation population. The statistical model was fitted 
into the estimation population. Subsequently, the genetic 
effects were calculated for individuals in the validation 
population using the effects of the markers already 
obtained in the estimation population. This process was 
repeated until all remaining groups were considered once 
as the validation population.

In this study, the number of groups also differed as 
the number of individuals was different for each evaluated 
trait. For MAI, we considered k = 12 (63 individuals in 
each group), for basic density, we considered k = 16 (47 
individuals in each group), and for cellulose yield, we 
considered k = 7 (107 individuals in each group). After 
cross validation, predictive capacities, heritabilities, 
and regression coefficients in each of the validation 
populations were obtained and the averages calculated.

Comparison of the models

The following efficiency measures for genomic predictions 
were calculated for each trait and used to compare both 
models: predictive capacity, regression coefficient, and 
heritability/coefficient of determination.

Table 1 – Notations and definitions of the components of genetic 
variance at the locus level.

Notation Variance component Genotype coding (aa, Aa, AA)

σa
2 2pq[a + d(q – p)]2 0, 1, 2

σd
2 (2pqd)2 0, 2p, 2(p – q)

′σa
2 2

1
2

2p q
q

a d
+

−( )
 

0 1
1

2
1

, ,−
+

−
+

q
q

q
q  

 
′σd
2 4

1
2

2pq
q

a dq
+

+( )
 

0,2,2

a and d = genotypic effects of homozygotes and heterozygotes, respectively; 
p and q = frequencies of alleles A and a, respectively; σa

2  and σd
2 = additive 

and dominance variances, respectively, based on the traditional model; ′σa
2  

and ′σd
2 = additive and dominance variances, respectively, based on the 

alternative model.

Table 2 – Description of the additive and dominance variances for 
the traditional and alternative models/indexes
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sa and sd = standard deviation of additive variance (σa
2) and dominance 

variance (σd
2) estimated in the validation groups �by traditional modeling; s’a 

and s’d = standard deviation of additive variance ( ′σa
2 ) and dominance variance 

( ′σd
2) estimated in the validation groups by alternative modeling; and samean

 and 
sdmean

 = average of sa and s’a , and of sd and s’d.
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The genotypic predictive capacity (CPg), the 
additive predictive capacity (CPa), and the dominance 
predictive capacity (CPd) were calculated through 
the correlation between corrected phenotypic values 
and the predicted genotypic effects, predicted 
additive effects, and predicted dominance effects, 
respectively.

The regression coefficients between the corrected 
phenotypic values and the genotypic effects, additive 
effects, and dominance effects were given, respectively, 
as:

b
y g
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The broad sense heritability, narrow-sense 
heritability, and coefficient of determination of 
dominance effects were given, respectively, as:
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The parametric relative magnitudes of the additive 
and dominance effects vary with populations allelic 
frequencies (Le Roy, 1960). Therefore, we considered 
different MAF to compare the relative magnitudes.

Software

The statistical analyses were performed using the 
sommer package (Covarrubias-Pazaran, 2016) in R (R 
Development Core Team, version 3.4.0).

Results

Table 3 shows the narrow-sense heritabilities, 
coefficients of determination of dominance effects, 
broad sense heritabilities, predictive capacities, and 
regression coefficients for the traits MAI, basic density, 
and cellulose yield considering the traditional and 
alternative models. In addition, the estimates of genetic 
variances for the traits MAI, basic density, and cellulose 
yield considering the traditional and alternative models 
and different MAF are shown in Figures 1, 2, and 3, 
respectively.

Basic density had the highest estimate of narrow-
sense heritability when the traditional model was 
used (Table 3). This result was the opposite when the 

Table 3 – Heritability/coefficient of determination estimates, predictive capacities, and regression coefficients according to the models for 
additive and dominance effects, minor allele frequency equal to one percent.

