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Abstract: Invasive insects cost the global economy around USD 70 billion per year. Moreover, increas-
ing agricultural insect pests raise concerns about global food security constraining and infestation
rising after climate changes. Current agricultural pest management largely relies on plant breeding—
with or without transgenes—and chemical pesticides. Both approaches face serious technological
obsolescence in the field due to plant resistance breakdown or development of insecticide resistance.
The need for new modes of action (MoA) for managing crop health is growing each year, driven by
market demands to reduce economic losses and by consumer demand for phytosanitary measures.
The disabling of pest genes through sequence-specific expression silencing is a promising tool in the
development of environmentally-friendly and safe biopesticides. The specificity conferred by long
dsRNA-base solutions helps minimize effects on off-target genes in the insect pest genome and the
target gene in non-target organisms (NTOs). In this review, we summarize the status of gene silencing
by RNA interference (RNAi) for agricultural control. More specifically, we focus on the engineering,
development and application of gene silencing to control Lepidoptera through non-transforming
dsRNA technologies. Despite some delivery and stability drawbacks of topical applications, we
reviewed works showing convincing proof-of-concept results that point to innovative solutions.
Considerations about the regulation of the ongoing research on dsRNA-based pesticides to produce
commercialized products for exogenous application are discussed. Academic and industry initiatives
have revealed a worthy effort to control Lepidoptera pests with this new mode of action, which
provides more sustainable and reliable technologies for field management. New data on the genomics
of this taxon may contribute to a future customized target gene portfolio. As a case study, we illustrate
how dsRNA and associated methodologies could be applied to control an important lepidopteran
coffee pest.

Keywords: biopesticide; gene target; genome; insect; silencing; topical; validation

1. Introduction

Insects play an important role in global crop loss, whether feeding on plants, acting as
vectors of other diseases, or both [1]. It is estimated that these arthropods are responsible
for reducing world food production by 20% [2]. They also reduce household food security
at the post-harvest level [3]. Adaptive interventions are required, otherwise this damage
may increase within the climate change scenario [4].

Conventional pesticides are currently used to control agricultural insect pests. How-
ever, resistant pest populations are frequently selected for by continuous exposure to a
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given molecule (e.g., chlorantraniliprole) [5]. This context has prompted research on al-
ternative ways to mitigate the negative impacts of insects on the field, which is favored
by the increasing knowledge of plant–pest interactions. Pest management strategies that
utilize novel modes of action (MoA), such as gene expression silencing in response to RNA
interference (RNAi), may bypass pesticide resistance and avoid chemical pesticides [6].

Since the first report involving the expression knockout of two target genes in the
nematode Caenorhabditis elegans by antisense RNA molecules [7], the RNAi pathway has
been reported as highly conserved in almost all eukaryotes [8] and described as a fine-
tuned form of gene regulation [9,10] and defensive barrier [11–13]. Additionally, RNA
silencing contributes to suppression of transposable elements [14], DNA elimination [15],
heterochromatin formation [16] and posttranscriptional repression of cellular genes [17].

The RNAi gene silencing pathways are highly conserved in insects and operate basi-
cally in three distinct ways, according to the kind of small RNA responsible for triggering
the silencing effect: siRNAsin the siRNA pathway for endo/exogenous dsRNAs; mi-
croRNAs (miRNAs) in the miRNA pathway [18]; and P-element induced wimpy testis
(Piwi)-interacting RNAs (piRNAs) in the piRNA pathway [19,20].

In arthropods, the first step in triggering the dsRNA-mediated RNAi pathway is
the uptake of dsRNA molecules from the external environment, which depends on trans-
membrane channel-mediated and/or endocytosis-mediated mechanisms [21], followed
by interaction of dsRNA with degradation machinery located inside the cells. Several
proteins implicated in dsRNA uptake have been studied and described. In the model
organism C. elegans, four proteins belonging to the Sid family (SID-1, SID-2, SID-3 and
SID-5) were related to dsRNA uptake efficiency (reviewed by [22]). SID-1 is a channel
protein that binds to the dsRNA molecules required for systemic interference [23]. SID-1
orthologs have been reported in lepidopteran pests [24,25]. Clathrin belongs to another
class of proteins which promotes clathrin-dependent endocytosis [26]. In Acyrthosiphon
pisum, the pea aphid, genes involved in the clathrin-dependent pathway were induced
12 h after feeding with dsRNA [27]. Pattern recognition receptors (PRRs) interact with
membrane receptors, performing an important function in the uptake of dsRNA through
the endocytosis pathway [28,29]. In this context, PRRs in the lepidopteran pests Helicoverpa
armigera, Plutella xylostella and Spodoptera exigua were reviewed [30].

