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A B S T R A C T   

Remote sensing has an important role in the Land Use and Land Cover (LULC) mapping process worldwide. 
Combining spaceborne optical and microwave data is essential for accurate classification in areas with frequent 
cloud cover, such as tropical regions. In this study, we investigate the possible improvements, when SAR data is 
incorporated into the classification process along with optical data. We used MSI/Sentinel-2 and SAR/Sentinel-1 
to provide LULC mapping in the Roraima State, Brazil, in 2019. This State is located in a tropical area, where the 
cloud cover is frequent over the year. Cloud cover becomes substantial, especially during the May-August period 
when crops are grown. Twenty-nine scenarios involving a combination of optical- and SAR-based features, as 
well as times of data acquisition, were considered in this study. Our results showed that optical or SAR data used 
individually are not enough to provide accurate LULC mapping. The best results in terms of overall accuracy 
(OA) were achieved using metrics of multi-temporal surface reflectance and vegetation index (VI) for optical 
imagery, and values of backscatter coefficient in different polarizations and their ratios yielding an OA of 86.41 
± 1.74%. Analysis of three periods of data (January to April, May to August, and September to December) used 
for classification allowed us to identify the optimal period for distinguishing specific classes. When comparing 
our LULC map with a LULC product derived within the MapBiomas project we observed that our method per-
formed better to map annual and perennial crops and water classes. Our methodology provides a more accurate 
LULC for the Roraima State, and the proposed technique can be applied to benefit other regions that are affected 
by persistent cloud cover.   

1. Introduction 

Nowadays, combining food production while minimizing the envi-
ronmental impact is one of the biggest challenges to be faced by the 
agriculture sector, government, and researchers (Estes et al., 2016; 
Searchinger et al., 2015). Although part of this food demand is met by 
agriculture expansion resulting in severe environmental impacts (Lam-
bin et al., 2003) and contributing to global climatic changes (Deng et al., 
2013). In this sense, continuing Land Use and Land Cover (LULC) 
mapping is fundamental to land use management and to understand the 
environmental effects at local, regional, and global scales (Adami et al., 
2018; Pavanelli et al., 2018). Thus, Remote Sensing (RS) technology is 
widely utilized for synoptic and continuous LULC monitoring, allowing 

identification of the LULC Changes (LULCC) (Veloso et al., 2017; Wulder 
et al., 2015). 

Traditionally, optical RS (ORS) data is used to map and characterize 
LULC, but it suffers from limitations due to cloud cover (Asner, 2001; 
Martins et al., 2018; Wulder et al., 2015). High cloud frequency is a 
persistent characteristic found in the Amazon region, which highly 
compromises LULC mapping based on ORS data (Martins et al., 2018; 
Prudente et al., 2020a), especially in agricultural areas whose growth 
occurs during the rainy season (Prudente et al., 2020a). Cloud cover 
along with landscapes fragmentations and transitions among vegeta-
tions types (Laurin et al., 2013; Lu et al., 2012) and rapid LULCC 
(Eberhardt et al., 2016; Whitcraft et al., 2015) make the use of ORS data 
challenging to map LULC in Amazon regions (Eberhardt et al., 2016; 
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Sano et al., 2007; Whitcraft et al., 2015; Zhang et al., 2020). 
One approach to overcome the cloud cover limitation is the use of 

Synthetic Aperture Radar (SAR) (Whitcraft et al., 2016). SAR sensors can 
provide useful data in almost all-weather conditions, independent of 
sunlight illumination, being less influenced by cloud cover frequency 
than optical data (Cué La Rosa et al., 2019; Liu et al., 2013; Moreira 
et al., 2013; Wulder et al., 2015). SAR signal interacts with the surface 
differently compared to optical data and depends on surface factors, 
such as dielectric constant, geometry, topography and surface rough-
ness, and radar system parameters, such as polarization, frequency, and 
incident angle (Harfenmeister et al., 2019; Steele-Dunne et al., 2017). 
Sentinel-1 SAR provides open and high temporal frequency data and can 
be used to improve and/or develop new methods for mapping and 
monitoring LULC (Tamm et al., 2016). However, since SAR data inter-
pretation is complex, its use is not widespread as ORS data (Oldoni et al., 
2020). 

Thus, approaches that integrated both optical and SAR data have 
been explored in LULC studies, allowing to take advantage of each 
sensor (Clerici et al., 2017; Inglada et al., 2016; Reiche et al., 2018; 
Torbick et al., 2017a; Van Tricht et al., 2018). Optical data represents 
the reflectance from the topmost layer of the canopy, meanwhile, the 
SAR data represents canopy geometric information (Joshi et al., 2016; 
Laurin et al., 2013). However, the methods to integrate the optical and 
SAR multisensor data are specific and complex (Wulder et al., 2015). 
The integration between optical and SAR data can be performed at the 
pixel (data fusion), feature, and decision levels (Joshi et al., 2016; Pohl 
and Van Genderen, 1998; Reiche et al., 2013). Data fusion consists of 
methods that generate a third image from the merged input images, i.e. 
fusion process, which is less common for the SAR-optical approach 
(Nasirzadehdizaji et al., 2019; Wulder et al., 2015), due to the disparate 
characteristics between the SAR and optical sensors (Wulder et al., 
2015). For the decision level, SAR and optical data are independently 
classified and combined in a post-classification process (Reiche et al., 
2013). Feature fusion requires the extraction of features, or character-
istics, from the input optical and SAR data (Reiche et al., 2013) and 
combining these data as inputs in a dataset for the different post- 
processing purposes (Nasirzadehdizaji et al., 2019). Feature level is 
more traditional to the SAR and optical approaches (Nasirzadehdizaji 
et al., 2019; Reiche et al., 2013). 

