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Genomic prediction (GP) offers great opportunities for accelerated genetic gains by
optimizing the breeding pipeline. One of the key factors to be considered is how the
training populations (TP) are composed in terms of genetic improvement, kinship/origin,
and their impacts on GP. Hydrogen cyanide content (HCN) is a determinant trait
to guide cassava’s products usage and processing. This work aimed to achieve
the following objectives: (i) evaluate the feasibility of using cross-country (CC) GP
between germplasm’s of Embrapa Mandioca e Fruticultura (Embrapa, Brazil) and
The International Institute of Tropical Agriculture (IITA, Nigeria) for HCN; (ii) provide
an assessment of population structure for the joint dataset; (iii) estimate the genetic
parameters based on single nucleotide polymorphisms (SNPs) and a haplotype-
approach. Datasets of HCN from Embrapa and IITA breeding programs were analyzed,
separately and jointly, with 1,230, 590, and 1,820 clones, respectively. After quality
control,∼14K SNPs were used for GP. The genomic estimated breeding values (GEBVs)
were predicted based on SNP effects from analyses with TP composed of the following:
(i) Embrapa genotypic and phenotypic data, (ii) IITA genotypic and phenotypic data, and
(iii) the joint datasets. Comparisons on GEBVs’ estimation were made considering the
hypothetical situation of not having the phenotypic characterization for a set of clones
for a certain research institute/country and might need to use the markers’ effects that
were trained with data from other research institutes/country’s germplasm to estimate
their clones’ GEBV. Fixation index (FST) among the genetic groups identified within
the joint dataset ranged from 0.002 to 0.091. The joint dataset provided an improved
accuracy (0.8–0.85) compared to the prediction accuracy of either germplasm’s sources
individually (0.51–0.67). CC GP proved to have potential use under the present study’s
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scenario, the correlation between GEBVs predicted with TP from Embrapa and IITA
was 0.55 for Embrapa’s germplasm, whereas for IITA’s it was 0.1. This seems to be
among the first attempts to evaluate the CC GP in plants. As such, a lot of useful new
information was provided on the subject, which can guide new research on this very
important and emerging field.

Keywords: Manihot esculenta, cross predictions, population structure, haplotype prediction, breeding, cyanide
content

INTRODUCTION

Cassava (Manihot esculenta Crantz) is an important staple
root crop, a food source for millions of people mostly in
developing countries, and used for several industrial applications.
Subsistence farmers rely on cassava as a vital source of dietary
energy, as it can be planted and harvested throughout the
year, tolerates periods of drought, and grows on marginal soils
(Hillocks et al., 2002). It has been suggested that cassava can
be highly resilient in a climate change scenario; providing
adaptation opportunities that are not offered by any other basic
food crops (Jarvis et al., 2012).

Despite the exciting crop’s future prospect, cassava roots, peels
and leaves contain two cyanogenic glucosides, linamarin, and
lotaustralin, mainly linamarin. Linamarin and lotaustralin, in the
acids and enzymes presence, go under hydrolysis that leads to
CN− production and, consequently, hydrogen cyanide (HCN)
(Cereda and Mattos, 1996). Although cyanogenic glycosides play
important roles such as defense against herbivores and transport
forms of reduced nitrogen in some plant species (Poulton, 1990;
White et al., 1998), the high content of cyanogenic glycosides
(consequently liberated HCN), together with the rapid tuber
perishability, represents one of the main shortcomings associated
with cassava consumption.

Hydrogen cyanide is a toxic compound that may be harmful to
human and animal health, the potential toxicity depends on the
amount, route, and duration of the exposure. The toxicological
effects of cyanide absorption due to intake of improperly
processed cassava occur in acute and chronic form, it can affect
the nervous, respiratory, cardiovascular, and endocrine systems
(Simeonova et al., 2004), causing symptoms like headache,
dizziness, nausea, vomiting, weakness, and among others.

Cassava varieties are classified as bitter and sweet depending
on the content of HCN in the roots. This component varies
substantially with plant variety, environment conditions, time
of harvest, and post-harvest practices (Ojo et al., 2013). Those
with concentrations of cyanogenic glycosides greater than
50 mg/kg HCN on a fresh weight basis are classified as bitter
cassava, whereas sweet varieties contain less than 50 mg/kg
(Obi et al., 2019). Bitter varieties require more effort in terms
of processing. Processing is effective to ensure reduction of
cyanogenic compound content in cassava food products, as
examples of processing steps: peeling, grating, soaking, boiling,
cooking, and among others, the combination of procedures
within the production system essentially varies depending on the
intended end-product, according to the Code of Practice for the
Reduction of Hydrocyanic Acid (HCN) in Cassava and Cassava

Products (Philippine National Standard, 2020). Besides the most
obvious relevance of the identification of sweet cassava varieties,
which is to ensure safe recommendations for food consumption,
Obueh and Kolawole (2016) described in a comparative study
that sweet varieties are also associated with high nutritional
quality (Ca, Mg, P, Zn, Cu, and amino acid contents) and
low anti-nutrients content (oxalate, tannin, phytate, alkaloid,
lignin, and saponin).

Traditional cassava genetic improvement strategies are still
very demanding in terms of financial resources; and, historically,
cassava is a crop that receives less investment than other
commodity crops (Bart and Taylor, 2017). However, this scenario
is changing, possibly encouraged by the following reasons: (i)
progress constraints of conventional breeding due to the crop
biology – e.g., long breeding cycle, slow multiplication rate
(Ceballos et al., 2020), (ii) the importance of cassava for food
security and poverty alleviation, (iii) the increase of challenges in
the face of biotic stresses and, also, (iv) the increased commercial
interest in cassava, due to the better starch properties than cereals.
Promising results with a recently sequenced genome (Prochnik
et al., 2012; Bredeson et al., 2016) and SNP-based genetic
linkage maps (International Cassava Genetic Map Consortium
[ICGMC], 2014), was obtained in a short period of time, opening
a path to the study of key traits’ genetic architecture through
genome-wide association studies (GWAS) (Esuma et al., 2016;
Wolfe et al., 2016; Brito et al., 2017; Rabbi et al., 2017; Kayondo
et al., 2018; Somo et al., 2020; Ogbonna et al., 2021b) and
trait improvement by means of genomic predictions (GP) and
selection (Oliveira et al., 2012; Okeke et al., 2017; Wolfe et al.,
2017; Elias et al., 2018; Andrade et al., 2019; Ikeogu et al., 2019;
Torres et al., 2019; Somo et al., 2020; Yonis et al., 2020).

Among the methodologies currently used to accelerate genetic
gain and to shorten the breeding cycle interval, genomic selection
proposed by Meuwissen et al. (2001) offers great opportunities.
Besides the reduction in the selection interval, Werner et al.
(2020) pointed out two other additional key advantages: the
increased selection accuracy and the possibility of increasing the
selection intensity. Genomic prediction can also be extremely
useful when applied for a trait that is expensive and/or hard to
measure, restricting the phenotypic data’s availability to a subset
of the population (De Haas et al., 2012).

Implementation of genomic prediction/selection schemes
was recently boosted by the advent of low-cost SNPs marker
platforms such as GBS (Elshire et al., 2011). Genotyping must be
sufficiently dense to get SNPs that are in linkage disequilibrium
with most of the loci controlling important quantitative traits
(Okeke et al., 2017). Despite being a trivial practice for some plant
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breeding programs, and especially for animal breeding programs,
some plant breeding programs are still facing the transition’s
challenges from conventional plant breeding to a present scenario
where conventional breeding is still essential but now it can also
be supported by genome-assisted breeding pieces of evidence to
drive decision making, by adding relevant information to speed
up the breeding pipeline.