Once in contact with insect cellular membranes, dsRNA molecules are taken up by
endocytosis [31]. In the cytoplasm environment, dsRNA attaches to a complex formed by
the Dicer-2 ribo-nuclease (DCR2), dsRNA binding protein (R2D2) and other associated
proteins like pre-mRNA splicing factor (SMD1), Arsenite Resistence Protein 2 (ARS2) and
Nuclear Cap-Biding Complex (CBC). The interaction of dsRNA molecules with DCR2,
R2D2, SMD1, ARS2 and CBC promote a conformation capable of recruiting the Argonaute
protein (AGO) to assemble of a second complex, called RISC (RNA-induced silencing
complex). At the mature RISC complex, part of the dsRNA sequence is used as a guide/bait
to identify the target mRNA, degrade it and avoid its expression.

In terms of ability to spread the dsRNA signal, two types of events are described:
the cell-autonomous route, in which a single cell undergoes the effect of dsRNA pres-
ence, and the non-cell-autonomous route, where the interfering effects travel toward
tissues/cells/organs distinct from the initial point of application or production. The non-
cell-autonomous route is indicated for the development of new MoA assets in RNAi-based
pest control. Further details on dsRNA uptake and the progress of this knowledge over
time in different species has been reviewed elsewhere [22,32].

Gene silencing is a promising technology that aims to contribute to the control man-
agement of several insects of agronomic interest, especially in its topical version, termed
spray-induced gene silencing (SIGS) [25]. Compared to conventional pesticides, the SIGS
approach has the advantage of high specificity towards the target organism and fast en-
vironmental degradation into innocuous compounds [33,34]. Therefore, this novel pest
management procedure has the potential to reduce the employment of conventional insecti-
cides, with intrinsic advantages related to the regulatory restrictions inherent to genetically
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modified organisms (GMOs), given that dsRNAs can be delivered via topical methods
while still maintaining target specificity [35]. In this paper, we highlight the siRNA path-
way for exogenous dsRNA, which may represent the next phase of species-specific pest
management [36].

2. dsRNA-Mediated Silencing to Control Insects
2.1. dsRNA-Mediated Silencing Core Machinery

In insects, the double-stranded RNA (dsRNA)-mediated gene silencing technique
was initially used in a study on Drosophila melanogaster functional genomics [37]. As other
insects were studied and their mechanism of gene silencing via RNAi was consequently
better understood, it was clear that RNAi efficiency varied among different insect families
depending on the insect’s ability to trigger the gene silencing machinery. This RNAi
efficiency relies on cellular uptake, dsRNA degradation, inter- and intracellular transport,
and processing of dsRNA into short/small interfering RNA (siRNA) [18].

Upon uptake of dsRNA by the target insect, the first step for intracellular siRNA—the
mediated pathway, in general—is the cleavage of the exogenous dsRNA by a specific
endonuclease from the Dcr2 family [18]. The fragments generated by DCR2 are used as a
template by R2D2, an RNA-dependent RNA polymerase, leading to amplification of the
silencing stimulus. Next, the siRNA molecules produced by the DCR2/R2D2 complex
guide the activity of an RNA-induced silencing complex (RISC), formed by Argonaute 2
(AGO2) and some associated proteins, to conduct the homologous RNA degradation [38].
There is a positive co-relationship between RNAi efficiency and the core RNAi pathway
gene expression pattern. Therefore, the next requirement for a successful RNAi-based
strategy is to understand how the silencing machinery operates in the target insect.

The main elements of the siRNA pathway studied to elucidate the dsRNA processing
are DCR2, R2D2, and AGO2. In the case of the fall armyworm (Spodoptera frugiperda;
Lepidoptera), the basic transcription levels of these core elements of RNAi machinery are
similar to those observed in western corn rootworm (Diabrotica virgifera; Coleoptera) and
southern green stink bug (Nezara viridula; Hemiptera) [39]. All three taxa are considered
highly efficient species on which to employ RNAi strategies [40–42], from phylogenetic
orders whose response to dsRNAi varies.