Two commonly used LULC classification algorithms are Random 
Forest (RF) (Breiman, 2001) and Multilayer Perceptron (MLP) (Burger 
et al., 2012). The RF classifier is highlighted due to the robustness and 
capability to hold a high number of variables (Diniz et al., 2020; 
Jhonnerie et al., 2015), and high data dimensionality (Torbick et al., 
2017b) has been used in different LULC studies (Clerici et al., 2017; 
Inglada et al., 2016; Pavanelli et al., 2018; Rodriguez-Galiano et al., 
2012; Torbick et al., 2017a, 2017b, 2016; Zhou et al., 2017). Mean-
while, the MLP is a feed-forward artificial neural network (NN) trained 
by the backpropagation method, designed to map a set of input vectors 
to a set of output vectors (Camargo et al., 2019; Hu et al., 2019; Skakun 
et al., 2016). These classifiers can combine the SAR and optical data at 
the feature level (Clerici et al., 2017; Lu et al., 2012). 

Even though LULC map information is highly important for the 
management of tropical areas, there is a lack of information for some 
regions in the Brazilian Amazon. Regions of Savanna and Campinarana 
vegetation are not considered in programs designed for forest moni-
toring despite their ecological importance (Carvalho and Mustin, 2017). 
In this context, this study aims to classify the LULC in a tropical area in 
Roraima State, in the Brazilian Amazon region, providing a robust 
methodology to fill this gap of information. We have investigated the 
benefits of combining SAR with optical data in the LULC mapping pro-
cess. In our study, we used RF and the MLP classifiers and Sentinel-1 SAR 
and Sentinel-2 MSI (Multispectral Instrument) optical images acquired 
in different periods of 2019. 

2. Material and methods 

This section is divided into five sub-sections. In section 2.1 we 
describe the study area and the fieldwork to collect field observation 
data. In section 2.2, we present remote sensing data and the pre- 
processing steps. The experimental setup with multiple scenarios 
tested is described in section 2.3. Finally, in sections 2.4 and 2.5, we 
focus on multi-dimension feature visualization using the t-SNE approach 
(t-Distributed Stochastic Neighbor Embedding), and LULC classification, 
respectively. Fig. 1 shows an overall flowchart describing the various 
steps. 

2.1. Study area and fieldwork 

Roraima State located in the northern part of Brazil (Fig. 2) has an 
area of 224,300 km2, is composed of 15 municipalities, and has a pop-
ulation of 606,000 (IBGE, 2018). The Roraima region has three major 
natural formations: Forest, Savanna (also called the “lavrado”), and 
Campinarana (or campina-campinarana) (Barbosa et al., 2010). The 
main part of Roraima State is covered by forests with concentration at 
the center-southern part and divided into Seasonal Semideciduous 
Forest, Seasonal Forest, Open, and Dense Ombrophilous Forest. Savanna 
and Steppe Savanna are mostly present in the northern part of Roraima 
State. These classes have grasslands and few arbutus trees (Barbosa 
et al., 2010; Pavanelli et al., 2018). Campinarana is present in the center- 
southern part (in the middle of the forest region). It is formed by cam-
pinas (with small arbutus trees) and campinarana. Some regions show 
ecologic tension, where the transition between two or more types of 
vegetation occurs, such as Savannas and Forest, and Campinarana and 
Forest (Barbosa et al., 2010; Barbosa and Bacelar-Lima, 2008; IBGE, 
2012). 

Roraima is located in a region where the altitude ranges from 30 m in 
the Negro River to almost 3,000 m in the Roraima mountain (Barbosa 
and Bacelar-Lima, 2008). The altitude range act as a natural barrier 
blocking the moisture brought by the trade winds along the Intertropical 
Convergence Zone (ITCZ). This generates a precipitation gradient and a 
high cloud frequency in the region, which greatly limits the use of sat-
ellite optical images. Barni et al. (2020a) describe that Roraima has two 
well-defined climatic seasons, but it is different in the areas of the state 
located in the north from the areas in the southern hemisphere. Most of 
the Roraima territory has rainy seasons concentrated between April to 
September, with a peak in June. In the lavrados, the small lakes fill and 
connect in this period. The mean annual temperature is 28 ◦C (Pavanelli 
et al., 2018). 

Climatic and altitude factors, water availability, as well as affordable 
land prices, and government subsidies, have encouraged agricultural 
exploitation (agriculture and livestock) in the state (Roraima, 2018). 
Moreover, the crop calendar for the main crops (i.e. soybean and the first 
season of corn) with harvest occurring during the off-season of the other 
Brazilian states (April-September) favors better prices and facilitates the 
production chain logistics. Besides, agriculture in Roraima is in the 
process of expansion mainly over the lavrados, especially after 2010, 
due to the soybean crop expansion. 

For our study, we selected an area located near ecological tension 
between savannas and forests (Fig. 2). We selected this area due to the 
LULC heterogeneity, ecologic tension, and presence of agricultural 
lands. To provide accurate information about the LULC classes we 
conducted fieldwork campaigns in August-September 2019 during the 
agricultural season and the end of the rainy season. Using the Locus Map 
Pro (Mlavec and Mlavcová, 2019) application, we navigated and 
collected LULC roadside samples (points). Those points were used as a 
guide to drawing polygons using 10-m Sentinel-2 images as a back-
ground. These polygons were used as our field samples. For the study 
area (Fig. 2), we used 719 polygons, representing 10 LULC classes: 
forest, savanna, campinarana, water, sand/rock, annual crops, perennial 
crops, pasture, conversion, impermeable (see Fig. 3). 
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2.2. Remote sensing data 

We used images acquired by Sentinel-2 MSI over tiles 20NQJ and 
20NQH, and Sentinel-1 SAR. Images were obtained from the Copernicus 
Open Access Hub (also known as the Sentinels Scientific Data Hub) 
(https://scihub.copernicus.eu/) using an open-source toolbox Senti-
nelSat (https://github.com/sentinelsat/sentinelsat) (Hu et al., 2018). 