Selection decisions are based on genomic breeding values
(GEBVs), which are calculated by first estimating the SNP
effects in a training population (reference) with both phenotypic
and genotypic information available; and then, the SNP effects
are multiplied by the genotypes’ marker matrix of a testing
population (target) and summed to form the GEBVs (Pryce et al.,
2011). One of the essential factors to be considered is how the
training sets are composed; they can be constituted of landraces
and/or modern improved lines, clones from different breeding
programs, across breeding stages, and/or even from different
countries (Somo et al., 2020).

Joint evaluations can be desirable under certain situations,
its practice is currently more common in animal breeding as
crossbred predictions (Pocrnic et al., 2019; VanRaden et al.,
2020). However, for plants, recently Somo et al. (2020) attempted
to examine diverse cassava germplasm assembled from two
breeding programs in Tanzania at different breeding stages to
predict traits. In their work, the use of clones in the same breeding
stage to build TPs provided higher prediction accuracy than TPs
with clones from multiple breeding stages together. They also
included a Ugandan TP in either Tanzanian population which did
not improve prediction accuracies.

This work aimed to achieve the following objectives: (i)
evaluate the feasibility of cross-country genomic predictions
between germplasm’s accessions from Embrapa (Cruz das
Almas, Brazil) and IITA (Ibadan, Nigeria) for HCN (taking
into consideration the hypothetical scenario of lack of
phenotypic characterization of clones from a certain research
institute/country and the need of predicting their GEBVs with
SNPs effects predicted with a TP consisted of clones from other
research institutes/countries, which may contemplate cases of
interest, e.g., plant diseases); (ii) identify the HCN variability in
the cassava germplasm; (iii) provide an assessment of population
structure in the joint dataset (Embrapa+IITA); (iv) estimate the
genetic parameters of GP based on a haplotype-approach and
compare them to those based on single markers. This seems to be
among the first attempts to evaluate the cross-country genomic
selection in cassava.

MATERIALS AND METHODS

Plant Material
A total of 1,230 cassava clones from the Cassava Breeding
Program (CBP) of Embrapa Mandioca e Fruticultura (Cruz
das Almas, Brazil) were genotyped and phenotyped for HCN.
The set of clones consisted of landraces and modern breeding
lines, collected from different Brazilian growing regions. It
consisted of a selected subset from a panel of 1,536 clones,
which were revealed as a unique subset out of an original

set of 3,354 clones by identity-by-state analysis carried out
by Ogbonna et al. (2021a). The dataset from the International
Institute of Tropical Agriculture (IITA) was obtained from
the open-source cassava breed base instance1, it included the
genotypic and phenotypic information of 590 cassava clones
evaluated in Ibadan, Nigeria.

Phenotypic Characterization of
Hydrogen Cyanide Content
Field trials were carried out in Cruz das Almas (State of Bahia,
Brazil, 12◦40′39′′S, 39◦06′23′′W) from 2016 to 2019, with the
number of replications varying from three replications (2017,
2018, and 2019) to four replications (2016) in a randomized
block design. The plots consisted of two rows with 16 plants
per plot. Planting was performed from May to July (during the
rainy season). Spacings between rows and plants were 0.9 and 0.8
m, respectively. All trial management was performed, whenever
necessary, in accordance with the technical recommendations
and standard agricultural practices for cassava. For the IITA
dataset, phenotypic information was collected from Cassavabase
(see text footnote 1), the final file consisted of 590 clones
evaluated in Ibadan, Nigeria, from 1998 to 2012; the number
of replications was mostly four, but it ranged from two to six
for some clones. The IITA dataset was composed of 77 trials in
total with varied experimental designs. This dataset originated
from a previous curatorship in which Ogbonna et al. (2021b)
retrieved 228 trials out of 393 trials, and then we further filtered
by location (Ibadan) and years (1998–2012). The total number of
observations was 8,355 and 5,158 for Embrapa and IITA datasets,
respectively (Table 1).

For both datasets, HCN was measured according to the picrate
titration method described by Fukuda et al. (2010), which is a
qualitative determination of HCN content in fresh roots basis
based on a 1–9 color scale; with 1 and 9 representing the extremes
of low and high HCN, respectively. For the HCN Embrapa
dataset, roots with uniform shapes and sizes from different plants
that represent the plots were analyzed for HCN. Plants were
harvested 11–12 months after planting. A cross-sectional 1 cm3

cut was made at the mid-root position, between the peel and the
parenchyma center. The cube of root and five drops of toluene
were added to a glass test tube, and they were tightly sealed with
a stopper. In order to determine the qualitative score of HCN
content, a strip of filter paper was dipped into a freshly prepared
alkaline picrate mixture until saturation. Then, the saturated filter
paper was placed above the root cube in the tube. Tubes were
sealed for 10–12 h before the color intensity evaluation. HCN
represents the total cyanogenic glucosides (HCN/CN−, linamarin
and acetone cyanohydrin) in cassava root (Bradbury et al., 1999).

Genotyping and Data Quality Control
For both Embrapa and IITA, the DNA was extracted from
young leaves of cassava accessions according to a protocol
described by Doyle and Doyle (1990). Then, the DNA was
diluted in the TE buffer (10 mM Tris-HCl and 1 mM EDTA)
and adjusted to a final concentration of 60 ng/µl. The DNA

1https://cassavabase.org/
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TABLE 1 | Experimental areas, cities, geographical coordinates, years, number of phenotypical observations, and clones.

Institute City Geographical coordinates Years Observations Clones

Embrapa Cruz das Almas 12◦40′42.4′ ′S39◦05′27.8′ ′W 2016–2019 (4 years total) 8,355 1,230

IITA Ibadan 7◦29′44.5′ ′N3◦53′51.4′ ′E 1998–2012 (15 years total) 5,158 590

quality was checked by the digestion of 250 ng of genomic DNA
from 10 random samples with the restriction enzyme EcoRI
(New England Biolabs, Boston, MA, United States). Subsequent
samples were sent to the laboratory for library preparation,
sequencing, and bioinformatics analyses. Genotyping was
performed by genotyping by sequencing (GBS) methodology,
which is described in detail by Elshire et al. (2011). The DNA
was digested with the ApeKI restriction enzyme and the Illumina
sequencing read lengths of 150 bp. Marker genotypes were called
with the TASSEL GBS pipeline V5 (Glaubitz et al., 2014) and
aligned to the cassava reference genome version 6.1 (Illumina,
San Diego, CA, United States). The joint dataset (Embrapa +
IITA) was intersected using the GATK CombineVariants and
Intersect functions (McKenna et al., 2010).

Filtering steps and parameters as well as imputation were
performed as described in Ogbonna et al. (2021b). Filtering
steps and parameters included: mean depth values > 5, missing
data up to 0.2 per locus and minor allele frequency of 0.01 per
loci, also, individuals with more than 0.8 of missing data per
chromosome were removed. Imputation was performed for each
chromosome using beagle version 4.1 (Browning and Browning,
2016). Imputed markers were subjected to further filtering using
an allelic correlation greater or equal to 0.8. The final cassava
clone set was obtained after filtering available phenotypic data on
trial location and years basis, additional minor allele frequency
filtering (0.05) step was carried out, achieving total sets with 1,230
clones and 14,323 SNPs for Embrapa, 590 clones, and 13,524 for
IITA, 1,820 clones and 14,924 SNPs for the joint dataset (Embrapa
+ IITA) (Table 2) out of an intersected file with 4,814 clones.
This number of SNPs seems to be suitable to capture or detect
important QTL association for HCN based on the LD decay
(r2< 0.1) (Ogbonna et al., 2021a).