The impact of dsRNA delivery via injection or feeding on the modulation of the
RNAi core genes remains unclear. This was investigated in the European corn borer (ECB)
(Ostrinia nubilalis; Lepidoptera), a low RNAi efficient species [6]. The study revealed only
one transcript for each of the three core RNAi pathway genes (Dcr2, R2D2 and Ago2)
denominated OnDcr2, OnR2D2 and OnAgo2. Expression levels of these genes after dsRNA
injection remained steady during the injection assay, while OnDcr2 alone was upregulated
upon an artificial diet assay. Furthermore, analysis of the predicted domains provided
functional information concerning conformational differences of OnAgo2, OnR2D2 and
OnDcr2 that could justify the low efficiency of the RNAi apparatus in ECB [6].

2.2. dsRNA Designing

Insects present different levels of susceptibility to dsRNA. Some orders, such as
Coleoptera, perform strongly, while others, including Lepidoptera and Diptera, exhibit
highly variable outcomes in response to dsRNA treatment, requiring detailed tactics to
deliver better-performing solutions [43].

The employment of RNAi for pest control purposes has been improved with advances
in high-throughput sequencing (genomic and transcriptomic) and bioinformatic tools [44].
Deeper molecular information on the target insects has provided high specificity to the
identification of essential genes for which to create silencing molecules. Hence, large
datasets enable strict homology levels between the dsRNA and its corresponding mRNA
target. dsRNA design for commercial purposes starts with the development of a preliminary
pipeline, where software settings must be adjusted for each specific trait vs. organism
analyzed [45–47]. Then, minimum off-target effects criteria are set to select functional siRNA
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sequences that guarantee near-perfect matching [48]. Accordingly, carefully designed
dsRNA makes it possible to obtain broad-spectrum or extremely specific molecules targeted
to the same gene in different insect species, or even within species of the same genus [49].

The precaution of excluding cross-kingdom sRNAs (ck-sRNAs) helps avoid unde-
sirable effects on non-target species. For this purpose, when preparing samples for the
sequencing step, it is necessary to treat samples in order to avoid contamination with other
organisms (plant cells, endogenous microbiota, parasites) [50], determine the number of
biological replicates and calculate the correct amount of reads to achieve sufficient genome
coverage (typically three biological replicates with 5–10 million reads each). Sequencing
of sRNAs is carried out using a wide variety of high-throughput technologies [51,52],
including MiSeq and HiSeq (Illumina Inc., San Diego, California, EUA), SMRT PacBio
(Pacific BioSciences, Menlo Park, California, EUA), and Roche 454 technologies (Branford,
Connecticut), depending on the output range and total reads per run required [53]. These
NGS technologies also allow direct sequencing of cDNA produced from messenger RNA
(RNA-seq), enabling the de novo construction of the transcriptome without an anchoring
genome [54,55]. For instance, RNASeq (Illumina) and digital gene expression tag profile
(DGE-tag) were used to screen optimal RNAi targets in Asian corn borer (ACB) (Ostrinia
furnalalis). Larval-stage specific expression genes were selected for RNAi testing by spray-
ing dsRNA on larvae, reaching mortalities of 73% to 100% at 5 days after treatment [56].
The combination of DGE-tag with RNA-seq is a rapid way to select candidate target genes
for RNAi [57].

For siRNA-mediated silencing, high pairing between the target RNA and siRNA is
more critical than dsRNA-mediated methods. Furthermore, the siRNA length must be
observed for more successful RNAi silencing, considering lepidopteran siRNA populations
20 nt long were observed in some species [58]. BLAST search is an important tool, although
not very accurate for short sequences such as siRNAs. Other software to select functional
siRNAs, such as PFRED [59] and siRNA-Finder (si-Fi) [60], is available.

2.3. Genomic Data on Lepidopteran Pests

Fully sequenced insect pest genomes support assertive gene targeting for dsRNA
design [44]. According to the NCBI, the Insecta class (Figure 1a) has 3091 deposited
genomes. From these data, 1831 are reference genomes, while 220 were annotated using
the NCBI RefSeq.