Due to the frequent cloud cover, which mainly occurs during the crop 
season, it is nearly impossible to obtain cloud-free optical data in this 
region (Pavanelli et al., 2018; Prudente et al., 2020a). We acquired 
optical images with less than 70% of cloud cover totaling 23 images 
from Sentinel-2A/B for 2019 (Fig. 4). The optical data was downloaded 
at Level-1C (top-of-atmosphere reflectance). We used the bands Blue, 
Green, Red, Red-edge 1, Red-edge 2, Red-edge 3, Near-Infrared (NIR), 
Near-Infrared Narrow (NIR-A), Shortwave Infrared 1 (SWIR 1), and 
Shortwave infrared 2 (SWIR 2) (ESA, 2020). We applied atmospheric 
correction, cloud masking, and multi-temporal co-registration. The at-
mospheric correction was performed with the Sen2Cor algorithm 
(v2.8available in the SNAP software). Cloud masking was performed 
using Fmask v4.0 software (Qiu et al., 2019). 

After the atmospheric correction and cloud cover mask, we resam-
pled 20-m spectral bands to 10 m using the nearest neighbor resampling 
method. The image with the fewest cloud cover percentage acquired on 
April 1, 2019, was selected as a reference to corregister all other images, 
using a phase correlation approach (Skakun et al., 2017). We also 
calculated two Vegetation Indices (VIs), namely NDVI (Normalized 
Difference Vegetation Index) (Rouse et al., 1973) and LSWI (Land Sur-
face Water Index) (Xiao et al., 2004, 2002). The NDVI is one of the most 
known VI and is associated with vegetative vigor. LSWI is sensitive to the 
water presence and is used for flood mapping (Dong et al., 2013; Torbick 
et al., 2016). NDVI (Equation (1)) and LSWI (Equation (2)) equations are 
presented in the following: 

NDVI =
NIR − Red
NIR + Red

(1)  

LSWI =
NIR − SWIR
NIR + SWIR

(2)  

where NIR (near-infrared region, MSI/band 8–842 nm), Red (visible 
region, MSI/band 4–665 nm), and SWIR (shortwave infrared region, 
MSI/band 11–1610 nm), are surface reflectance in each spectrum 
region. 

As SAR data sources we used Sentinel-1A and 1B (Torres et al., 2012) 
GRD (Ground Range Detected) images acquired in VH/VV polarizations 
in the IW (Interferometric Wide swath) mode. Sentinel-1 has a temporal 
resolution of 12 days for each satellite, and 4 and 8 days considering 
both satellites. In total, we used 59 Sentinel-1 images for 2019. The 
preprocessing was performed using the Sentinel Application Platform- 
SNAP applications and python routines. To define the preprocessing 
steps, we ran several tests to adapt the methods proposed by Dey et al. 
(2020). Our preprocessing included: application of orbit file; thermal 
noise removal without re-introduction; calibration to gamma nought; 
multi-looking; speckle filtering using refined Lee algorithm with win-
dows size 3x3; terrain correction with bilinear resampling method to 10 
m; conversion pixel values to decibels (dB). We also calculated the ratio 
between polarizations VH and VV (Equation (3)). The ratio is less 
affected by environmental factors or acquisition systems, thus might 
have more stability than single polarizations VH or VV (Harfenmeister 
et al., 2019; Veloso et al., 2017). 

Ratio =
VH
VV

(3)  

2.3. Scenarios for LULC classification 

To analyze the SAR data influence on the LULC classification process, 
we aggregated Sentinel-1 and Sentinel-2 data into four different input 
data (Table 1) and combined these data in six different datasets 
(Table 2). For the input data, we used different metrics to explore the 
temporal variation from the data: average, median, standard deviation, 
variance, range, and percentiles (25%, and 75%) metrics for optical 

Fig. 1. Flowchart showing the processing steps.  
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(surface reflectance and VI) and SAR (backscattering and ratio) data. For 
this step, we used the Pandas (The pandas development team, 2020) and 
Numpy (Harris et al., 2020) libraries in the python routine. Due to the 
different incidence angles from Sentinel-1A and 1B interfering in the 
backscattering values, we proceed with metrics separately. 

As datasets (Table 2), we combined the input data (Table 1) in optical 
only data (D1 and D2), optical and SAR data combined (D3 and D4), and 
SAR data only (D5 and D6). For optical data, we used metrics instead of 
single optical images to minimize cloud influence. We performed the 
integration between SAR and optical data at feature levels (Gómez, 
2017; Inglada et al., 2016; Pavanelli et al., 2018; Skakun et al., 2016; 
Zhang et al., 2018). We assumed that there is no consistent shift between 
the SAR and the optical images. 

We divided the year into three different periods: Period 1 – P1 
(January to April), Period 2 – P2 (May to August), Period 3 – P3 
(September to December), Period 4 – P4 (data for the whole year), and 
Period 5 – P5 (the periods P1, P2, and P3 combined). P1 and P3 repre-
sent the dry periods. P2 represents the rain season when annual crops 
are present in Roraima. We combined P1, P2, and P3 into the P5 to 
represent the seasonal variation from each period. P4, represents the 
data for the whole year (January to December), without considering the 
variation within each period. Combining the different periods with the 
datasets, we created 29 different scenarios (Table 2). P4 is equal to P5 
only for D6. This is because we did not use any metrics (average, me-
dian, standard deviation, variance, range, and percentiles (25%, and 
75%)), in this dataset. Consequently, we did not have the periods 

Fig. 2. Roraima state location with Vegetation Map (Barbosa and Bacelar-Lima, 2008; IBGE, 2012) and study area with fieldwork detail, 2019 Sentinel-2 RGB True 
color image, using mean of the band values over the year (right-bottom). 
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separation (P1, P2, and P3) for this dataset. For this reason, it was not 
considered the P5 period. 

