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Abstract: Rainfall is among the climatic factors that most affect production, as in the Brazilian Cerrado.
Non-destructive and automated phenotyping methods are fast and efficient for genotype selection.
The objective of this work was to evaluate, under field conditions, the morphophysiological changes,
yield, and grain quality of soybean (Glycine max L. Merrill) under water stress in the Brazilian Cerrado.
The plots comprised six soybean cultivars and the subplots of four water regimes, corresponding to
31, 44, 64 and 100% of crop evapotranspiration replacement. The experiments were conducted from
May to September 2018 and 2019. An irrigation system with a bar of sprinklers with different flow
rates was used. Gas exchange, vegetation indices (measured using a hyperspectral sensor embedded
in a drone), yield and grain quality were evaluated. Water stress had different effects on gas exchange,
vegetation indices, grain yield and chemical composition among the cultivars. Embrapa cultivar BRS
7280 Roundup ready (RR) and Nidera cultivar NA 5909 RG (glyphosate resistant) are yield stable
and have a greater tolerance to drought. BRS 7280RR showed a higher tolerance to drought and
higher water use efficiency (WUE) than all other tested cultivars. Vegetation indices, such as the
NDVI (Normalized Difference Vegetation Index), correlated with the morphophysiological traits,
such as plant height, were the most responsive variables to water stress. The NDVI can be used to
predict soybean yield as a tool in a selection program under drought.

Keywords: NDVI; photochemical reflectance index; gas exchange; automation

1. Introduction

Soybean is the main cash crop in the Brazilian Cerrado, with positive economic and
social effects for the region. It is considered a significant and cheap source of protein,
oil and energy for the world, which is essential when considering the challenge of feed-
ing about nine billion people by 2050 [1,2]. Drought is the major factor that affects crop
productivity [3,4]. The absence of cultivars tolerant to drought and dry periods in the
Brazilian Cerrado [5] are some of the main causes of yield and grain quality losses in the
soybean [6]. Therefore, it is essential to find cultivars tolerant to drought [7]. Platforms for
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drought phenotyping in the field have been successfully used in the Cerrado [1]. The selec-
tion of drought-tolerant cultivars can be made through a combination of variables, namely:
water use efficiency [8], productivity components [9] and vegetation and physiological
indices [10–12], which may be correlated with grain yield and quality [13].

The use of vegetation indices (VI) evaluated by multispectral sensors coupled to drones
providing wavelength measurements in the visible (VIS; ~400–700 nm) and near-infrared
(NIR; ~700–1200 nm) ranges is a rapid, non-destructive assessment and can be used at any
stage of plant development for evaluating abiotic and biotic factors [14] and may show a
high correlation with yield [15]. These indices are a better option for selecting genotypes
compared to invasive, destructive tools in plant–environment interaction studies, as they
are related to plant structure, pigments and photosynthetic efficiency and can provide
valuable information on the effects of water stress on plant physiology [16].

The normalized difference vegetation index (NDVI) is related to structural traits [15].
However, multiple indices have shown predictive power [17], including VIs associated
with structural plant traits (e.g., optimized soil-adjusted vegetation index (OSAVI)); pig-
ment changes (e.g., the absorbance of chlorophyll converted to reflectance index (TCARI)
and the ratio between the TCARI and OSAVI, which reduces the effect due to changes
in leaf area and soil reflectance). In addition, photochemical activity (PRI) responds to
structural changes, pigment content, soil exposure, illumination effects and plant canopy
angle [18]. Vegetation indices can be used to select drought-tolerant soybean cultivars [19],
while [20] obtained strong relationships between vegetation indices and plant physiological
parameters. These indices have been used to select drought-tolerant soybean cultivars and
other crops at the leaf level and through UAV (unmanned aerial vehicle) platforms [21–23].
In addition, UAV-coupled thermal sensors can measure other important features related
to canopy temperature, with small differences in leaf temperature being associated with
water stress [21,24].

Morphophysiological traits also are indicators of plant performance under water stress,
with decreases in photosynthesis rate, plant height, number of leaves, pods and shoot dry
weight [1,25]. In addition, grain quality is altered, increasing protein and decreasing oil
content [1,26].

Therefore, it is important to obtain genotypes adapted to stressful conditions, with
the ability to grow in periods of drought without significant damage to productivity [10].
Thus, the objective of this work was to validate high-throughput sensors and morphophys-
iological measurements as tools for the selection of soybean cultivars for yield and grain
quality under water stress. This work hypothesizes that reducing water availability reduces
grain yield and quality, and non-destructive variables are important for soybean genotype
selection under water stress.