Lepidopteran insects are holometabolous butterflies and moths whose life cycles
comprise the egg, first to fourth instar larvae, pupa and sexually dimorphic adult [61].
According to [62], Lepidoptera is the second most diverse order (157,424 recognized species)
and includes the most devastating agricultural pests in the world [63]. For the Lepidoptera
order, we found 1611 genomes, being the Ditrysia clade (Figure 1b) represented by 1540 total
genomes, 836 of which were reference genomes and 34 annotated by NCBI RefSeq.

The Yponomeutoidea superfamily (Figure 1c) contains 16 deposited genomes, with
four reference genomes and the only NCBI RefSeq genome annotated in the Plutellidae
family—the well-studied Plutella xylostella (Figure 1c), which has genome assembly at the
chromosome level. However, other families lack genomic data, such as the cosmopolitan
Lyonetiidae family (Figure 1c), which has about 210 described species, encompassing
important pests that are usually leaf and branch mining and parasitize dicotyledons [64].
Lyonetids include miner pests which cause wilting and defoliation to: fruit shrubs, such as
apple, pear, peach, apricot and cherry in Europe and Asia; and coffee in Americas [65–67];
ornamental plants [68–71]; medicinal plants [72]; trees, such as willow and poplar and
bushes [73–75]. Unlike other lyonetiid miners, Leucoptera coffeella or coffee leaf miner (CLM)
feeds exclusively on Coffea spp. plants in the Neotropical region [76]. The leaf damage
caused by the CLM attack cause productivity losses estimated at 87% and defoliation of
up to 75%, depending on the season [77,78]. Recently obtained sequences of L. coffeella
have generated large genomic, transcriptomic and proteomic information at the molecular
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level [79], contributing to the development of RNAi research in Lepidoptera by improving
the knowledge of the RNAi machinery and the selection of highly specific gene targets.

Figure 1. Main taxonomic levels are depicted in a tree, modified from https://lifemap-ncbi.univ-
lyon1.fr/ (accessed on 21 September 2022), showing the Insecta class (a), the Ditrysia clade (b) and
the Yponomeutoidea superfamily (c). Orange spheres highlight the levels with fully sequenced
genome data. Insect species listed in Tables 1 and 2 (written in white) are marked by a yellow tag.
The L. coffeella in the Lyonetiidae family is written in orange.

2.4. Insect Target Genes for dsRNA Silencing

To reduce or eliminate the use of chemical pesticides harmful to health and the
environment, RNAi has been increasingly developed and tested in agricultural pests. In
Table 1, we show some validated genes that are not used in in planta silencing (non-GMOs).
Insect gene-silencing papers reported before 2017 and some related to pests occurring in
the Neotropical Region has been compiled and reviewed elsewhere [49,80].

https://lifemap-ncbi.univ-lyon1.fr/
https://lifemap-ncbi.univ-lyon1.fr/
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Table 1. dsRNA-validated genes for insect silencing by non-transformative methods.

Year Species (Order) NCBI: txid Target Delivery Mortality Reference

2017 Anthonomus grandis
(Coleoptera) 7044 AgraCHS2 microinjection 100% [81]

2019
Bactrocera dorsalis

(Diptera) 27457
Tssk1

artificial diet
58.99%

[82]Tektin1 64.49%

2019
Myllocerus

undecimpustulatus undatus
(Coleoptera)

1811735

Prosα2 injection
and

feeding

78.60%

[83]
RPS13 64.10%
Snf7 92.70%

V-ATPase A 43.10%

2020
Anoplophora glabripennis

(Coleoptera) 217634
IAP

artificial diet
90%

[84]SNF7 75%
SSK 80%

2021 Diaphorina citri
(Hemiptera) 121845 DcCP64 soaking 72% [85]

2021 Leptinotarsa decemlineata
(Coleoptera) 7539 PSMB5 leaf soaking 50–90% [86]

2021
Plautia stali
(Hemiptera) 106108

vATPase injection
and

feeding
100% [87]

IAP
MCO2
Snf7

2022 Brassicogethes aeneus
(Coleoptera) 1431903 αCOP leaf soaking 62% [88]

The dsRNA to silence the AgraCHS2 gene resulted in 100% adult mortality when
microinjected into the cotton boll weevil (Anthonomus grandis; Coleoptera). This gene is
essential for peritrophic membrane biosynthesis, intestinal epithelium protection, and nutri-
ent assimilation [81]. Subsequently, the Tssk1 and Tekin1 genes (important for male fertility)
were silenced, causing the death of 58–64% of Bactrocera dorsalis (Diptera) individuals by
artificial diet [82].