2.4. t-SNE 

t-SNE (t-Distributed Stochastic Neighbor Embedding) is a technique 
to visualize the separation among the classes. This approach can be used 
to understand if the high dimensional dataset can or cannot provide 
separability among the classes (Maaten, 2014; Van Der Maaten and 
Hinton, 2008). Although the t-SNE technique is not widely used in the 
remote sensing field, it seems very promising. Dey et al. (2020) used t- 
SNE to visualize the separation among different crop classes using 
polarimetric SAR data, and Martins et al. (2020) to visualize the features 
learned by Deep Neural Network (DNN) in each hidden layer. We used 
the t-SNE technique to reduce our high dimensionality data allowing us 
to understand the possibility of class separation before the classification 
process (exploratory analysis). If there is no separability among the 
classes there will be no point in testing several classification scenarios. 
We used t-SNE from the scikit-learn library (Pedregosa et al., 2011) with 
the number of iterations for optimization set to 300, and perplexity, the 
number of nearest neighbors that are used in other manifold learning 
algorithms, was set to 30. 

2.5. Classification methods 

We used two machine learning classifiers in this study: Random 
Forest (RF) and Multi-Layer Perception (MLP), using a python routine 
with the scikit-learn library (Pedregosa et al., 2011). After testing 
different parameters (Prudente et al., 2020b), we used numbers of trees 
equal to 30, no maximum depth of the tree, no maximum number of 
features and minimum split samples equal to 2 to the RF classifier, and 
one hidden layer with size equal to 50, rectified linear unit as activation 
function, stochastic gradient-based optimizer, alpha (L2 regularization) 
equal to 0.01, and learning rate values of 0.005 for the MLP classifier. 
The field data (polygons), section 2.1, were randomly separated into 
75% for training and 25% to test which classification had the results that 
best fit the data collected in the field (testing data). This separation was 
performed for each class, and all the pixels values inside each polygon 
were used. We also guarantee that a polygon was used only for training 
or only for testing. For the accuracy assessment and selection of the best 
LULC classification, we analyzed the confusion matrix, the overall ac-
curacy (OA), user’s accuracy (UA), and producer’s accuracy (PA) 
(Olofsson et al., 2014). To compare the results among the scenarios for 
each classifier, we randomly selected samples from our field data and 
used them to estimate the OA confidence interval based on the standard 

Fig. 3. Land Use and Land Cover classes description with field photos.  
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errors. However, the OA confidence interval is indicated for randomness 
data (Olofsson et al., 2014; Stehman, 2012), and our estimation has 
limitations as the confidence interval was calculated based on data 
randomly selected from purposive sampling. Yet, we expected that the 
errors were uniform for all scenarios, once they were based on the same 
approach, allowing the comparison among them. 

To use independent validation for the best classification result (sce-
nario and classifier), we used Stratified Random Points (SRP). The goal 
of SRP is to have a practical design that satisfies the accuracy 

measurement objectives and most of the desirable design criteria. SRP 
affords the option to increase the sample size in classes that occupy a 
small proportion of the area, to reduce the standard errors of the class- 
specific accuracy estimates for these rare classes (Olofsson et al., 2014). 
We calculated the area weight and the standard errors for the best 
classification result (with 10 m pixel), and after randomly sampling 

Fig. 4. Cloud-free pixels considering three periods of 2019 (January to April, May to August, and September to December) (a) and graph with the cloud-free 
percentage for each image (b) over the study area for MSI data, using Fmask products. 

Table 1 
Input data combinations with Sentinel-1 and Sentinel-2.  

Data Bands/Polarization Inputs 

S2 Bands 
metrics 

Blue, Green, Red, Red-edge 1, 
Red-edge 2, Red-edge 3, NIR, 
NIR-A, SWIR 1, and SWIR 2 

average, median, standard 
deviation, variance, range, and 
percentiles (25%, and 75%) 

S2 VI metrics S2 VI metrics: NDVI, LSWI; average, median, standard 
deviation, variance, range, and 
percentiles (25%, and 75%) 

S1 polarization 
metrics 

VV, VH, and ratio only backscattering values 

S1 polarization VV, VH, and ratio average, median, standard 
deviation, variance, range, and 
percentiles (25%, and 75%) 

S2: Sentinel-2. S1: Sentinel-1, VI: Vegetation Indices. 

Table 2 
Details about the 29 scenarios formed with different datasets and periods.  

Datasets Input data Periods 

D1 S2 Bands metrics P1, P2, P3, P4, P5 
D2 S2 Bands metrics 

S2 VI metrics 
P1, P2, P3, P4, P5 

D3 S2 Bands metrics 
S2 VI metrics 
S1 polarization metrics 

P1, P2, P3, P4, P5 

D4 S2 Bands metrics 
S2 VI metrics 
S1 polarization metrics 

P1, P2, P3, P4, P5 

D5 S1 polarization 
S1 polarization metrics 

P1, P2, P3, P4, P5 

D6 S1 polarization P1, P2, P3, P4 

S2: Sentinel-2. S1: Sentinel-1, VI: Vegetation Indices, P1: period 1 (January to 
April), P2: period 2 (May to August), P3: period 3 (September to December), P4: 
period 4 (the whole year), P5: period 5 (the periods P1, P2, and P3 combined). 
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1,158 points, stratified according to Forest: 262, Savannas: 272, Cam-
pinarana: 75, Water: 75, Pasture: 99, Sand/rocks: 75, Annual Crops: 75, 
Perennial Crops: 75, Conversion: 75, and Impermeable: 75. This gua-
rantees that the sample size in a small class will be large enough to 
represent that class. This approach allows us to estimate the errors in 
terms of the area along with uncertainties. 