2. Results and Discussion
2.1. Variable Contributions in the Multivariate Response

The mean values of the vegetation indices, morphophysiological evaluations, grain
quality and yield in 2018 and 2019 are presented in Tables S1 and S2. In the joint multivariate
analysis of variance based on singular value decomposition (SVD), differences were found
between cultivars (p < 0.01), water regime (p < 0.01), year of cultivation (p < 0.01) and for
the interaction cultivars ×water regime (p < 0.01). The cultivar ×water regime × cropping
year interaction was not significant (p = 0.09). The interaction for most traits showed that
cultivars respond differently to water availability. Considering the aim of the present study,
this result is an opportunity to validate the selection methodology and identify genotypes
adapted to growth under water stress.

In the biplot representation of the decomposition into singular values (Figure 1),
the main coordinate 1 (latent variable) retained 56% of the multivariate variation in water
regimes and cultivars, while coordinate 2 retained 9.9% of the variation. The biplot provides
a useful tool of data analysis and allows the visual appraisal of the structure of large data
matrices. It is especially revealed in a principal component analysis that the biplot can
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show inter-unit distances and indicates the clustering of units, as well as displays variances
and correlations of the variables [27]. According to [28], at least 60% of the total variance
must be explained by the first two principal components because the information is more
concentrated, making interpretation easier.
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photochemical reflectance index; A, net assimilation of CO2; gs, stomatal conductance; E, 
transpiration; Fv/Fm, photosystem II maximum quantum yield; CI, internal carbon concentration; 
A1, height of first pod set (cm); PH, plant height (cm); SD, stem diameter (mm); NK, number of 
knots; PP, number of pods; GP, grains per pod; GM, grain moisture; HW, hectoliter weight; MTG, 
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2.2. Grain Yield and Net CO2 Assimilation 
In general, cultivars showed exponential responses to grain yield (Figure 4a) and net 

CO2 assimilation (Figure 4b) as a function of water regime, i.e., increasing water 
availability increases plant photosynthetic activity and promotes better grain formation 
and grain filling [30]. The BRS7180IPRO genotype had response in grain yield with the 
addition of water from WR1 to WR2 but from this water level (WR2), BRS7180IPRO and 
BRS59801IPRO did not respond to irrigation and could be planted in regions with lower 
rainfall (Figure 4a). 

Figure 1. Biplot for mean values of the water regimes (31, 44, 64 and 100% CET replacement,
represented by WR1, WR2, WR3 and WR4, respectively) and soybean cultivars (C1, 5909RG; C2, M
6410IPRO; C3, BRS 5980IPRO; C4, BRS 7180IPRO; C5, BRS 7280RR and C6, BRS 7380RR) from the
variables: NDVI, normalized difference vegetation index; SAVI, soil-adjusted vegetation index; DVI,
difference vegetation index; GNDVI, green normalized difference vegetation index; NDRE, red edge
normalized difference; TCARI, the transformed chlorophyll absorption and reflectance index; OSAVI,
optimized soil-adjusted vegetation index; TO, TCARI/OSAVI ratio; PRI, photochemical reflectance
index; A, net assimilation of CO2; gs, stomatal conductance; E, transpiration; Fv/Fm, photosystem
II maximum quantum yield; CI, internal carbon concentration; A1, height of first pod set (cm); PH,
plant height (cm); SD, stem diameter (mm); NK, number of knots; PP, number of pods; GP, grains per
pod; GM, grain moisture; HW, hectoliter weight; MTG, mass of thousand grains; GY, grain yield; G,
germination; WUE, water use efficiency; O, oil; P, protein; D, hard seeds; iWUE, intrinsic water use
efficiency (A/gs, net assimilation of CO2/stomatal conductance).

Water regimes had a greater influence on the multivariate response than cultivars,
with a strong contrast between cultivars in WR1 (31% CET replacement) compared to
cultivars in WR4 (100% CET replacement). In WR3 and WR2 (64 and 44% CET replacement,
respectively), soybean genotypes generally had intermediate values in all studied variables
(Figure 1).