In the Sri Lanka weevil (Myllocerus undecimpustulatus undatus; Coleoptera) silencing
was validated through injection and feeding the genes Prosα2 (proteasome subunit alpha
type 2) [89], RPS13 (structural element of the 40S subunit) [90], Snf7 (endosomal sorting
complex required for transport III- ESCRT-III) [91] and V-ATPase A (transmembrane ATP-
driven proton pump) [92]. The mortality rate ranged from 43.1% to 92.7%.

The Asian long-horned beetle (ALB), a polyphagous wood-boring species (Anoplophora
glabripennis; Coleoptera). Bioassays in which larvae were fed with dsRNA resulted in the
death of 75–90% of the individuals, upon silencing the inhibitor of apoptosis (IAP), SNF7
and snakeskin (SSK) genes [84]. Still, the Asian citrus psyllid (ACP) vector (Diaphorina
citri; Hemiptera) transmits the Citrus Huanglongbing disease (HLB). Tests with dsRNA to
silence the DcCP64 gene, responsible for the synthesis of the 64-like cuticle protein, resulted
in 72% of the psyllids’ deaths [85]. However, the brown-winged green stinkbug (Plautia
stali; Hemiptera), known for infesting various fruits and crop plants, showed 100% of death
when the insects were treated with RNAi directed to the genes vATPase, IAP, MCO2 and
Snf7 [87].

The Colorado potato beetle (CPB) (Leptinotarsa decemlineata; Coleoptera) was subjected
to PSMB5 gene silencing, which is part of the ubiquitin/proteasome machinery, reaching
between 50% and 90% mortality depending on the life stage of the CPB. The study ended
up generating an RNA-based biopesticide, the Ledprona®, which is being reviewed for
registration at the United States Environmental Protection Agency (EPA) [93].

The order Lepidoptera contains several highly destructive representatives that gen-
erally show low mortality rates when subjected to RNAi-based tests [94]. Despite the
limitations of the gene silencing effect in lepidopterans, potential solutions may still exist,
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as there are possibilities that have not yet been tested [95]. In Table 2, we listed works
published between 2018–2022 on the validation of lepidopteran pest genes silenced by
exogenous application.

Table 2. Lepidopteran target genes validated for dsRNA silencing. The taxonomic positions of these
genes’ corresponding species are depicted in Figure 2.

Year Species
(Family)

NCBI:
txid Target Delivery Mortality Reference

2018
Helicoverpa zea

(Noctuidae) 7113

TipE

microinjection

12–16%

[96]
GluCl 12–16%
Para 12–16%

Notch 12–16%

2018
Plutella

xylostella
(Plutellidae)

51655 AChE topical foliar
application 69–74% [97]

2018

Heliothis
virescens

(Noctuidae)
7102

PBAN
topical foliar
application

and Injection

50–60%
[98]

Helicoverpa zea
(Noctuidae) 7113 50–60%

2021
Hyblaea puera
(Hyblaeidae) 268502

HpEcR topical foliar
application

46%
[99]HpCHS1 30%

HpChi-h 32%

2021
Spodoptera

exigua
(Noctuidae)

7107 GNAF feeding 48% [100]

2021
Chilo

suppressalis
(Crambidae)

168631
ND topical foliar

application

50%
[101]GPDH 50%

MSL3 50%

2021
Tuta absoluta
(Gelechiidae) 702717

v-ATPase B topical foliar
application

70%
[102]JHBP 70%

The AChE gene was silenced via soaking in diamond back moth (Plutella xylostella)
one of the main pests of cruciferous vegetables. This gene is responsible for the synthesis of
acetylcholine esterase—the primary target of commercial insecticides—which interrupts
the action of neurotransmitters. To increase stability, researchers tested a concatemerized
form of the molecule. The mortality rate was up to 72%, higher than that observed with the
non-concatemerized control [97].

The corn caterpillar (Helicoverpa zea) was subjected to tests involving RNAi using genes
that are targets of commercial insecticides: Para (paralytic effect), TipE (temperature-induced
paralysis), GluCl (glutamate chloride channel), and Notch (encodes proteins that make up
neuronal cells). Three delivery methods were used: microinjection, egg immersion, and
larval feeding. Microinjection of eggs of the GluCl, Para, and TipE genes reduced hatching
rates, while the Notch gene showed no difference. None of the genes were effective for
larval feeding and egg immersion methods [96].