Population Structure
The principal component analysis (PCA) and discriminant
analysis of principal components (DAPC) analyses were
performed with the joint dataset (Embrapa+IITA; 1820 clones;
14,924 SNPs), with the package “adegenet” (Jombart, 2008;

TABLE 2 | Number of single nucleotide polymorphisms (SNP) in each data file
after quality control, and the number of shared SNPs between data files after
quality control/1.

Analyses # SNPs

Embrapa 14,323

IITA 13,524

Embrapa+IITA 14,924

Common SNPs 11,883

/1SNPs with minor allele frequency > 0.05 were kept.

Jombart et al., 2010) in R software (R Core Team, 2019). The
PCA analysis and the principal components reported were based
on the genomic kinship coefficients between clones. However,
for DAPC analysis, the number of retained PCs (explained ∼
90%) was based on the PCA of the marker matrix. Bayesian
Information Criterion (BIC) was used to identify the optimal
number of clusters. Complementary to DAPC and PCA, we also
inferred population structure with STRUCTURE (Pritchard et al.,
2000), selecting the 300 least correlated SNPs to warrant the use
of unlinked markers. We tested the number of populations (K)
varying from one to fifteen, running a series of ten independent
runs for each value of K. Aiming the identification of the K
number, 10,000 iterations were run, with 1,000 burn-in. For the
choice of the most likely value of K, we used the 1K method
(Evanno et al., 2005) implemented in the Structure harvester
software (Dent and Bridgett, 2012). After the identification of the
K number, we ran a final analysis with 150,000 iterations, 50,000
burn-in, and the chosen K. Additional clustering step was carried
out by Tocher’s method (Silva et al., 2017), grouping the DACP
clusters based on their HCN means.

The fixation index (FST) (Wright, 1965) between germplasm’s
sources (Embrapa and IITA), as well as between clusters identified
in the joint dataset’s DAPC analysis, was estimated by using
the method of Weir and Cockerham (1984) with the package
“hierfstat” (Goudet, 2005) in R software (R Core Team, 2019).

Building the Haplotype Matrix
Single nucleotide polymorphisms (SNPs) obtained after quality
control were used to build the haplotype blocks. Haplotypes were
identified by Gabriel’s method (Gabriel et al., 2002), implemented
on PLINK 1.90b5.3 (Purcell et al., 2007). The method is based
on a confidence interval of DPrime (D′). The pairs of SNPs were
considered in strong linkage disequilibrium (LD) if the upper
boundary confidence interval of D′ was higher than 0.98 and
the lower boundary was higher than 0.8. The maximum length
of the blocks was set to 200 Kb. We assumed a very strong
linkage between markers within the haplotype blocks. Then, the
“haplotype matrix” was numbered (0 and 1) as it follows: for
each haplotype block the class “0” was the one that contained
exclusively 0 for all the haplotype blocks’ markers, whereas the
class “1” consisted of all remaining haplotypes.

Genomic Prediction Analyses
Clone’s GEBVs for HCN were predicted based on SNP effects
estimated by the following analyses: (i) genomic prediction
with training population of Embrapa genotypic and phenotypic
data, (ii) genomic prediction with training population of IITA
genotypic and phenotypic data, and (iii) genomic prediction
with training population of the joint (Embrapa+IITA) datasets.
The SNP effects were estimated in the training populations.
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Then, these three vectors of SNPs effects were multiplied by the
genotype’s incidence codes of the mutual testing populations and
summed to form the GEBVs.

The models used for the genomic prediction analyses by single
markers and haplotypes were:

y1 = X1b1 + Z11aG1 + Z21aYR1 + ε1

y2 = X2b2 + Z12aG2 + Z22aYR2 + ε2

y3 = X3b3 + Z13aG3 + Z23aYR3 + ε3

Where, y1, y2, and y3 are the vectors of phenotypic
observations and b1 and b2 are the scalars of mean fixed effect, for
analyses of datasets of Embrapa and IITA separately, respectively,
and b3 is the vector of fixed effects of the country added to the
mean for the joint dataset’s analysis. The vectors aGij refers to the
random additive genomic clone effects associated with the i-th
dataset (i 1, 2, 3), aGij ∼ N(0, σ2

aGijGij), where Gij is the additive
genomic relationship matrices as defined below, σ 2

aGij is the
genetic variance associated with aGij. The random-effects vectors
aYRi refers to the combination of year and replication associated
with the i-th dataset (i = 1, 2, 3), aYRi ∼ N(0, σ2

aYRiIyri), where
Iyri is an identity matrix and σ2

aYRi is the variance estimate due
to the combination of year and replication. Xi, Z1i and Z2i are
the incidence matrices for fixed effects and the random effects of
genotypes and combination of year and replication, respectively,
associated with the i-th dataset (i = 1, 2, 3). εi represents the
residual vector associated with the i-th dataset (i = 1, 2, 3),
εi ∼ N(0, σ2

eiIei), where Iei is an identity matrix and σ2
ei is the

residual variance. Based on previous studies on the evaluation
of different genomic selection models in cassava (Wolfe et al.,
2017; Andrade et al., 2019), we have adopted genomic best
linear unbiased prediction (GBLUP) as the standard prediction
method. Therefore, the genomic predictions were based on the
GBLUP method with the REML (restricted maximum likelihood)
estimation of variance components.

The whole procedure uses the additive genomic relationship
matrix Gij. Likelihood Ratio Tests (LRT) were undertaken to test
the random effects using the chi-square distribution, with degrees
of freedom equal to the difference in the number of parameters
for the two models. Genomic prediction analyses were performed
using the package “sommer” (Covarrubias-Pazaran, 2016) in R
software (R Core Team, 2019).

Heritability was estimated as the ratio of the genetic variance
to the sum of the genetic variance, the variance due to the
combination of year and replication, and the residual variance,
for each analysis.

To capture genetic relatedness, the genomic relationship
matrix (Gij; with the i-th dataset (i = 1, 2, 3) and the j-th
genotyping method (j = SNP, hap) for the genomic prediction
of single markers and haplotypes were obtained as it follows:

Gi_SNP =
MM′∑n
i = 1 2piqi

Gi_hap =
HH′∑n
i = 1 piqi

Where, pi and qi are the allele frequencies for single markers’
analyses and the ‘allele’ frequencies for haplotypes’ analyses, M
is the markers incidence matrix (numbered as 0, 1, and 2)
centered by the mean 2pi and H is the haplotypes incidence
matrix (numbered as 0 and 1). The sizes of Gij matrixes were
1,230 × 1,230, 590 × 590, and 1,820 × 1,820, for analyses
(datasets) 1, 2, and 3, respectively. And the sizes of Iyri identity
matrices for the combination of year and replication were
26 × 26, 60 × 60, and 86 × 86, for analyses 1, 2, and
3, respectively.

The SNP and haplotype effects vectors (m̂, ĥ) were calculated
as it follows:

m̂ = (MM′)−1M′âGij

ĥ = (HH′)−1H′âGij

The vector aGij refers to the random additive genetic
effects [aGij ~ N(0,σ2

aGijGij)] associated with the i-th dataset
(i = 1, 2, 3) and the j-th genotyping method (j = SNP, hap). The
GEBVs’ vectors were obtained as follows: ̂GEBV_SNP = Mm̂ or

̂GEBV_hap = Hĥ, for using SNPs or haplotypes, respectively.
For the cross-country analyses, simulating the hypothetical

situation where we would not have the phenotypic information
of a group of clones from a certain research institute/country, for
the vector of GEBV prediction, we have used the estimated SNP
effects with data from another research institute/country, after
filtering the matrix M to encompass only common SNPs that were
in both datasets.