2.6. Comparison with LULC map of MapBiomas 

To verify where our approach could be helpful, we compared our 
best LULC classification results with MapBiomas Project. MapBiomas is 
the most recent initiative of the LULC mapping in Brazil (Souza et al., 
2020), and is the only regularly updated LULC program that maps the 
whole Roraima State. It provides annual LULC maps for the entire 
country, between 1985 and 2019 (version 5). MapBiomas process uses 
the Google Earth Engine platform (Gorelick et al., 2017), Operational 
Land Imager (OLI), Enhanced Thematic Mapper Plus (ETM + ), and 
Thematic Mapper (TM) Landsat optical images at 30 m spatial resolu-
tion. They do a hierarchical classification scheme using a Random Forest 
classifier and combine different classification methods (date range, 
input data, etc.) (Souza et al., 2020). It classified each LULC class 
separately and joined them, generating three different LULC map levels. 

We used the MapBiomas version 5, Level 3, the year 2019. For our 
study area, our map has more detailed classes than MapBiomas Level 3. 
Thus, to analyze the differences between our classes, we harmonized the 
LULC classes between our LULC product and the MapBiomas product 
(Table 3). From MapBiomas, we combined Soybeans and Others Tem-
porary Crops as Temporary Crops to compare with our Annual Crops. 
Sand/rocks and Conversion areas classes are not present in MapBiomas 
legend. Grassland Formations class in Mapbiomas represents our Sa-
vannas and Campinarana classes. 

3. Results 

In this section, we present first the results of input features visuali-
zation using the t-SNE algorithm (section 3.1). In section 3.2, we analyze 
classification results for the 29 different scenarios and the accuracy of 
the Stratified Random Points (SRP) of the final map. 

3.1. Visualization of input features using t-SNE 

We used t-SNE graphs to represent differences between the classes 
for each database in each period (Figure A1). When using only optical 
data, we observed better separation of the classes Forest, Savanna, and 
Pasture. For SAR, we could not verify the same separation as in the 
optical data. Classes with similar geometrical structures are closer or 
even mixed. We found that Forest and Perennial Crops are mixed, 
meanwhile, Savannas and Pasture represent two other groups, which 
have mixed with Annual Crops, Conversion areas. 

Considering the periods and datasets, we found that the t-SNE 
technique showed better results for P4, data from the entire year, and 

P5, combined P1, P2, and P3, and when combining data from optical and 
SAR sensors (D3 and D4) (Figure A1). Scenario D3P5 (Fig. 5) has the best 
visual results, with better separation to Forest, Savanna, Pasture, and 
Annual Crops classes. Perennial Crops class showed confusion with 
Forest, Savanna, and Pasture classes. Besides, Pasture has overlapped 
with Savannas and Annual Crops classes, and Campinarana was 
confused with Pasture. The Impermeable class is concentrated in the 
left-middle (x = − 8; y = − 4) of the graph (Fig. 5). Sand/rock has two 
small groups, one with Impermeable class and the other in the middle- 
bottom (x = − 1; y = − 4) of the graph. 

3.2. LULC classification 

The Overall Accuracy (OA) of all scenarios for MLP and RF classifiers 
is shown in Fig. 6, and the results from the confidence interval in 
Figure A3. In general, we verified that the MLP classifier showed higher 
OA than RF. Moreover, when using data from a single sensor, we found 
better results using optical data (D1 and D2) than SAR data (D5 and D6). 
For the periods analyzed, when we used data for the whole year (P4 and 
P5) we had higher accuracies than when using only data for P1 and P2. 
Considering the different periods of the year, the P2 has the lower and 
P3 has the higher OA values for optical data (D1 and D2). Meanwhile, 
for SAR datasets (D5 and D6) the higher value is for P2 and the lower for 
the P1. Finally, considering the multisensory SAR-optical approach (D3 
and D4), we found that the OA values increased in almost all periods. 
Overall, the best result was achieved for the dataset D3, using data for 
the whole year P5, using MLP. 

Users (UA) and Producers (PA) Accuracies were calculated for all 
scenarios using MLP (Figure A4) and RF (Figure A5) classifiers. 
Considering that the MLP approach has better overall accuracies, we 
showed the UA and the PA of this analysis in detail (Figure A4 and 
Figure A5). SAR dataset showed higher UA and PA for Savanna, Pasture, 
and Annual Crops, but lower UA and PA values for Campinarana and 
Conversion classes. In general, optical data has better results than SAR. 
However, the UA for Sand/rocks and Campinarana, and the PA for 
Conversion classes remain low. In general, when we combined features 
from optical and SAR (D3 and D4) accuracies (UA and PA) improved for 
Forest, Savannas, Annual Crops, and Perennial Crops classes (Figure A4 
and Figure A5). These patterns were more evident when we integrated 
features from D3 and D4 for the entire year (P4) and different periods 
combined (P5). We also highlighted the better UA and PA values for P3 

Table 3 
Harmonized LULC classes to compare our LULC product with the MapBiomas 
project (version 5).  

LULC class MapBiomas LULC class 

Forest Forest Formation 
Savannas Grassland Formation 
Campinarana Grassland Formation 
Water River, Lake, and Ocean 
Pasture Pasture 
Sand/rocks  
Annual Crops Temporary crops: soybean and other temporary crops 
Perennial Crops Forest Plantation 
Conversion areas  
Impermeable Areas Urban Infrastructure  

Fig. 5. t-SNE graph for the scenario with the best separation among LULC 
classes (D3P5). 
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Fig. 6. Overall Accuracy (OA) of the LULC classification using Random Forest (RF) and Multi-layer Perceptron (MLP) classifiers, using testing data for the sce-
narios analyzed. 