Pinworm (Tuta absoluta) is the most aggressive tomato pest in South America, Africa
and Asia. This lepidopteran, which feeds on mesophyll, was subjected to tests with RNAi
of the genes: v-ATPase B (keeps the midgut lumen alkaline by increasing amino acid
absorption) and JHBP (essential for development and reproductive maturation). Topi-
cal application on the leaf surface resulted in 70% of larval mortality for the two target
genes [102].
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Figure 2. Schematic strategy of RNAi to control L. coffeella by long dsRNA-induced silencing of coffee
plants. (A) dsRNA delivery by SIGS or trunk injection; (B) dsRNA oral ingestion by larva feeding the
leaf parenchyma; (C) dsRNA internalization in the larva: a transfer from insect gut lumen to midgut
cells by the clathrin-mediated endocytic pathway (CLA), pattern recognition receptors (PRRs), and/or
RNA-binding proteins (RBPs); b long dsRNA interaction with an R2D2-DCR2 complex associated
with LOQ; c LOQ recognition of exogenously delivered dsRNA to slicing by Dicer (DCR2) with
R2D2 to produce siRNAs; d guide-strand selection by AGO2 complexed with C3PO; e siRNA-guided
silencing by attachment to the target mRNA passenger strand; systemic amplification of the RNAi
silencing by dsRNA and siRNA; f dispersion through other gut cells by the cytoplasm and g diffusion
to the hemolymph.

The Asiatic rice borer (Chilo supressalis) is one of the world’s main crop pests. As its
chemical control is expensive, the RNAi technique has become a possible option for the
borer’s management. Three selected genes—ND (NADH dehydrogenase), GPDH (glycerol
3-phosphate dehydrogenase), and MSL3 (male specific lethal 3)—were tested. Rice leaves
were brushed with bacterial dsRNA solutions that contained newly hatched larvae. The
insect mortality rate was 50% for each gene [101].

Corn caterpillar (H. zea) and tobacco caterpillar (Heliothis virescens) were subjected
to control tests containing dsRNA of the PBAN target gene. dsRNA delivery by artificial
larval diet or pupae injection caused a mortality rate that ranged from 30 to 60%. A delay in
larval development and some interference in the development of pupae were also observed
in the two agricultural pests analyzed [98].

The teak defoliator (Hyblaea puera) causes severe defoliation to teak, a tree of paramount
commercial importance in forestry. Sequences from the HpCHS1, HpChi-h, and HpEcR
genes, related to chitin metabolism, were used in the construction of dsRNAs that were
administered to the larvae via topical application on the leaves. It was found that 30–46% of
the treated larvae died; a large number of deformed pupae were also observed, in addition
to the deformed pupae [99].

Assuming that gene silencing can occur in Lepidoptera species, we believe that the
CLM (Leucoptera coffeella) can also be controlled by exogenous dsRNA technologies. Aiming
to develop biopesticide solutions to this important coffee pest, our research group has
performed the full genome PACBio and paired-end Illumina combined DNA sequencing
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from pupae samples. The generated data allowed for nuclear genome, transcriptome
and proteome analyses as a basis for the discovery of RNAi mechanisms specific to the
Lyonetiidae family, as well as the selection of target genes. This information is essential to
RNAi development, as the taxonomically closest complete genome is in the very distant
Yponomeutoidea taxon [79].

3. Validation Tests of the dsRNA Candidates for Proof of Concept

After synthesizing the dsRNA molecules in the laboratory, validation in a controlled
rearing environment is required before field application, either by direct delivery to the
insect or indirect application on the plant for subsequent ingestion. About general assay
aspects, an interesting study provided important insights into how to apply dsRNA ex-
ogenously to plants in Arabidopsis thaliana [103]. Under different physiological conditions
(plant age, time of day, soil moisture, high salinity and heat and cold stress) and via various
application media (brush spreading, spraying, infiltration, inoculation, needle injection
and pipetting), the best results were associated to application at night, low moisture soil,
brush spreading, spraying and pipetting.

Aiming to further test the small-sized Leucoptera coffeella larvae (1-4 mm in length), we
found some useful techniques that could be applied to testing larvae and pupae in vitro or
ex vitro. In this way, we discuss some dsRNA application techniques used in other insects
that can be tested according to our reality, considering the size and development stages of
L. coffeella and the characteristics of the coffee plant.