Trait estimates of predictive ability, accuracy, and bias were
calculated from cross-validation with the training sets for each
analysis. Those parameters were estimated for each fold, and the
value presented in this study is the mean of the folds. The cross-
validation method used was the k-fold, k = 10, with the clones
being randomly assigned to each fold. The training set, composed
of 9 of the 10 subsets, was used to estimate marker effects and
the remaining subset was the validation set. These marker effects
estimates were used to predict the genomic breeding values of the
validation set individuals. This process was repeated until all 10
subsets had been used as the validation population once.

The predictive ability was given by the correlation coefficient
between predicted genetic values (GEBVs) and the phenotypes
in the validation population. The accuracy was calculated as the
ratio between the predictive ability and the square root of the
phenotypic trait heritability. The phenotypes (PP) were linearly
regressed on the GEBVs, and the regression coefficient b̂PP,GEBV
was used to measure the degree of bias of the GEBV prediction.
The bias relates to the size of the absolute differences between
clones’ predicted genetic values and their pseudo-phenotypes.
The estimated magnitude of these differences can be quantified
by the b̂PP,GEBV regression coefficient and can be overestimated
(b̂PP,GEBV < 1) or underestimated (b̂PP,GEBV > 1). A regression
coefficient equal to one indicates no bias. Then, here we will
represent bias as one unit minus the regression coefficient
b̂PP,GEBV (Bias = 1 - b̂PP,GEBV).

Frontiers in Plant Science | www.frontiersin.org 5 December 2021 | Volume 12 | Article 742638

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-742638 December 2, 2021 Time: 13:43 # 6

Torres et al. Cross-Country Genomic Predictions for HCN in Cassava

We compared the top (lower GEBVs for HCN) 100 ranking
lists contrasting the predicted and estimated GEBVs for both
Embrapa and IITA datasets (analysis 1 – TP with Embrapa’s
dataset – and analysis 2 – TP with IITA’s dataset –, respectively),
considering the hypothetical situation that in the absence of
phenotypic characterization for one research institute/country,
we might want to use the marker effects obtained from the GP
using TP data from the other research institute/country to predict
the performance of their clones.

Statistical analyses were based on the HCN phenotypes
originated by the picrate method 1–9 color scale; however, for
data visualization clone’s GEBV were further classified into three
classes: sweet, intermedium, and bitter, as clones ranged from 1
to 4, 4.1 to 5, and 5.1 to 9, respectively.

RESULTS

Population Structure
Principal components analysis in our joint dataset revealed
a clear pattern of grouping clones according to their origin
(Embrapa/Brazil and IITA/Nigeria), with the first three PCs
accounting for 76.3% of the genetic variation (58.24, 12.21, and
5.85% for PC1, PC2, and PC3, respectively) (Figure 1A).

Similar to our PCA, in our first STRUCTURE run, two large
groups were found. One is predominantly composed of clones
from Embrapa (pop1 – 924 clones from Embrapa and 23 clones
from IITA), and the other (pop2) with 567 (out of the total

590) clones from IITA in addition to 306 clones from Embrapa
(Supplementary Figure 1). Additional STRUCTURE analyses
were run within pop1 and pop2, separately. Pop1 and pop2
were subdivided into pop1a and pop1b and pop2a and pop2b,
respectively. Pop2a were composed by Embrapa and IITA clones,
almost half: half ratio, that is apparently closer related (274 clones
from Embrapa and 302 clones from IITA), and pop2b were
composed by almost exclusively IITA’s clones (32 clones from
Embrapa and 265 clones from IITA; Supplementary Figure 2 and
Supplementary Table 2). This shows that even though, at first, it
looked like the datasets of the two research institutions consisted
of two very distinct groups, there is certain intersectionality, and
clones from different origins could be more admixed than clones
from the same origin.

For DAPC, 500 PCs that explained ≈ 90% of the genetic
variance were kept in our dataset. The optimal number of
12 genetic clusters was suggested to explain the total genetic
variability based on BIC (Supplementary Figure 3), with cluster
size ranging from 61 (cluster 10) to 299 individuals (cluster 2).
Out of the 12 clusters, only four had clones from both Embrapa
and IITA germplasm (clusters 1, 2, 6, and 7) with unbalanced
proportions and a dominant origin within those clusters. The
remaining eight clusters were exclusively composed of clones
from Embrapa (clusters 5, 9, 10, 11, and 12) or IITA (clusters 3,
4, and 8). The HCN means ranged from 3.75 ± 0.68 (cluster 10)
to 7.15 ± 0.84 (cluster 5) (Table 3). The principal components
plot according to the clustering from DAPC analysis is shown in
Figure 1B.

FIGURE 1 | Principal components analysis (PCA) of the genomic kinship coefficients between cassava clones. (A) PCA from the genomic relationship matrix
between all cassava clones (N = 1,820; 14,924 SNPs) from Brazil (Embrapa) and Nigeria (IITA), showing the first three principal components and the variance
explained by each component in parenthesis on the corresponding axis (58.24, 12.21, and 5.85% for PC1, PC2, and PC3, respectively). In black representing
Embrapa clone’s dispersion and in grey representing IITA’s. (B) PC diagram highlighting the 12 clusters identified by the DAPC analysis.
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TABLE 3 | Discriminant analysis of principal components (DAPC) that accounted
for most (>95%) of the total genetic variability and genetic clusters were inferred
(k = 12) based on Bayesian Information Criterion (BIC).

Cluster N (Total)/1 n1 (Embrapa) n2 (IITA) Mean HCN/2

1 143 134 9 4.39 ± 0.94a

2 299 10 289 5.37 ± 0.84b

3 86 – 86 5.51 ± 0.89b

4 79 – 79 5.53 ± 0.79b

5 133 133 – 7.15 ± 0.84c

6 269 255 14 5.44 ± 1.38b

7 297 296 1 6.80 ± 0.97c

8 112 – 112 5.60 ± 1.02b

9 173 173 – 5.26 ± 1.37b

10 61 61 – 3.75 ± 0.68d

11 68 68 – 4.69 ± 1.37a

12 100 100 – 7.08 ± 0.71c

Total 1820 1230 590 5.57 ± 1.38

Total number of clones (N), number of clones from Embrapa (n1), and number of
clones in IITA (n2) in each cluster.
/1Size of the dataset used for the DAPC: 1820 clones and 14,924 SNPs.
/2Clustering by the Tocher method (Inter-cluster distance limit = 0.64).
a,b,c,dMean clustering of the clusters by Tocher’s method.

The intergroup distance limit was 0.64 with DACP clusters
5 (7.15 ± 0.84), 7 (6.8 ± 0.97), and 12 (7.08 ± 0.71) being
allocated in the same Tocher group; high chances of the bitterest
clones belonging to that group of clusters. They were exclusively
composed of clones from Embrapa, except for cluster 7 which
had 296 clones from Embrapa and only one from IITA. On
the other hand, the ‘sweetest’ (low HCN) Tocher’s group was
composed by cluster 10 (3.75± 0.68), only, exclusively composed
of clones from Embrapa.