Variables whose vectors are in the same direction or where the cosine of the angle
between them is close to one have a strong positive correlation (Figure 1). For example,
the variables WUE and protein content are correlated positively (Figure 1). Similarly, the
variables on the negative number of the graph (left side), i.e., vegetation indices (NDVI,
GNDVI, DVI, NDRE, SAVI, PRI, OSAVI and TCARI) and gas exchange (A, gs, E) are
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correlated positively (Figure 1) and showed similar contributions to the variability of
treatments (Coord1 axis), with coefficients close to 1.3 (Figure 1). In contrast, the WUE
and net assimilation of CO2 (A) showed a strong negative correlation (−0.75, p < 0.01)
(Figures 1 and 2). There was no correlation (or a weak correlation) between plant height
and grain yield, as they present an angle close to 90 degrees. The length of the arrows
indicates the most important variables in the study to differentiate treatments.

The variables related to the vegetation indices, gas exchange and WUE are important
in distinguishing between treatments, as they have higher weights (length of arrows).
This indicates that these variables are most indicative of crop performance under water
stress [23]. On the other hand, stem diameter, oil content, hectoliter weight, germination
and grains per pod showed low weight in the distinction between water regimes and
cultivars (Figure 1). For example, cultivars in WR4 have higher vegetation indices and
photosynthetic activity, resulting in higher grain yields. On the other hand, cultivars in
WR1, under severe water stress, have higher indices in variables such as WUE, percentage
of protein in grains and TO (TCARI/OSAVI) (Figure 1).

The lowest indices of these cultivars in WR1 were obtained in variables represented by
vectors in the opposite direction, such as NDVI, SAVI, DVI, GNDVI, NDRE, TCARI, OSAVI,
PRI, A, gs, E and Fv/Fm. TO is a spectral predictor of canopy-level pigment concentrations
that is sensitive to chlorophyll fluctuations and resistant to the effects of ground reflectance
and non-photosynthetic materials [29].

The results presented in Figure 3 show that the models are suitable for explaining the
variation of the main coordinate 1 (latent variable) in all cultivars. The increase in the value
index is exponential and negative and differs among soybean cultivars. Overall, increased
water availability increased grain yield, photosynthesis activity and vegetation indices and
decreased WUE and iWUE (Figures 4–6, Tables S1 and S2).
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Regardless of water availability, cultivars BRS 7280RR and NA 5909RG had higher 
grain yields and better or similar results for WUE, iWUE, photosynthesis (A) and NDVI 
within each water regime (Tables S1 and S2). Thus, these cultivars have high yield 
performance under higher and lower water availability and can be recommended for 
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Figure 2. Pearson correlogram between the yield components, vegetation indices, gas exchange and
grain quality as a function of the water regimes (31, 44, 64 and 100% CET replacement, represented
by WR1, WR2, WR3 and WR4, respectively) and soybean cultivars (NA 5909RG, M 6410IPRO, BRS
5980IPRO, BRS 7180IPRO, BRS 7280RR and BRS 7380RR). GM (grain moisture), NK (number of
knots), NP (number of pods), SD (stem diameter), iWUE (intrinsic water use efficiency (A/gs net
assimilation of CO2/stomatal conductance)), DVI (difference vegetation index), TCARI (the trans-
formed chlorophyll absorption and reflectance index), E (transpiration), gs (stomatal conductance), A
(net assimilation of CO2), NDRE (red edge normalized difference), GRVI (green red vegetation index),
GNDVI (green normalized difference vegetation index), NDVI (normalized difference vegetation
index), SAVI (soil-adjusted vegetation index), OSAVI (optimized soil-adjusted vegetation index),
Fv/Fm (maximum quantum yield of photosystem II), PRI (photochemical reflectance index), GP
(grains per pod), O (oil content), WUE (water use efficiency), D (hard seeds), TO (TCARI/OSAVI
ratio), CI (internal carbon concentration), RVI (ratio vegetation index), G (germination percentage),
A1 (height of first pod set), P (protein content), HW (hectoliter weight), PH (plant height), MTG (mass
of thousand grains), GY (grain yield).
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Figure 6. Regression equations and the respective coefficients of determination (R2) of the variable
normalized difference vegetation index (NDVI) as a function of water regime (WR1, WR2, WR3 and
WR4, representing 31, 44, 64 and 100% CET replacement, respectively) and soybean cultivars (NA
5909RG, M 6410IPRO, BRS 5980IPRO, BRS 7180IPRO, BRS 7280RR and BRS 7380RR).
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An example of the difference in response between cultivars is the discrepancy between
the cultivar BRS 7180IPRO in WR1 and the other cultivars, which responded to water
availability (Figure 3). This is confirmed in the regression models for Coord1, which is a
linear combination of all response variables. This shows that BRS 7180IPRO responded
1.5 times faster than the BRS 7280RR variety and 1.34 times faster than BRS 5980IPRO.
Therefore, changes in water availability will bring important changes in all these variables
represented by the latent variable.