Trait Modeling ha
2 cd

2 hg
2 CPg CPa CPd

byâ byd̂ byĝ  

MAI

Traditional 0.47 0.08 0.55 0.58 0.56 0.04 0.92 0.38 0.97
Alternative 0.28 0.13 0.41 0.57 0.56 0.57 2.52 1.84 0.97

Index 1 0.38 0.11 0.48 0.58 0.56 0.31 1.72 1.11 0.97
Index 2 0.48 0.11 0.59 - - - - - -

Basic density

Traditional 0.56 0.00 0.56 0.62 0.62 - 1.00 - 1.00
Alternative 0.00 0.31 0.31 0.58 - 0.58 - 0.99 0.99

Index 1 0.28 0.16 0.44 0.60 0.62 0.58 1.00 0.99 1.00
Index 2 0.22 0.09 0.31 - - - - - -

Cellulose yield

Traditional 0.42 0.03 0.45 0.55 0.54 0.18 1.07 3.86 1.05
Alternative 0.00 0.24 0.25 0.54 - 0.54 - 1.06 1.06

Index 1 0.21 0.14 0.35 0.55 0.54 0.36 1.07 2.46 1.00
Index 2 0.16 0.13 0.29 - - - - - -

ha
2 = narrow sense heritability; cd

2 = coefficient of determination of dominance effects; hg
2 = broad sense heritability; CPg = genotypic predictive capacity; CPa = 

additive predictive capacity; CPd = dominance predictive capacity; byâ = regression coefficient between the corrected phenotypic values and additive effects; byd̂
 

= regression coefficient between the corrected phenotypic values and dominance effects; byĝ  = regression coefficient between corrected phenotypic values and 
genotypic effects.

Figure 1 – Estimates of genetic variances ( σa
2  = additive and σd

2  
= dominance, by the traditional model; σa

′2  = additive and σd
′2 = 

dominance, by the alternative model; σa mean−
2  = mean additive and 

σd mean−
2 = mean dominance) for mean annual increment (MAI) trait 

as a function of minor allele frequencies (MAF).
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alternative model was applied, that is, the narrow-
sense heritability for basic density becomes the 
lowest estimate (Table 3). Besides, the coefficients of 
determination of dominance effects estimated by the 
alternative model increased considerably compared to 
the effects estimated by the traditional model (Table 3).

The genotypic predictive capacity values were 
satisfactory for the traditional and alternative models 
and for all traits, ranging from 0.54 to 0.62, with 
slightly higher values for the traditional modeling. The 
same occurred for the regression coefficients, which 
ranged from 0.97 to 1.06.

The alternative model was efficient only for MAI 
trait (Table 3). For this trait, Indices 1 and 2 reveal that 
the practical estimates for narrow-sense heritabilities, 
coefficients of determination of dominance effects, and 
broad sense heritabilities were 0.38, 0.11, and 0.48; 
and 0.48, 0.11, and 0.59, respectively. On the other 
hand, in the traditional model, these estimates were 
0.47, 0.08, and 0.55, respectively (Table 3).

Figures 1, 2, and 3 show an increase in dominance 
variance when estimated by the alternative modeling. 
More markers are eliminated with an increase in MAF. 
Therefore, in the traditional model, the estimates of 
additive variance ( σa

2 ) increase while the estimates of 

dominance variance ( σσd
2 ) decrease. The opposite occurs 

with the alternative model in which the higher the 
MAF, the higher the estimates of dominance variance 
(σd

’2 ) and the lower the estimates of additive variance 
(σa

’2). These results were observed for all traits (Figures 
1, 2, and 3).

Figures 2 and 3 show high estimates of additive 
variance and low estimates of dominance variance 
in the model where additive variance (σa

2 ) was 
maximized. In the model where dominance variance 
(σd

’2) was maximized, the estimates of additive variance 
(σa

’2) dropped to zero. These results show that the 
alternative model may not be appropriate for cases in 
which the dominance effects is irrelevant, as expected 
theoretically (Resende, 2015).

Discussion

Although the traditional and alternative models are 
conceptually different, we can compare the estimated 
genetic variances/parameters between each other 
directly because of the same projections associated to the 
different maximizations imposed on the two objective 
functions. This ensures that the data (vector y) is the 
same after the two different projections. The models 
scaled the estimated variance components in a way 
(considering the scale and the precision of the estimates) 
to avoid compatibility problems between these genetic 
variances. Then, interpretation of the meaning of these 
combining genetic variances is direct.

The traditional model for additive and dominance 
effects is driven by the fact that additive variance 
explains most of the genetic variance even under the 
dominance variance. In this model, both additive and 
dominance effects contribute to additive variance 
(Huang and Mackay, 2016). Thus, the dominance 
variance has little inference in the respective effects of 
dominance, because the additive variance is maximized 
first and the dominance variance is the residue of the 
total genetic variance.