The FST values between the proposed mutual training and
validation sets, composed of Embrapa and IITA’s genotypic
datasets, were moderate (0.072). Estimated fixation indexes with
markers between the twelve clusters identified within the joint
dataset (Embrapa+IITA) varied from 0.002 (clusters 2 and 4,
clusters 4 and 6) to 0.091 (clusters 3 and 9) (Table 4). Cluster 2

(mean HCN = 5.37± 0.84) was composed mainly of clones from
IITA, while cluster 4 (mean HCN = 5.53 ± 0.79) was composed
exclusively of clones from IITA, whereas cluster 6 (mean
HCN = 5.44 ± 1.38) had mainly clones from Embrapa. Clusters
3 (mean HCN = 5.51 ± 0.89) and 9 (mean HCN = 5.26 ± 1.37)
had clones exclusively from IITA and Embrapa, respectively. The
above-mentioned clusters were all in the same Tocher’s group
based on HCN mean.

Although the highest FST were expected to be among groups
of clones from Embrapa and IITA, there were groups with clones
exclusively from Embrapa (clusters 5 and 9) and exclusively from
IITA (clusters 3 and 8) that presented moderate FST between
them of 0.09, evidencing the genetic variability within the
germplasms of each origin. In the same way, there were clusters
from different origins that presented low FST. The heatmap of
the kinship matrix G also illustrated the population structure
(Figure 2), highlighting the high coefficients between clusters 8
and 9 (FST = 0.004; Table 4), composed of clones from IITA and
Embrapa, respectively.

Interestingly, when comparing DAPC and STRUCTURE
clones’ grouping, the STRUCTURE group pop2a that was
composed of 274 clones from Embrapa and 302 clones from IITA
had mostly clones from DAPC groups 2 (277 out of group 2
total 290 clones – IITA), 5 (109 out of group 5 total 133 clones –
Embrapa) and 12 (73 out of group 12 total 100 clones – Embrapa).
DAPC groups 5 and 12 were groups with the highest HCN means
(Table 3). These results are also in accordance with our estimated
FST between DAPC groups, since FST between groups 2 and 5, 2
and 12, and 5 and 12 were 0.009, 0.026, and 0.037, respectively,
representing very low population differentiation (Table 4).

Genomic Analyses for Embrapa,
International Institute of Tropical
Agriculture, and Joint Datasets
All datasets had significant (p < 0.01) genetic and year-
replication variability for HCN (Table 5). The phenotype-based

TABLE 4 | Fixation index (FST) estimated by single nucleotide polymorphisms (SNPs) between cassava clones from Embrapa and IITA and between clusters identified
within the joint dataset (Embrapa+IITA).

FST between genotypic data from Embrapa and IITA = 0.072

Clusters Clusters

2 3 4 5 6 7 8 9 10 11 12

1 0.004 0.013 0.007 0.005 0.009 0.018 0.084 0.084 0.074 0.023 0.030

2 0.000 0.004 0.002 0.009 0.003 0.019 0.086 0.086 0.073 0.019 0.026

3 0.004 0.000 0.003 0.020 0.005 0.023 0.090 0.091 0.076 0.020 0.024

4 0.002 0.003 0.000 0.011 0.002 0.018 0.087 0.086 0.072 0.020 0.023

5 0.009 0.020 0.011 0.000 0.013 0.023 0.090 0.090 0.082 0.030 0.037

6 0.003 0.005 0.002 0.013 0.000 0.018 0.084 0.083 0.070 0.023 0.024

7 0.019 0.023 0.018 0.023 0.018 0.000 0.032 0.030 0.023 0.007 0.009

8 0.086 0.090 0.087 0.090 0.084 0.032 0.000 0.004 0.023 0.043 0.047

9 0.086 0.091 0.086 0.090 0.083 0.030 0.004 0.000 0.020 0.040 0.043

10 0.073 0.076 0.072 0.082 0.070 0.023 0.023 0.020 0.000 0.027 0.027

11 0.019 0.020 0.020 0.030 0.023 0.007 0.043 0.040 0.027 0.000 0.008

12 0.026 0.024 0.023 0.037 0.024 0.009 0.047 0.043 0.027 0.008 0.000
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FIGURE 2 | Heatmap of the kinship G matrix by Institute/Country (A,B) by DAPC Cluster (1–12).

TABLE 5 | Estimates of phenotype-based heritability (H2), SNP-based heritability or haplotype-based heritability (h2), predicted mean, coefficient of residual variation
(CVe), genetic variance (σ2

G), variance due to the combination of year and replication (σ2
YR), residual variance (σ2

ε ), predictive ability (PA), accuracy (Ac) and bias for
individual markers, and haplotypic block genomic analyses for hydrogen cyanide (HCN) content in Cassava.

Single markers

Datasets H2 h2 Mean CVe σ2
G σ2

YR σ2
ε PA Ac Bias/2

Embrapa 0.76 0.97 7.11 0.13 31.90*/1 0.25* 0.79 0.59 ± 0.05 0.67 ± 0.06 0.41 ± 0.06

IITA 0.18 0.20 4.95 0.28 0.64* 0.62* 1.92 0.26 ± 0.12 0.61 ± 0.29 0.39 ± 0.37

Embrapa+IITA 0.56 0.65 5.57 0.21 3.68* 0.59* 1.39 0.64 ± 0.05 0.85 ± 0.07 0.23 ± 0.06

Haplotype blocks

Datasets H2 h2 Mean CVe σ2
G σ2

YR σ2
ε PA Ac Bias

Embrapa 0.76 0.96 5.91 0.16 31.00* 0.27* 0.86 0.48 ± 0.07 0.56 ± 0.08 0.58 ± 0.08

IITA 0.18 0.20 5.05 0.27 0.65* 0.62* 1.92 0.22 ± 0.14 0.51 ± 0.34 0.48 ± 0.38

Embrapa+IITA 0.56 0.62 5.74 0.21 3.31* 0.59* 1.42 0.60 ± 0.04 0.80 ± 0.05 0.30 ± 0.05

/1 *Significant at 0.01 by the likelihood ratio test (LRT). LRT = 2∗(complete model log-likelihood – reduced model log-likelihood). /2Bias = 1 – b̂PP,GEBV.

heritabilities were 0.76, 0.18, and 0.56 for Embrapa, IITA, and
the joint Embrapa-IITA datasets, respectively; while the SNP-
based heritabilities were 0.97, 0.2, and 0.65 for Embrapa, IITA,
and the joint Embrapa-IITA datasets, respectively. Embrapa’s
dataset presented the highest mean and lowest coefficient
of residual variation for HCN when compared to IITA
and joint datasets.

For the single markers’ analyses, the highest predictive ability,
accuracy, and the lowest bias were achieved when using the
joint dataset, being 0.64 ± 0.05, 0.85 ± 0.07, and 0.23 ± 0.06,
respectively. For Embrapa and IITA datasets alone, the SNP-
based predictive abilities were 0.59 ± 0.05 and 0.26 ± 0.12, the
accuracies were 0.67 ± 0.06 and 0.61 ± 0.29 and the biases
were 0.41 ± 0.06 and 0.39 ± 0.37, respectively. For all genetic
parameters, the highest standard deviations of 10-folds were
found when using the IITA dataset.