Fig. 7. Map for the best LULC classification scenario (D3P5), using the MLP classifier (left), and a 2019 Sentinel-2 RGB True color image, using the mean of the band 
values over the year (right). 
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compared to P2 and P1. 
MLP (Figure A6) and RF (Figure A7) maps to all scenarios are het-

erogeneous. In general, maps based only on SAR data showed more salt- 
pepper effects, while maps based only on optical data presented cloud 
interference. The problems were reduced when the multisensor 
approach was employed. The best classification (Fig. 7) was obtained 
using optical metrics and SAR data (D3) combining data from the 
different periods (P5). The predominant class is Savannas (119,936 ha 
~ 34.17%), followed by Forest (115,155 ha ~ 32.81%) and Pasture 
(43,309 ha ~ 12.34%). Perennial Crops (17,859 ha ~ 5.09%), Water 
(17,658 ha ~ 5.03%), and Annual crops (14,215 ha ~ 4.05%) are the 
following classes in terms of the mapped area. The classes with smallest 
area are Sand/rocks (1,700 ha ~ 0.48%), Conversion (2,347 ha ~ 
0.67%), Impermeable (8,724 ha ~ 2.49%), and Campinarana (10,115 
ha ~ 2.88%). 

To further evaluate the LULC classification accuracy, we performed 
the accuracy assessment using an independent SRP. The OA accuracy 
estimated from SRP was OA = 86.41 ± 1.74%, reaching almost the same 
value from the field points (OA = 88.15%). To compare the accuracies 
for each class, we provided confusion matrices (Fig. 8 and Fig. 9) along 
with estimated UA and PA (Fig. 10). 

3.3. Comparison with MapBiomas LULC map 

We compared our results with maps from the MapBiomas initiative 
(Souza et al., 2020), version 5 (Table 4). For our study area, MapBiomas 
LULC (Fig. 11) was classified as Forest Formation (116,875 ha ~ 
32.95%), Forest Plantation (40 ha ~ 0.01%), Grassland Formation 
(166,925 ha ~ 47.06%), Pasture (43,086 ha ~ 12.15%), Urban Infra-
structure (10,570 ha ~ 2.98%), River, Lake, and Ocean (7,336 ha ~ 
2.07%) and Temporary Crops (9,910 ha ~ 2.79%). Temporary Crops on 
MapBiomas approach is formed for Soybean (7,522 ha ~ 2.12%) and 

Others Temporary Crops (2,388 ha ~ 0.67%). The difference map be-
tween our approach and the MapBiomas initiative is shown in Fig. 12. 
The agreement area, considering Grassland formation equal to Savannas 
and Campinarana, is 277,083 ha (~79%) and the differences are 73,937 
ha (~21%). We can highlight that part of Grassland formation in the 
MapBiomas LULC program is classified as Pasture (10,678 ha), Perennial 
crops (8,690 ha), Water (8,468 ha), Annual crops (5,091 ha), and Forest 
(4,719 ha) classes in our approach. Besides, part of our Forest (5,813 ha) 
classifications are mapped as Pasture in the MapBiomas product. 

We identified areas with Acacia and Cashew (Perennial Crops) that 
were not present inside the Forest Plantation class in the MapBiomas 
LULC map. Acacia is a common Forest plantation in Roraima Lavrados, 
started in 2000, and now it has been converted into agricultural areas. 
Also, we have the Conversion class and this is an important class to 
identify where and when changes are occurring with transitions from a 
natural class to an anthropic activity. Sand/rocks and Conversion classes 
are not used in MapBiomas. Moreover, Sandbanks inside of the Rio 
Branco River are identified as Temporary Crops on MapBiomas map. 
Additionally, our results showed the Lakes formations in the Savannas 
regions. Therefore, our results provided a better overview of the natural 
resources, conversion areas, and land use, classifying all in a single step. 
This information is important to monitor and regulate anthropic activ-
ity; otherwise, it can affect the availability of natural resources (e.g. 
water, soil) (Carvalho and Mustin, 2017) and carbon stocks (Barni et al., 
2016). 

4. Discussion 

In this section, first, we present a discussion about the LULC classes’ 
separability of our database based on the t-SNE algorithm (section 4.1). 
After, we contextualized the results from the scenarios and classifiers 
analyzed (in section 4.2). In section 4.3 we discuss our best result and 

Fig. 8. Confusion matrix in terms of validation pixels from polygons derived through field campaign for the best LULC classification scenario (D3P5 – MLP), using 
field data. Values are in percentage (total number of samples wise). 1: Forest, 2: Savannas, 3: Campinarana, 4: Water, 5: Pasture, 6: Sand/rocks, 7: Annual Crops, 8: 
Perennial Crops, 9: Conversion areas, 10: Impermeable areas. 
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compare it with the LULC map of MapBiomas. 

4.1. t-SNE visualization 

Before the classification process, we used the t-SNE (t-Distributed 
Stochastic Neighbor Embedding) technique to visualize how the 
different scenarios (combination of the datasets and periods, as 
described in Table 2) could provide the LULC classes separability. In 
general, t-SNE showed that the optical dataset performed a better visual 
separation than SAR datasets. With t-SNE it was possible to identify that 
the best visual separation among the classes happens with SAR-optical 
data (D3), combining the three different periods (P5), scenario D3P5. 
In this sense, our study shows that t-SNE provides a good way to visu-
alize high dimensionality RS data than classic techniques, such as scatter 

plots (Pavanelli et al., 2018) and boxplots (Torbick et al., 2017a, 2016), 
and can be used to analyze the potential of different datasets for class 
separation before the classification process. However, only a few studies 
have used this technique in the RS field (Dey et al., 2020; Martins et al., 
2020), and we did not find any research that applied the t-SNE in a 
multisensor dataset. 

4.2. Scenarios and classifiers 

Our results have suggested that combining SAR and optical data, 
along different periods, allowed us to accurately map Land Use and Land 
Cover (LULC) in the Roraima state, in Brazil. This region is prone to 
periods of frequent cloud cover during the April-August (P2, rainy sea-
son), which severely limited the exploitation of optical satellite imagery. 

Fig. 9. Population error matrix in terms of proportion of area (Olofsson et al., 2014) for the best LULC classification scenario (D3P5 – MLP), using Stratified Random 
Points. Labels meaning, see Fig. 8. 