2.2. Grain Yield and Net CO2 Assimilation

In general, cultivars showed exponential responses to grain yield (Figure 4a) and net
CO2 assimilation (Figure 4b) as a function of water regime, i.e., increasing water availability
increases plant photosynthetic activity and promotes better grain formation and grain
filling [30]. The BRS7180IPRO genotype had response in grain yield with the addition of
water from WR1 to WR2 but from this water level (WR2), BRS7180IPRO and BRS59801IPRO
did not respond to irrigation and could be planted in regions with lower rainfall (Figure 4a).

Regardless of water availability, cultivars BRS 7280RR and NA 5909RG had higher
grain yields and better or similar results for WUE, iWUE, photosynthesis (A) and NDVI
within each water regime (Tables S1 and S2). Thus, these cultivars have high yield perfor-
mance under higher and lower water availability and can be recommended for cultivation
in the Cerrado region.

On the other hand, BRS 5980IPRO and BRS 7180IPRO showed a 14% decrease in NDVI
and WUE, while M6410IPRO and BRS 7380RR showed an intermediate response, close to
6% (Tables S1 and S2). The ability to maintain grain yield and quality under water deficit
conditions may be related to the strong association between photosynthate assimilation
and better carbohydrate mobilization by drought-tolerant genotypes [31]. Furthermore,
water deficits lead to changes in plant metabolism that affect productivity, depending on
the degree of stress, genotypes and the influence of environmental conditions [32].

In general, the photosynthetic rate gradually decreased among cultivars with a reduc-
tion in water availability (Table S1, Figure 4b). For example, when comparing high (WR4)
and low water availability (WR1), there was a reduction in the photosynthetic rate of 70%
among the soybean cultivars. Similar results were obtained by [33], where the reduction in
water availability caused a decrease in the photosynthetic rate, stomatal conductance, and
transpiration, as these processes are highly correlated (Figure 2).

The photosynthetic response of the cultivars in relation to water availability is similar,
as the regression coefficients (b) show values close to the mean (0.11) (Figure 4b). In WR1,
cultivars showed similar values for net CO2 assimilation (Figure 4b). However, with the
reduction of water availability, the responses of the cultivars differed, and BRS7280RR and
BRS7180PRO showed greater efficiencies in CO2 assimilation in all water regimes.

Cell opacity and the proportion of open stomata were affected in plants under water
deficit, leading to a reduction in the transpiration and CO2 assimilation rates [34]. The
transpiration rate of the cultivars was affected by water deficit, as it is regulated by the
opening and closing of stomata. Thus, when water availability in the soil decreases, the
transpiration values decrease, due to stomata closure. Gs is considered to be a sensitive
indicator of water deficit in plants, so this variable can be used to select genotypes in
environments with limited water availability. In addition, it is considered one of the most
important factors limiting photosynthesis [35].

When stomata are opened, they allow the assimilation of CO2 and the loss of H2O.
When stomata are closed, CO2 entry into the RuBisCO carboxylation sites in chloroplasts is
reduced, and H2O is conserved, reducing the risk of dehydration but resulting in a loss of
the net photosynthetic rate [36]. In (Refs. [37,38]), the authors reported a reduction in the rel-
ative leaf water content, stomatal conductance, substomatal carbon dioxide concentration,
transpiration rate and photosynthetic rate of soybean grown under water stress.
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2.3. Water Use Efficiency

Water use efficiency refers to the grain yield obtained per unit of water used [39]. This
is a basic physiological/agricultural parameter that indicates the ability of cultivars to
conserve water under drought, as it combines drought tolerance and high yield potential,
thus having a practical benefit through the efficient use of available water [33]. The cultivars
generally showed the same response pattern, and the highest WUE occurred between WR1
and WR2 regardless of the cultivar (Figure 5a, Table S2). However, there was lower WUE
with WR3 and WR4, possibly due to water loss through percolation [8]. According to [40,41],
plants under water restriction conditions increased WUE because only a partial reduction
of the stomatal aperture restricts transpiration more than CO2 influx, which increases WUE.
The BRS5980IPRO genotype had the lowest WUE, although not the lowest iWUE, which
is more a physiological assessment than an agronomic one. This physiological evaluation
was higher in the BRS7280RR genotype than in the others, showing good photosynthetic
capacity. Considering the data obtained by iWUE (A/gs, intrinsic water use efficiency),
a higher efficiency was obtained at the leaf level in the treatments with lower applied
water (Figure 5b). In [41], the authors reported that high-yield soybean varieties under
drought cope with the water shortage by enhancing their photoprotective defenses and
promoting growth and productivity, and these processes are linked to a higher intrinsic
water use efficiency. Photosynthesis and iWUE are traits to be used in genetic improvement
strategies [42].