From the practical point of view, for HCN there is still a
reclassification, group-allocating according to the picrate method
(1–9)’s records, which are: ranging from 1 to 4 - Sweet; from 4.1
to 5 – Intermedium; from 5.1 to 9 – Bitter. Figure 3 illustrates
boxplots contrasting the HCN estimated GEBVs (predicted by
single markers) on the country-specific dataset, cross-country-
dataset and considering both datasets jointly to characterize
sweet, intermedium, and bitter classes for Embrapa and IITA
germplasm. For the GEBVs of clones from IITA predicted
with the Embrapa dataset, the predicted values exceeded the
sample space limits of the picrate method (1–9). It seems
that cross-country genomic predictions, in the present work,
underestimated the GEBVs for Embrapa clones predicted by
marker effects from IITA’s dataset GP and overestimated the
GEBVs for IITA clones predicted by markers effects from
Embrapa’s dataset GP.
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FIGURE 3 | Boxplots contrasting the hydrogen cyanide predictions on country-dataset and cross-country-dataset to show sweet, intermedium and bitter classes.
(A) Hydrogen cyanide for Embrapa’s clones based on GEBV prediction on Embrapa’s dataset, IITA’s dataset and the two datasets together, respectively.
(B) Hydrogen cyanide for IITA’s clones based on GEBV prediction on IITA’s dataset, Embrapa’s datasets and the two datasets together, respectively.

Genomic Analyses With Single Markers
vs. Haplotypes
For Embrapa, IITA, and the joint datasets, 3,132, 2,678, and 3,337
haplotype blocks were found with mean lengths (Kb) of 20.4,
33.189, and 19.636 Kb and mean number of SNPs of 3.616, 4.086,
and 3.569 SNPs, respectively (Supplementary Table 1).

Although we have assumed a simplified approach to
number the ‘haplotype matrix’, for the haplotype genomic
prediction analyses (Table 5), the accuracy recovering
rates with haplotype blocks analyses compared to single
markers were high: 84% (0.56/0.67), 84% (0.51/0.61), and
94% (0.8/0.85), for the three datasets. Predictions from
haplotype blocks had lower accuracies and higher biases
compared to single markers; however, the correlation
between the GEBVs estimated by the analysis of single
markers and haplotype blocks were 0.99, 0.95, and 0.99
for Embrapa, IITA, and the joint dataset, respectively.
Model complexity reductions (haplotypes number/single
markers number) from using haplotypes were down to 22%
(3,132/14,323), 20% (2,678/13,524), and 22% (3,337/14,924)
of the original complexity, for Embrapa, IITA, and the joint
dataset, respectively.

Comparisons Between Genomic
Estimated Breeding Values Rankings
For Embrapa clones’ GEBVs estimated by markers effects in the
three analyses (analysis 1: Embrapa phenotypic and genotypic
data, analysis 2: IITA phenotypic and genotypic data, and analysis
3: the two datasets together), high correspondences between
GEBVs estimated by analyses 1 and 2, 1 and 3, and 2 and
3 (Pearson’s correlations of 0.55, 0.96, and 0.6, respectively,

whereas for Kendall’s correlations they were 0.38, 0.82, and 0.43,
respectively) were identified. For IITA clones’ GEBVs estimated
by markers effects in the three analyses, weak but positive
correspondences were obtained between GEBVs estimated by
analyses 1 and 2, and 1 and 3 (Pearson’s correlations of 0.1 and
0.15, respectively, whereas for Kendall’s correlations they were
0.07 (1 vs. 2), 0.1 (1 vs. 3), and 0.78 (2 vs. 3), respectively).
For analyses 2 and 3 a good correspondence was observed
(correlations of 0.92).

We assessed the correlation between the common SNP’s effects
vectors (total of 11,883 SNPs) originated from the three analyses.
For SNP effects from analyses 1 and 2 the correlation was
0.01, from analyses 1 and 3, and 2 and 3, they were 0.69 and
0.42, respectively.

We also compared the top (lower GEBVs for HCN) 100 clones
ranking contrasting the predicted and estimated GEBVs for both
Embrapa and IITA datasets (analyses 1 and 2, respectively),
considering the hypothetical situation that in the absence of
phenotypic characterization for one research institute/country,
we might want to use the marker effects obtained from the GP
using data from the other research institute/country to predict
the GEBVs’ performance of their clones. For Embrapa, from
the top 100-lists’ comparison, we have found 12 coincident
clones (Supplementary Table 3), while for IITA lists we have
found 24 coincident clones (Supplementary Table 4). Out of the
coincident clones, those from Embrapa are in DAPC clusters of
1 and 10 and those from IITA are in DAPC clusters of 1, 2, 4,
6, and 8. From these clusters, 1, 2, and 6 are mixed, while 4, 8,
and 10 are composed exclusively by IITA or Embrapa clones.
Supplementary Figure 4 illustrated where those coincident
clones between own- and cross-country genomic predictions fall
in the PCA plot.

Frontiers in Plant Science | www.frontiersin.org 9 December 2021 | Volume 12 | Article 742638

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-742638 December 2, 2021 Time: 13:43 # 10

Torres et al. Cross-Country Genomic Predictions for HCN in Cassava

DISCUSSION

Population Structure
This study was conceptualized as a proof-of-concept to assess
the feasibility of using cross-country genomic predictions
to support the selection of the most suitable clones for
germplasm exchange. Moreover, the germplasm characterization
for preemptive breeding purposes, in case of quarantine diseases,
i.e., when we might not have the phenotypes (resistance to
certain disease because the screening in a greenhouse or the field
is forbidden) is another important area that can benefit from
the results of the present study. In such a case, the estimation
of the clones’ GEBVs by using markers’ effects estimated in
different training populations can be used to rank the most
promising clones with resistance to the disease. However, it is well
known the population structure has a strong effect on genomic
prediction estimates, as observed in both animals (Hayes et al.,
2009a) and plants (Technow et al., 2013).

Understanding the population structure of the joint dataset,
how the cassava clones from Embrapa-Brazil and IITA-Nigeria
are related to each other, is important in order to better plan
the germplasm exchange dynamic between Brazil and Nigeria,
or even to understand the outcomes from the joint dataset
and the mutual cross-country predictions. Guo et al. (2014)
investigated the impacts of population structure on the evaluation
of genomic heritability and found that population structure
explained 33 and 7.5% of genomic heritability for rice and
maize, respectively, depending on the trait tested, with within-
subpopulation variation explaining the remaining heritability.
The sample size, the observed variability among populations, and
traits require resource optimization that incorporates knowledge
about the parameters’ variability (Riedelsheimer et al., 2013).

Population structure exists due to geography, history of
domestication and genetic background, natural or artificial
selection. In general, our results, obtained by different methods to
assess genetic differentiation between populations (PCA, DAPC,
FST, and STRUCTURE), point to the same common point:
there is clearly a population structure between the germplasm
from Embrapa (Brazil) and the IITA’s (Nigeria), however, this
differentiation is not strong enough that there are no clones
between these research programs that are more similar than
divergent clones within the own program itself. It may be
related to past clone exchange (Latin America and Africa),
mislabeling, among others. It is important to highlight that
DAPC and STRUCTURE are ad hoc methods, then, likely (and
even expected) to present different results in terms of clustering.
Nevertheless, their results can be complementary. As they were
in the present study, which generates speculation and perspective
for future studies about the reason of the groups of clones from
Embrapa with the highest content of HCN (DAPC groups 5 and
12) are those that are apparently more genetically related to a
considerable part of the clones from IITA (group 2), and their
respective STRUCTURE pop2a including Embrapa and IITA
clones. Future studies with dry matter content and fresh root yield
could shed light on this issue, as these traits appear to be more
decisive in driving artificial selection over the years.