Fig. 10. Comparison among LULC classification accuracies from testing data and SRP approach.  
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Moreover, our approach achieved better results than the existing LULC 
programs, e.g. MapBiomas (as shown in Fig. 11). In this context, we 
believe that this study can be an alternative to improve the LULC clas-
sification. Therefore, the optical-SAR multisensor approach is a viable 
alternative to provide LULC classification in regions with frequent cloud 
cover. To validate this, we used two different classifiers algorithms in 29 
scenarios, with optical only, SAR only, and SAR-optical datasets, within 
five different periods of the year 2019. 

We used the RF, commonly used in a multisensor SAR-optical 
approach to map LULC (Clerici et al., 2017; Pavanelli et al., 2018; 
Torbick et al., 2017a, 2016; Zhou et al., 2017) and the MLP classifier for 
each one of the 29 scenarios. Using Sentinel-1 SAR data for LULC 
mapping over a test area in the Brazilian Amazon forest, de Diniz et al. 
(2020) achieved an OA result of 8.2% bigger using RF (OA = 82.7%) 
than Support Vector Machine (OA = 74.5%). It is important to highlight 
that a comparison between different classifications, in terms of overall 
accuracy, is meaningful when the number of classes mapped are similar. 
Since this is not the case here, we cannot directly compare Diniz et al. 
2020 OA with ours. In our study, we found slightly higher OA values (1% 
or 2% in general) using MLP classifiers compared to RF (Fig. 6). Besides, 
LULC classifications from MLP were visually better, with less salt-pepper 
effect when compared with RF classifier. Considering the datasets 
analyzed (Fig. 6), we identified that aggregating VI metrics (D2) im-
proves results than using MSI surface reflectance metrics only (D1). 
Also, the use of metrics for SAR data (D5) improves the OA when 
compared to SAR data only (D6). For SAR-optical data-based classifi-
cations, we found better overall accuracies than when analyzing SAR 
and optical data individually. In general, when we combined features 
from optical and SAR (D3 and D4), the Forest, Savannas, Annual Crops, 
and Perennial Crops classes are better discriminated. Besides, the LULC 
maps were visually better with the multisensor approach. Clerici et al. 
(2017) also found better results using optical (MSI/Sentinel-2) and SAR 
(Sentinel-1) data to map LULC in Colombia. They found that SVM 
(Support Vector Machine) had better accuracy than the RF classifier, 
achieving OA = 88.75%. Compared to our study, their study area was 
more homogeneous with six LULC classes. Zhou et al. (2017), using data 
from OLI/Landsat-8 and SAR/Sentinel-1 provided in-season winter 
wheat classification in China, achieved the best results with the multi-
sensor approach. Torbick et al. (2016) integrated data from OLI/Land-
sat8, Sentinel-1, and PALSAR-2 images to map forest plantations in 
Myanmar and Indonesia. They got the best accuracy when integrating 
the data from the three sensors. In the following work, Torbick et al. 
(2017a) used data from the same sensors to classify/update the LULC in 
Myanmar, and also found the best accuracy using data from optical and 
SAR data combined. 

Considering the periods analyzed, the classifications performed for 

P3 had better results than for P1 and P2. That could be because during 
P2 we had less optical data available, resulting in a poor classification. 
Pavanelli et al. (2018) mentioned that the use of data only from the dry 
season is not enough to discriminate all LULC classes. Also, the fieldwork 
was realized at the end of P2 and the beginning of P3, helping to better 
identify some classes in the field. Pavanelli et al. (2018) and Lu et al. 
(2011), who worked with multisensor approaches to LULC classification 
in the Amazon regions, described the difficulty to get cloud-free data 
during the rainy season. However, they used only one optical and one 
SAR image from the dry season. Diniz et al. (2020) mentioned that using 
a time series SAR data could improve the LULC classification over a 
tropical region. We found that considering the data from January to 
December (P4), the classification based on SAR data (D5 and D6) had a 
better performance than optical data. That could be due to the cloud 
frequency limiting the optical data availability (Fig. 4) and thus the 
temporal variation from the classes could be better represented. We 
achieved better accuracy (OA = 88.16%) with the data from the P5, 
aggregating the data from P1 (January to April), P2 (May to August), 
and P3 (September to December). With this approach, the seasonality 
existing in the classes was considered in dry (part of the P3 and P1) and 
wet (P2) periods. For example, this approach allows us to explore the 
potential of SAR data during the wet period without giving up the po-
tential of optical data for the dry period. 

In our study, dynamic classes such as Sand/rocks, Water, and Con-
version, are better discriminated in specific periods. Sand/rocks class 
was better identified in the dry period (P1) because the sandbanks 
appear inside the Rio Branco River in this period. The Water class, in 
general, had a better performance for P3, due to the end of the rainy 
season in P2, forming the small lakes in the lavrados regions, favoring 
the identification in the P3. During the P3, the Conversion class also had 
better discrimination, mainly because our fieldwork campaigns (section 
2.1) were at beginning of the period. We expected that because con-
version is a dynamic class, occurring during part of the year, thus some 
of these areas were Savannas or Pasture in a different period of the year. 
Besides, sometimes there is no vegetation for the Conversion class, 
creating confusion with the Sand/rocks class. 

Due to the frequent cloud cover in the P2, the Annual Crops class was 
better discriminated with SAR than optical data. Besides, Pasture is 
present during this period and is a source of confusion between these 
classes. Forest, Savanna, Pasture, and Annual Crops classes were better 
discriminated when we used data from P4 and P5. That happens because 
the data for the entire year are being used, and as such it allows for 
capturing the vegetation variability and mitigating the cloud cover 
frequency interference on optical data with the use of the SAR (Prudente 
et al., 2020a). Perennial Crops is a heterogeneous class, formed by 
Acacias, Carswell, Eucalyptus, etc. Therefore, it was expected the 
confusion in this class with Forests and Savanna classes, due to the 
similar structure. 