The cultivars BRS5980IPRO and BRS 7180IPRO showed a maximum productivity of
about 3300/3400 kg ha−1 in winter cropping and reached this productivity in response to
water availability, with about 45% of plant evapotranspiration (Figure 4a). The response for
productivity was 2.6, 3, 3.9, 4.1 and 3.6 times faster than the BRS5980IPRO, BRS7280RR,
BRS7380RR, M6410IPRO and NA5909RG cultivars, respectively. On the other hand, the
BRS7280RR genotype had a higher productivity (Figure 4a) and responded to total water
supply with high WUE and iWUE (Figure 5a,b).

2.4. Normalized Difference Vegetation Index (NDVI)

The soybean cultivars responded logarithmically to the NDVI variable, i.e., the higher
the water availability, the more plants vegetated and increased leaf area (Figure 6). However,
the rate at which this response occurred varied among the cultivars.

As with the gas exchange and grain yield, the BRS7180IPRO genotype responded to
variations in water availability. An increase of 90% in NDVI was seen when comparing
cultivars under the highest and lowest water regimes (Table S1, Figure 6), showing that
water availability affects the vegetation indices of the crop. According to [9,19], plants
under stress show changes in spectral responses, and, consequently, leaf area reduces,
with an increase in leaf senescence and changes in leaf insertion angle, distribution and
spacing. In addition, there are reductions in chlorophyll concentration and photosynthetic
activity and a disruption of the internal structures of the leaf, which promotes changes
in the vegetation indices. The genotypes with the lowest NDVI at all water levels were
NA5909GR and BRS5980IPRO; they showed lower photosynthetic capacity.

The vegetation indices NDVI, TCARI, OSAVI, PRI and GNDVI are efficient to detect
maize and soybean plants under water stress conditions [11,16]. Our results showed that,
despite being evaluated in only one phenological phase (R5.1), the non-invasive physiologi-
cal data A, gs and Fv/Fm showed a high correlation with productivity (Figure 2) but cannot
be conducted on a high-throughput scale. In contrast, the vegetation indices GNDI, NDVI,
GRVI, OSAVI, NDGI, SAVI and PRI are both high-throughput and non-invasive. These
indices showed the highest correlations with yield and can be a useful tool in breeding
programs, especially the first two indices (GNDVI and NDVI). The vegetation indices
had, in general, a high positive correlation among them (about 0.9) (Figure 2), and one of
them could be chosen for the selection of genotypes, except PRI, which presented a lower
correlation (approximately 0.5) with the other indices. Among the morphological data, NP
and MTG had higher positive correlations with productivity but are time-consuming and
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are, therefore, unsuitable for large-scale use. WUE and iWUE had negative correlations
with yield (p < 0.05, about −0.6) (Figure 2) and can only be used for specific purposes not
linked to yield.

These results were also reported by [10], where gas exchange measurements and
vegetation indices can differentiate the responses of soybean genotypes in relation to water
availability, and, in some cases, the indices are more sensitive than gas exchanges to detect
the effects of genotype, especially indices that use bands in the infrared range. In (Ref. [15]),
the authors reported that the SAVI and NDVI indices are excellent for predicting soybean
yields. Regions with the highest values of these indices can achieve the highest grain yields
in field conditions, providing an advantage for using a multispectral sensor coupled to an
unmanned aerial vehicle.

2.5. Protein Content and Oil Content in the Grains

There was a high negative correlation between oil and protein content (p < 0.05,
−0.70), and lower water availability promoted greater protein accumulation (Figure 2).
The highest content of proteins was also observed by [26] in the common bean, with an
increase of 20.57% in the lowest water regime (187 mm) compared to the highest water
regime (535 mm).

The negative correlation between oil and protein content in grains can also be ex-
plained by the competition of synthesis pathways by carbon skeletons, changes in accumu-
lation and the distribution of nutrients in soybean seeds under water stress conditions [13].
The acceleration of maturation and early senescence promotes anticipation of the cycle,
a reduction in the photosynthetic period and accumulation of reserves, resulting in the
grains of stressed plants not exhibiting the normal pattern of development and chemical
composition [43].