The fixation index (FST) between the proposed mutual
training and validation sets, composed by Embrapa and
IITA’s germplasm, were moderate (0.072), representing a
weak population differentiation. When studying the population
structure of Brazilian germplasm from Embrapa separately,
Ogbonna et al. (2021b) found almost the same value, specifically
an overall pairwise FST of 0.073 in 10 clusters obtained by DACP.
The predictive ability was higher by using the joint dataset
(Embrapa + IITA) (0.64) than using the IITA population due to
the training set sizes (1,820 for both and 590 for IITA). However,
the Embrapa population showed almost the same predictive
ability of the joint dataset (0.59 and 0.64, respectively), despite the
difference in the training set sizes (1,230 individuals in Embrapa
and 1,820 individuals in the joint dataset). Consequently, the use
of the Embrapa population to predict IITA genotypes is feasible,
which had already been evidenced by the moderate fixation
index (0.072). Scutari et al. (2016) found that the correlation
between true and predicted values decays approximately linearly
with respect to the fixation index between the training and the
target populations. If more phenotyped individuals were included
in IITA’s training set, the higher predictive ability would be
expected by using the IITA population to predict Embrapa’s.
Noteworthy, if we had a combination of higher FST and lower
predictive ability than the achieved in the present study, the use
of any single population to predict another would be impractical
and could compromise accurate GEBV prediction. Hence, it
would be mandatory for the inclusion of individuals from other
populations for GEBVs prediction and success of these breeding
programs’ consortia (de Roos et al., 2009).

To provide the comprehensive genetic architecture of HCN
in cassava, Ogbonna et al. (2021a) performed a GWAS with
a Brazilian dataset and validated it in an African population
and a joint GWAS analysis between Africa and Brazil. These
authors also showed evidence that the genetic architecture of
HCN is conserved between the two continents. Ogbonna et al.
(2021a) study revealed HCN is regulated in an oligogenic
manner with two major loci explaining the variation across
their datasets. Wolfe et al. (2019) identified regions in the
genome of cultivated cassava (Manihot esculenta) in Africa that
had introgressions of Manihot glaziovii, the legacy of crosses
during the 1930s to improve varieties and mitigate the effects of
emerging plant diseases. Although crosses with Manihot glaziovii
were not as frequent in Brazil as they were in Africa at that
time, recently Ogbonna et al. (2021b) found introgressions of
M. glaziovii in the Brazilian germplasm as well (on chromosomes
5 and 17, while those reported in African germplasm were on
chromosomes 1 and 4).

Genomic Analyses for Embrapa,
International Institute of Tropical
Agriculture, and Joint Datasets
Comparing the dataset’s genetic parameters estimates, Embrapa’s
dataset yielded the largest genetic variance estimates for HCN
compared to IITA, whereas the latter had the largest estimates
for year-replication and residual variance estimates. The highest
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mean for HCN were observed for the Embrapa dataset. Ogbonna
et al. (2021a) explored the distribution of cyanide across sub-
Saharan Africa datasets, by leveraging open-source data; their
analysis indicated that Central and Southern Africa showed on
average higher cyanide varieties compared to West Africa, and
they also revealed a very slight trend of lowering cyanide on
landraces compared to improved varieties.

The observed differences between heritability estimates from
Embrapa-Brazil and IITA-Nigeria germplasm could be attributed
to several factors, e.g., environmental influence, genetically
related plants, phenotypic measurement errors, imputation, and
could have been potentialized by germplasm’s mislabeling. Clone
mislabeling has been reported to reduce genetic gain by up to
40% in Africa (Yabe et al., 2018). Wolfe et al. (2017) reported
varied heritabilities between populations, they discussed that it
is conceivably as a consequence of differences in the number
and experimental design of field trials among breeding programs,
they also highlighted how is difficult to determine the reason for
those differences in heritabilities between breeding programs for
most of the traits.

In our study, pooling the two datasets together improved
HCN predictive ability, accuracy as well as reducing the bias.
Multi-population TP combining breeding populations can be
employed to assess the potential for broadly focused GS training
approaches (Faville et al., 2018). Multi-group training sets have
already shown good predictive ability for animals (Pryce et al.,
2011) and plants (Technow et al., 2013). In pigs, Song et al. (2019)
reported the GP using combined populations with different
genetic backgrounds or from different breeds has not shown a
clear advantage over using within-population or within-breed
GPs. Wolfe et al. (2017) reported that cross-population accuracy
was generally low, with a mean of 0.18, but for prediction
of cassava mosaic disease it has increased up to 0.57 in one
Nigerian population when data from another related population
were combined. According to Somo et al. (2020), adding the
two cassava populations together to increase the TP size did
not improve trait prediction accuracy. They evaluated cross-
location predictions and compared the trait prediction accuracy
estimates with the within-location prediction accuracy estimates.
They reported that, from their nine traits evaluated, except for
mean cassava green mite severity, the cross-location predictions
were generally low, averaging between 0.10 and 0.14 when the
Kibaha (Tanzania) population was used to predict the Ukiriguru
(Tanzania) set and vice versa, respectively. The authors also
included a Ugandan TP in either population, but that did not
improve trait prediction accuracy either. In animal breeding, for
cross-breed prediction, this limitation has been reported to be
due to the non-persistent association between SNPs and QTL
across breeds (Hayes et al., 2009b).

Future studies including clones that were evaluated at
both IITA and Embrapa would be beneficial to assess cross-
country genomic prediction in light of genotype-by-environment
interaction. Another topic of interest that could be explored
in future studies would be genomic predictions considering
only the STRUCTURE pop2a (with a total of 576 clones; 274
from Embrapa and 302 from IITA) and to verify whether the
correlations between GEBV vectors would be greater than those
found in the present study (0.55 for prediction of Embrapa clones

and 0.10 for prediction of IITA clones). However, restricting the
most closely related groups would limit genetic variation (which
did not appear to be a problem in our original proposal as we
obtained satisfactory values for accuracy and predictive ability)
and that could substantially alter the genetic parameters. It is
worthy to mention that pooling together datasets is expected to
increase precision and accuracy, due to an increase in sample
size; by its turn, cross-population/location predictions tend to
decrease them, due to change in the target. That was one of
the criteria we took into account to narrow down multilocation
datasets to a dataset strictly focused on Ibadan in our case.
Those referred increase and decrease are in comparison with
the within-population prediction. Whatever strategy is adopted,
it is essential to maintain sufficient genetic variation in training
populations in practical genomic selection (Guo et al., 2014).

Boxplots of estimated GEBVs group-allocated (sweet,
intermedium, and bitter) on own country-dataset, cross-
country-dataset and considering both datasets jointly (Figure 3)
showed that, in the present work, cross-country genomic
predictions seemed to have underestimated the GEBVs for
Embrapa clones predicted by markers effects from IITA’s dataset
GP and overestimated the GEBVs for IITA clones predicted by
markers effects from Embrapa’s dataset GP. This could possibly
be due in part to the difference between the mean magnitude
for the Embrapa and IITA datasets. Therefore, focusing on the
distribution and range of classes would also be important. The
number of clones allocated to each class of HCN content, by
the research institute and their considered analysis, is presented
in Table 6.

Genomic Analyses With Single Markers
vs. Haplotypes
The haplotype GP for HCN was an attempt to better capture
the genomic similarity between lines due to the increased LD
between haplotypes and causal genetic variants as well as to
capture local allelic interactions. Although using haplotypes is
often expected to improve the GP’s accuracy over single SNPs,
in the present study it was not observed. Lower predictive ability
and accuracies were found by haplotype-based GP compared to
single marker GP. Sallam et al. (2020) found, for k-fold cross-
validation in wheat yield, that using haplotypes of 5, 10, 15, and 20
adjacent markers increased in 6.3, 2.9, 5.3, and 2.2%, respectively
in the predictive ability over single markers. The authors pointed
a trade-off regarding the haplotype length: on one hand, the
increase of haplotype length is expected to capture LD between
markers in blocks with QTL, thereby increasing the accuracy of
prediction, on the other hand, this may also increase the number
of haplotype “allelic” classes, which may reduce the accuracy
of prediction due to smaller sample sizes representing these
classes. The simplified approach proposed to build the haplotype’s
matrix, could possibly explain why we observed slightly lower
accuracies: our haplotypes were generated by Gabriel’s method
(Gabriel et al., 2002) implemented on PLINK, and length set to
maximum 200 Kb. Thus, the mean number of SNPs were of 3–4
SNPs spanning segment-length averaging of 20–33 Kb. However,
the predicted GEBVs between the two approaches (haplotype vs.
single markers) were highly correlated (>0.95).
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TABLE 6 | The number of cassava clones allocated in each class of HCN content, for Embrapa and IITA, according to the GEBVs estimated with marker effects from the
three referred analyses.