Additive variance ( σa
2 ) is the sum of Type I squares 

of the regression of the genotypic effects in the number 
of copies of alleles, while dominance variance ( σσd

2 ) is 
the residual genetic variance. Thus, priority is given to 
the additive component to explain the genetic variance. 
If priority is given to the dominance component using 
the alternative modeling in which heterozygote (Aa) and 
homozygote (AA) are coded identically (with code 2), an 
alternative dominance variance is defined, σd

’2  (Huang 
and Mackay, 2016). In this case, the dominance effects 
can explain the genetic variance first, while the additive 
variance (σa

’2) only enters the model after dominance 
variance ( σd

’2 ) has been maximized. Thus, additive 
variance (σa

’2) becomes the residual genetic variance.
According to Resende (2015), one way to verify 

the relative importance of additive and dominance 
effects is to compare ( σσd

2 + σd
’2 )/2 with (σa

2 + σa
’2)/2 with 

the greater value indicating which genetic effect is 

Figure 2 – Estimates of genetic variances ( σa
2  = additive and σd

2  
= dominance, by the traditional model; σa

′2  = additive and σd
′2 = 

dominance, by the alternative model; σa mean−
2  = mean additive and 

σd mean−
2  = mean dominance) for basic density trait as a function of 

minor allele frequencies (MAF).

Figure 3 – Estimates of genetic variances ( σa
2  = additive and σd

2  
= dominance, by the traditional model; σa

′2  = additive and σd
′2  = 

dominance, by the alternative model; σa mean−
2  = mean additive and 

σd mean−
2  = mean dominance) for cellulose yield trait as a function 

of minor allele frequencies (MAF).
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more important. The model σa
2 + σσd

2  aims to maximize 
additive variance (σa

2) and minimize dominance variance 
(σσd

2 ), while the model σa
’2+σd

’2  aims to maximize 
dominance variance (σd

’2) and minimize additive variance 
(σa

’2).
Inferences on population structure can be strongly 

influenced by the choice of MAF threshold (Linck and 
Battey, 2019). The results obtained here show that with 
an increase in MAF, the estimates of additive variance 
( σa

2 ) in the traditional model also increase, while 
the estimates of dominance variance ( σσd

2 ) decrease. 
However, higher estimates of dominance variance 
(σd

’2 ) and lower estimates of additive variance (σa
’2 ) are 

expected theoretically, since the dominance variance 
rises in relation to additive variance as the allelic 
frequency in the population increases (Resende, 2015). 
Therefore, dominance effects tend to be more important 
for breeding and selection in improved populations, 
which have higher frequencies of favorable alleles 
(Resende, 2002).

The alternative model is only appropriate when 
there is some degree of dominance acting on the genetic 
control of the trait (Resende, 2015). This occurs for MAI, 
but not for wood density and cellulose yields, which do 
not present allelic dominance (Rezende et al., 2014), 
explaining the zero values for additive variance obtained 
for wood density and cellulose yields. Therefore, it is 
essential to verify through the literature or previous 
data analyses if the trait in question presents any 
degree of allelic dominance. In natural populations, the 
effectiveness of using one of these models depends on 
the genetic control of the trait.

Index 1 considers the average of the additive 
and dominance variances estimates and presented 
good results for all traits, indicating that it is a good 
option. However, Index 2 weighs the standard deviation 
(precision) of the estimates obtained by the traditional 
and alternative models and is the most statistically 
appropriate.

The alternative model evaluated here showed 
effectiveness in estimating the components of genetic 
variance and predicting genetic values, when there are 
effects of dominance on the trait. After 100 years of using 
the traditional infinitesimal model, new alternatives 
are becoming available to evaluate quantitative traits 
(Visscher and Goddard, 2019).

Conclusion

The alternative model presented interesting results 
and was appropriate for cases where both additive and 
dominance effects are relevant in the genetic control of 
the trait. The choice for model to be adopted in practice 
should consider not only practical knowledge of the 
trait (expression or not of heterosis for the average 
components), but also the estimates provided by both 
models and indices evaluated here, which give a weight 
to the estimates generated by both models.
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