This result poses a challenge to geneticists striving to increase oil and protein content,
which is desirable for processing high-value soybean products. For example, in (Ref. [13])
the authors found a decrease in protein content, palmitic and linoleic acids, sucrose, raffi-
nose, stachyose, N, P, K and Ca in soybean, while the content of oleic, stearic, oleic, and
linolenic acids, Fe, Mg, Zn, Cu and B increased under low soil moisture conditions.

3. Materials and Methods
3.1. Experimental Design and Conducting the Experiment

The experiment was conducted in Planaltina, DF, Brazil (15◦35′30′′ S, 47◦42′30′′ W,
altitude of 1006 m). The climate in the region is Aw (Koeppen–Geiger), tropical, with
rainfall concentrated in the summer (October to April) and a pronounced dry period
during the winter (May to September), with an average annual rainfall of 1200 to 1500 mm.
Climatological data were collected in 2018 and 2019 at a meteorological station near the
experiment (Figure 7).

The experiment was carried out between May and September, which coincides with
the dry season in the region, which allows for controlling the water supply to the plants.
The soil is classified as an Oxisol with a clay texture [44], and the soil analysis carried out
before conducting the experiment showed the following physicochemical properties at a
depth of 0 to 20 cm: pH (CaCl2) of 5.7; 11 mg dm−3 P; 186 mg dm−3 K; 5.77 cmolc dm−3

Ca; 1.83 cmolc dm−3 Mg; 0.02 cmolc dm−3 Al; 15.7 mg dm−3 N-NO−3; 2.6% organic matter
and granulometry of 46, 10 and 44% of clay, silt and sand, respectively.

The soil water retention curve, fitted according to model by [45], had the follow-
ing values: residual water content (θs) 0.0839 cm3 cm−3, saturated water content (θs)
0.5500 cm3 cm−3 and parameters α (1.892 kPa−1) and n (1.2390). The field capacity mois-
ture was 0.3423 cm3 cm−3. The parameter α is associated with the inverse of the value of
matric potential at which air enters the largest pore of the soil, therefore representing a unit
of pressure. The parameter n is an index of the pore size distribution, therefore related to
the slope of the soil–water characteristic curve.
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The experimental design was randomized blocks in a split-plot scheme with three
replications. Plots consisted of soybean cultivars (NA 5909RG; M 6410IPRO; BRS 5980IPRO;
BRS 7180IPRO; BRS 7280RR and BRS 7380RR) and subplots corresponded to four water
regimes (WR). The cultivars BRS 5980IPRO (roundup ready and intacta technology), BRS
7180IPRO, BRS 7280RR and BRS 7380RR (roundup ready technology) were developed by
Embrapa’s genetic improvement program. They were selected because of their high yield,
production stability and broad adaptability to the various grain-producing regions of the
Brazilian Cerrado. In addition, the varieties Nidera cultivar (NA) 5909RG (glyphosate
resistant technology) and Monsoy cultivar (M) 6410IPRO are also recommended for the
region and were used in this work as control genotypes.

In 2018, 160.1 mm, 274.68 mm, 420.55 mm and 634.35 mm were applied during the
crop cycle, corresponding to WR1, WR2, WR3 and WR4, respectively. In 2019, 164.79 mm,
237.45 mm, 343.15 mm and 531.43 mm were applied, corresponding to WR1, WR2, WR3
and WR4, respectively. In 2018 and 2019, the irrigation regimes used corresponded to 31%,
44%, 64% and 100% of crop evapotranspiration (CET) replacement. In both years, rainfall
was included in the calculations of applied water.

The history of the previous three years of cultivation in the experimental area was
soybean under different water regimes in winter and fallow in summer. The area was
desiccated 20 days before sowing with glyphosate at a dose of 1440 g.e.a ha−1. The soybean
seeds were previously inoculated with Bradyrhizobium japonicum (strain SEMIA 5080) at
a dose of 100 mL per 50 kg of seed. The seeds were sown mechanically on 2 June 2018
and 23 May 2019 under no-tillage systems, with 16 seeds per meter. For basic fertilization,
300 kg ha−1 of fertilizer with the formula 04-30-16 (N, P2O5 and K2O) was used.

Phytosanitary treatments were performed for cucurbit beetle (Diabrotica speciosa)
control; the insecticide thiamethoxam + lambda-cyhalothrin was applied at a dosage
of 14.1 g + 10.6 g ha−1 on the 10th and 20th day after soybean emergence (DAE) in 2018
and on the 12th and 24th DAE in 2019. In addition, glyphosate was applied at a dose of
720 g.e.a. ha−1 for weed control at 18 DAE in both years.
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In both experiments, the same water depth was applied during the first 35 DAE (days
after emergence), up to the vegetative stage V3, with an average of 140 mm of water applied
to obtain a homogeneous plant stand. After this period, the “line source” method was
applied [46], modified by the introduction of an irrigation bar [47]. Sprinklers with a
decreasing flow from the center to the edge of the bar were used to create a water deficit
gradient. The water regime (WR) was achieved by an irrigation bar (IrrigaBrasil model
36/42) with a width of 20 m on each side, connected to a self-propelled TurboMaq 75/GB
whose speed was adjustable according to the depth of water to be applied.