Institute Embrapa IITA

Classification/1 Analysis 1/2 Analysis 2 Analysis 3 Analysis 1 Analysis 2 Analysis 3

Sweet 263 0 243 18 36 22

Intermedium 165 79 187 260 72 171

Bitter 802 1151 800 312 482 397

Total clones 1230 1230 1230 590 590 590

/1Classification according to the picrate method scale: ranging from 1 to 4 – sweet; from 4.1 to 5 – intermedium; from 5.1 to 9 – bitter. /2Analysis 1, 2, and 3: marker
effects’ prediction based with training datasets of Embrapa, IITA, and Embrapa+IITA, respectively.

A study performed by Ogbonna et al. (2021a) revealed that
HCN is regulated in an oligogenic manner with a few major
genomic regions explaining a great proportion of the variation.
Our efforts on using haplotype blocks are aligned with the
previous findings; the search for a simplified structure that can
explain the behavior of the trait and predictability of clone
performance across countries. The accuracy recovering rates with
haplotype blocks analyses compared to single markers we have
got from using only around 3,000 haplotypes is very interesting
and appealing. Even with lower accuracy when compared to
single marker GP, the results of haplotype-based GP were good
enough especially taking into account details that may have
limited the success of the haplotype approach in the present
work: the low depth nature of GBS and its implication in the
heterozygote’s SNP calling, and, also, the oligogenic architecture
of HCN, which might have an impact on haplotypic definition
and, consequently, on subsequent predictions. Thinking in the
cassava context, handling of heterozygotes site through haplotype
definition is an interesting strategy. These haplotypes are likely
to encompass polygenic blocks with coadapted genes controlling
important quantitative traits. This capturing of the important
causal genetic variants and the LD between markers and QTL
in blocks enables increasing the accuracy. These genes in blocks
are relevant for both local variation (and adaptation) and
stability (predictability) when they are genetically conserved
across locations.

Comparisons Between Genomic
Estimated Breeding Values Rankings
One location’s data can be used to predict performance in another
location, which can be helpful in accelerating the breeding
process. However, according to Rio et al. (2020), when targeting a
group-specific predicted set, training a model on a different group
can eventually decrease accuracy as shown in several species.

For Embrapa clones, a correlation between GEBVs predicted
with TP from Embrapa and IITA was 0.55, whereas for IITA
clones, it was 0.1. For Embrapa, from the 100-lists comparison,
we have found 12 coincident clones, while for IITA lists we
have found 24 coincident clones, which lead us to think that
although the observed correspondence between GEBVs vectors
for IITA using marker effects from analyses 1 and 2 was weak
(correlation of 0.10 between the vectors of estimated GEBVs),
they could be enough to at least give some clue in clonal selection

for germplasm exchange with much better probabilities than a
blind-scenario, where it is not feasible to send all the clones
available, and specifically when many clones demonstrate good
performance for important agronomic traits.

It seems reasonable to attribute part of the success of these
coincidences between the predictions of GEBVs obtained with
the effects of markers from the country-specific analysis vs. from
other country’s analysis to the similarities the regions (Cruz
das Almas-Brazil and Ibadan-Nigeria) in terms of temperature
and rainfall distribution. Both are in a low latitude range,
belonging to tropical latitude zones; according to Köppen-Geiger
Climate Classification, Cruz das Almas and Ibadan are lying into
tropical rainforest climate (Af) and tropical savanna, wet (Aw),
respectively. Other interesting variables to be mentioned: Cruz
das Almas’ altitude of 224 m above sea level, 1,136 mm annual
precipitation, and an average temperature of 23◦C (within a range
of 18–34◦C), whereas Ibadan’s altitude of 199 m above sea level,
1,311 mm annual precipitation and an average temperature of
26.5◦C (within a range of 20–34◦C)2.

The poor prediction result for cross-program prediction
reported here, using Embrapa’s TP to predict IITA clones’
GEBV (0.10) makes it a bit hard to conceive the cross-program
predictions to be adopted in the daily routine of the referred
breeding programs. However, in the lack of a better strategy,
especially for the case of exchanging material in the context
of quarantine diseases, which is a more delicate scenario with
an existing restriction on clone movement, information at the
molecular level could aid to the understanding of populations
structure, diversity, and cross-country genomic predictions could
corroborate to guide a germplasm selection to exchange by a
reasonably accurate selection of clones since unlimited shipping
would be unfeasible.

Nevertheless, when using IITA’s TP to predict Embrapa clones’
GEBV a correlation of 0.55 was observed which is of relevance for
such a study. This discrepancy within the mutual cross-country
GP may perhaps have been influenced by experimental technical
details since the same trait showed so disparate heritabilities
and coefficients of variation when evaluated in different research
institutes/countries. From the GWAS results for HCN obtained
by Ogbonna et al. (2021a) on IITA’s historical data, the error
variances were higher compared to Embrapa’s as well. IITA’s
dataset spans over more than a decade of experimental work

2en.climate-data.org
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which could certainly be influenced by changes in human
resources, management, not to mention year variance which is
larger. Thus, the potential impacts on prediction accuracy can
change the ranking of top-performing clones in the validation
population. Although it seems to have worked reasonably well in
the present scenario, to make a conclusive statement regarding
the use of cross-country predictions in cassava, further evidence
is needed. This seems to be among the first attempts to evaluate
the cross-country genomic selection in cassava and plants. As
such, a lot of useful new information was provided on the
subject, which can guide new research on this very important
and emerging field.

CONCLUSION

Twelve clusters were revealed by the assessment of population
structure in South-American and African cassava. The fixation
index among the clusters identified within the joint dataset
ranged from 0.002 to 0.091. The joint dataset (Embrapa+IITA)
provided an improved accuracy compared to the prediction
accuracy of either germplasm’s sources individually. When
using the marker effects estimated with IITA dataset as the
training to predict the Embrapa clones’ GEBVs, we could say
it was a successful case of cross-country prediction, taking
into consideration the medium-to-high correlation of 0.55
between their vectors of estimated GEBVs; regardless, the
reverse presented a low correlation of 0.1. Genomic predictions
from haplotype blocks had slightly lower accuracies and higher
biases compared to single markers. The correlation between
the GEBVs estimated by the analyses of single markers and by
haplotype blocks varied from 0.95 to 0.99, with high accuracy
recovering rates of the haplotype blocks compared to single
markers, ranging from 0.84 to 0.94. Also, with the haplotype
blocks analyses, the model sizes were reduced, with complexity
reduction rates going down to 0.2–0.22. Cross-country genomic
predictions proved to have potential use under the present
study’s scenario, i.e., investigated trait heritabilities higher than
0.18 and conserved genetic architecture across locations, with
clones from regions that are not too much divergent in terms of
meteorological conditions and with at least a minimal historical
germplasm exchange.
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