4.3. Best classification result 

Overall, our best LULC classification accuracy over the 29 scenarios 
and two classifiers was obtained using the MLP classifier applied to the 
data from optical and SAR data combined (D3), considering the three 
periods together (P5). We used the benefits of optical and SAR data 
associated with the seasonality from different periods. We assessed the 
accuracy of this classification by performing Stratified Random Points 
(SRP). The approach with field data and SRP were similar in respect of 
overall accuracy, however, UA and PA values were different for Cam-
pinarana, Pasture, Perennial Crops, and Conversion classes. These 
classes have a spatial dependence on roads and are spectral and/or 
geometrical similar to other classes, being better represented with SRP. 

Pavanelli et al. (2018) provided LULC classification in a small area 
with ecological tension between savannas and forests in Roraima. They 
considered 17 LULC classes for 2015 and used one OLI (Operational 
Land Imager) Landsat-8 optical image and one ALOS/PALSAR-2 (Phased 

Table 4 
Comparison between the areas from our LULC product with the MapBiomas 
LULC map(version 5).  

LULC product Area 
(ha) 

% MapBiomas LULC 
class 

Area 
(ha) 

% 

Forest 115,155  32.81 Forest Formation 116,875 32.95 
Savannas 119,936  34.17 Grassland Formation 166,925 47.06 
Campinarana 10,115  2.88 
Water 17,658  5.03 River, Lake, and 

Ocean 
7,336 2.07 

Pasture 43,309  12.34 Pasture 43,086 12.15 
Sand/rocks 1,700  0.48 – – – 
Annual Crops 14,215  4.05 Temporary crops: 

soybean and other 
temporary crops 

9,910 2.79 

Perennial 
Crops 

17,859  5.09 Forest Plantation 40 0.01 

Conversion 
areas 

2,347  0.67 – – – 

Impermeable 
Areas 

8,724  2.49 Urban Infrastructure 10,570 2.98  
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Array L-band Synthetic Aperture Radar-2) SAR image. They found an 
OA of 83% using RF classifier. Lu et al. (2011), using a Maximum 
Likelihood classifier, found a LULC map accuracy of OA = 81.13% using 
only optical data rather than SAR data or integrating SAR and optical 
data. The studied area was conducted in Para state, Brazil, with a pre-
dominance of the rainforest. Besides, they used only one image per 
sensor, ALOS PALSAR, RADARSAT-2, and TM/Landsat-5, during the dry 
season. These authors utilized data fusion approaches (principal 
component analysis, normalized multiplication, high-pass filter 
resolution-merging, and Wavelet) instead of the feature combined, and 
considered fewer LULC classes (Forest, Pasture, Water, Wetland, Urban, 
and Succession Vegetation). Different from the previous studies, our 
approach used images from different periods (P5) and combined the 
results at the feature level, allowing us to explore the potential of SAR 
and optical data. Our results with the MLP classifier showed a higher OA 
and a better visual map with 10 m of resolution. Also, in our study we 

used free data, that was not fully available in the area in 2015 or before. 
Finally, we compared our best result with the MapBiomas LULC map 

(Souza et al., 2020). In this sense, we believe that our results could be 
helpful to improve the next MapBiomas LULC version, mainly to better 
discriminate Annual Crops, Perennial Crops, and the Lakes formations 
LULC classes. As we expected, using SAR and optical data for different 
periods we increased the chances of representing the seasonality of the 
region. Meanwhile, MapBiomas, using only optical data for the entire 
year, could result in a few (or non) observations during the same period, 
having a smaller representation of the temporal variation. Due to the use 
of SAR data for the P2, we increase the number of observations and 
guarantee that the use of the metrics represents the Annual Crops vari-
ations. In that sense, using metrics for P1 and P3, we also avoid the 
misclassification of sandbanks as Annual Crops, once sandbanks appear 
during the dry season, P3 to P1. Combining these three periods also 
allowed us to capture the lakes’ seasonality and better discriminate this 

Fig. 11. Differences between our LULC mapping and the LULC provide for MapBiomas v5.0 – 2019 (Souza et al., 2020).  
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class inside the lavrados regions. For Perennial Crops, as we are using 
SAR data, more sensitive to the canopy geometry, we have been more 
successful to discriminate the Acacias plantation inside the Perennial 
Crops than MapBiomas. However, it is important to highlight MapBio-
mas is a nationwide initiative, with annual LULC maps that are 
improving each version. Besides, we did not compare our results with 
other wide LULC programs as TerraClass Amazon (Almeida et al., 2016) 
and IBGE (IBGE, 2017). These approaches did not cover the Savannas 
and Campinarana regions (Barni et al., 2020b). They are classified as not 
observed in the TerraClass and as Grassland and Wetlands in IBGE. 
Moreover, these data have not been updated since 2014. Sentinel-1 has 
an important role to discriminate the LULC classes due to the frequent 
cloud cover in Roraima and consequently lack of cloud-free optical data. 
Consequently, combining SAR and optical, with data from different 
periods of the year, proved to be helpful to improve the LULC classifi-
cation for Roraima. 

5. Conclusions 

Our approach represents an advancement for the heterogenous LULC 
mapping in the tropical region of Roraima with Earth remote sensing 
data. Optical and SAR multisensor data had better OA than optical or 
SAR data only. Besides, SAR data is an important source of data mainly 
during the rainy season (P2), when cloud cover limits the availability of 
useful optical imagery. The use of different periods allowed us to iden-
tify the optimal time for mapping land cover specific classes. SAR- 
optical data for the P5, combining P1 (January to April), P2 (May to 
August), and P3 (September to December), showed better performance. 
Moreover, the MLP classifier yielded higher OA than RF. Minor and 
mixed classes are difficult to distinguish, even with SAR and optical 
data. For future work, this approach could be applied to different areas 

and different years to analyze the performance in other sites and the 
applicability to LULC changes analysis. 
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