Each experimental unit consisted of a genotype formed by 36 cultivation lines 5.0 m
long with 0.5 m spacing. Each water regime (WR) was an experimental subunit with a
length of 5.0 m, formed by eight lines spaced 0.50 m apart, with the usable area formed by
the two central lines, excluding the edges and 0.5 m from each end, that is, 4 m2 (Figure 8).
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Irrigation at the highest level was carried out as described in the Cerrado Irrigation
Monitoring Program [48] to replace evapotranspiration, using agrometeorological indi-
cators of the region and soil type and crop emergence date. The program estimated the
reference evapotranspiration based on the equation proposed by Penman and Monteith.
The irrigation was carried out approximately every five days, depending on the climatic
conditions and the phenological phase of the plants. Two rows of collectors were placed
parallel to the irrigation pipe to measure the water applied during each irrigation. Soil
water content in the higher and lower water regimes (WR1 and WR4) (Figure 8) just before
irrigation and measured at flowering were between 15 (−1500 Kpa) and 24% (−50 Kpa).

3.2. Gas Exchange and Fluorescence Analysis

At 70 DAE, the net assimilation of CO2 (A, µmol CO2 m−2 s−1), stomatal conductance
(gs, mol H2O m−2 s−1) and transpiration rate (E, mmol H2O m−2 s−1) were evaluated in
the phenological phase R5.1. This evaluation was performed from 8:30 a.m. to 12:30 p.m.
at an irradiance of 1200 µmol photons m−2 s−1 and an external CO2 concentration (Ca)
of 400 µmol mol−1 in the air using an IRGA (infra-red gas analyzer) and a portable open-
flow gas exchange device (LI-6400xt LI-COR Inc., Lincoln, NE, USA). The chlorophyll
fluorescence variable and maximum quantum yield of photosystem II (Fv/Fm) were mea-
sured using a modulated portable fluorometer coupled to the IRGA. Evaluations were
conducted on dark-adapted leaves for at least 3 h and were performed after 10:30 p.m.
The reaction centers were fully opened (all oxidized primary electron acceptors) with
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minimum heat loss. Under this condition, it was possible to estimate the initial fluores-
cence (F0), maximum fluorescence (Fm), and maximum quantum yield of photosystem II
[Fv/Fm = (F0 − Fm)/Fm)] [49].

Three evaluations were made in each subplot to quantify gas exchange. Evaluations
were performed on the youngest fully expanded leaves, with light adapted. Measurements
were made under controlled CO2 concentration, temperature and H2O vapor from the
study area, with the reference air homogenized in a 20L container before reaching the
leaf chamber. The measurements were performed after the coefficient that combines the
variations of carbon dioxide (∆CO2), water (∆H2O) and air flow (∆µe) was below 1%. The
relative humidity was between 65 and 70%, the temperature was between 20 and 25 ◦C
(night/day), the irradiance was 1200 µmol photons m−2 s−1 and the external concentration
of CO2 was 400 µmol mol−1. The intrinsic water-use efficiency (iWUE) was calculated by
the ratio between the net assimilation of CO2 and the stomatal conductance (A/gs).

3.3. Vegetation Index

Vegetation indices (VI) were determined in phase R5.1 using a Micasense RedEdge
multispectral camera model coupled to a rotary-wing unmanned aerial vehicle (UAV). This
camera captures images in five different spectral bands, namely blue (range: 465–485 nm;
width: 20 nm), green (range: 550–570 nm; width: 20 nm), red (range: 663–673nm; width:
10 nm), red edge (range: 712–722 nm; width: 10 nm) and near-infrared (NIR) (range:
820–860 nm; width: 40 nm), with an optical resolution of 1280 × 960 pixels and images
recorded in RAW12 bits [50]. The flight took place at an altitude of 45 m at 10:00 a.m. on
the same day as the gas exchange measurements. Reflectance maps were computed from
mosaic generation in Pix4D Mapper software (v5.4.6, Pix4D, Lausanne, Switzerland) based
on images from the calibration panel (MicaSense, model RP04 CRP) before and after the
flight, in addition to the radiation detection at the time of each image. Subsequently, the
images were processed using the raster package in R software, and the vegetation indices
were extracted (Table 1).

Table 1. Evaluated spectral characteristics and their respective calculation formulas.

Vegetation Index Formula Source

Normalized Difference Vegetation Index NDVI = (NIR−RED)
(NIR+RED)

[51]

Green Normalized Difference Vegetation Index GNDVI = (NIR−GREEN)
(NIR+GREEN)

[52]

Green-Red Vegetation Index GRVI = NIR
GREEN [53]

Difference Vegetation Index DVI = NIR− RED [54]

Normalized Difference Red Edge NDRE = (NIR−RedEdge)
(NIR+RedEdge)

[55]

Soil-Adjusted Vegetation Index SAVI = [(1+L)(NIR−RED)
(NIR+RED+L)]

[56]

Photochemical l Reflectance Index PRI = (BLUE−GREEN)
(BLUE+GREEN)

[57]

Optimized Soil-Adjusted Vegetation Index OSAVI = (NIR−RED)
(NIR+RED+0.16)

[58]

Chlorophyll Absorption and Reflectance Index TCARI = 3[(RedEdge-Red) − 0.2(RedEdge-Green) (Red Edge/Red)] [59]

TCARI/OSAVI Ratio TO = TCARI/OSAVI [59]

3.4. Grain Yield and Quality Components

Grain yield (GY) was evaluated in each experimental subplot. Ten representative
plants were randomly harvested in the crop area to evaluate the height of insertion of the
first pod (A1), plant height (PH), stem diameter (SD) and the total number of pods per plant
(PP). From these plants, 200 pods were randomly collected, and the number of grains per
pod (GP) and mass of thousand grains (MTG) were determined. The grain yield and mass
of thousand grains were expressed with grain water content standardized to 13%. The
water use efficiency (WUE) was calculated using the relationship between grain yield and
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crop water applied [39]. Additionally, the intrinsic water efficiency (iWUE) was calculated
by the relation A/gs, measuring gas exchange using IRGA.

The grain quality (protein and oil content) and hectoliter weight (HW) were analyzed.
The protein and oil content (%) were determined in whole grains and without impurities,
according to [60]. The analyses were performed in the Chemical Analysis Laboratory at
EMBRAPA Soybean, by Fourier transform near-infrared spectroscopy (FT-NIR, model
Antaris II, ThermoFisher Scientific, Waltham, MA, USA), using 30 g samples of grains and
using an integrating sphere with readings ranging from 1100 to 2500 nm. The mathematical
models developed by EMBRAPA Soja in 2011–2012 were used to predict the protein content,
including 180 standards, correlation coefficient (r) = 0.97 and root mean square error of
calibration (RMSEC) = 0.64. For the oil content: 170 standards, r = 0.98 and RMSEC = 0.45.

3.5. Statistical Analysis

The data were subjected to joint multivariate analysis of variance by harvest based on
singular value decomposition (SVD). The residuals were tested for multivariate normality
using the generalized Shapiro–Wilk test [61] and for homogeneity of covariance matrices
using the Box-M test [62]. In two years, treatment (combinations of cultivar and water
regime levels) means were presented graphically in a biplot [27], and this allows visualiza-
tion of the relationship among genotypes and treatments. A Pearson correlation analysis
(t-test, p < 0.05) was performed with the residuals. Regression models were fitted to unravel
the effect of water regime on the response variables, and mean values of the variables were
presented in the table (Tables S1 and S2). The statistical analyses were carried out using the
R v3.6.1 software.

4. Conclusions

As water negatively affected various parameters differently between soybean cultivars,
there is an opportunity to select genotypes for drought tolerance. As high-throughput
parameters could predict soybean yield under water stress, they would be useful selection
tools in plant breeding programs. The BRS7280RR genotype showed better drought toler-
ance and water use efficiency than the other genotypes and are able to be used in irrigated
and stressed conditions. With the advent of climate change affecting the Cerrado, this
result could be useful in a likely increase in drought events in the region. Overall, the study
highlights the potential impact of lower water availability on important traits to farmers
and consumers and highlights cultivars less affected by this condition.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/plants11040559/s1, Table S1: Mean values of vegetation
indices, gas exchange and photosystem II maximum quantum yield in six soybean cultivars under
four water regimes from 2018 and 2019., Table S2: Mean values of morphological evaluations, grain
quality and yield in six soybean cultivars under four water regimes from 2018 and 2019.
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