To insects depending on the living plant tissue to complete the life cycle, as L. leucoptera,
the plant infiltration seems to be very suitable. This procedure is performed by syringe
without a needle, pressing the dsRNA-containing solution under the abaxial face of the leaf.
It may be a viable method for validating the dsRNA in plants, as it is possible to visualize
the entry of the solution into the leaf. Sometime later, the liquid diffuses inside the plant
tissues and is no longer visible. The infiltration process is carried out in sunflowers [104].
Even if it is an easy method, it is quite variable in effectiveness, depending on plant
anatomy.

Microinjection is an option proved to work even to 1 mm insect developmental stages.
Tests performed with dsRNA in the cotton boll weevil (Anthonomus grandis) showed a
93% reduction in oviposition and 100% of adults death to 1mm microinjected larvae [81].
With H. zea 1mm diameter eggs, microinjection resulted in 12–16% mortality of larvae
after silencing five genes [96]. Nine dsRNA molecules specific to Nezara viridula (southern
green stink bug) showed an average mortality rate of 90% after microinjection into 3.2mm
nymphs [105,106].

Immature stages could also be tested by detached leaves, as the 48% mortality reported
to the beet armyworm (Spodoptera exigua) (Table 2) fed with dsRNA treated leaves [100].
Also, worth of testing is the soaking method used in Diaphorina citri (Asian citrus psyllid)
nymphs [85,107].

4. dsRNA-Based Products
4.1. Formulation with Nanocarriers

Once the target genes that impair insect proliferation are chosen and preliminary
assays are realized in laboratory and greenhouse conditions, other constraints inherent
to the dsRNAi approach should be addressed. The stability of dsRNA molecules after
field application and in insect gut conditions is crucial to extending the material’s half-life
length.

It is known that to control lepidopteran pests via dsRNA-based products, avoiding
dsRNA degradation by RNases and high pH levels is a sine qua non situation [108]. After
application to the plants, the dsRNA molecule must get to the target gene inside the
insect cells [109]. The primary constraint of using molecules ingested by insects is their
degradation in the gut. Most of the dsRNases present in lepidopterans’ guts are basophilic,
presenting an optimum pH of around 9.0 [26]. dsRNA stability is influenced by high pH
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values due to its chemical structure. In alkaline conditions, dsRNA can be hydrolyzed in
some regions [26]. Noticeably, the drawbacks in Lepidoptera are even more significant [110]
because pH in the lepidopteran gut can reach 12 [111]. This factor is probably the biggest
challenge to making dsRNA applicable to lepidopteran insect control [110]. Beyond the
gut, dsRNases present high activity in other body fluids such as saliva and hemolymph,
which cause the degradation before the dsRNA can been processed by the insect [23].

The fate of dsRNA is short both in soil and aquatic environments [34,112]. Microbial
nucleases present in the soil and on leaves, UV-radiation and run-off due to dew and rain
can significantly limit the availability of dsRNA to the pest [112,113].

Fortunately, most of those problems have been gradually overcome with improve-
ments and recent findings in chemistry and nanotechnology. Thus, dsRNA formulations
containing protection agents, surfactants, and diluents may be required [114]. Many nano-
materials are used to form complexes with dsRNA, as presented below—especially the
cationic ones that present positive extremities, able to bond with the negative parts of
dsRNA molecules.

4.2. Peptides

The peptide transduction domain (PTD) may be fused to dsRNA binding domain
(DRDB) molecules, allowing a more efficient internalization by the cell and consequently
enhancing gene silencing in Anthonomus grandis. Although the PTD-DRBD complex made
the dsRNA more stable and efficient in the presence of nucleases in the A. grandis gut [115],
the dsRNA was harder to synthesize. An alternative is using branched amphiphilic peptide
capsules (BAPCs), which are more easily synthesized than PTD, to protect dsRNAs [116].
These nano capsules are made of natural amino acids, and are water soluble and resistant
to detergents, proteases and chaotropic agents. The association of BAPCs to dsRNA led
to premature deaths of pea aphid (Acyrthosiphon pisum) when fed with a diet containing
BAPCs-dsRNA complex [117].

4.3. Transfection Reagent

Lipofectamine® 2000 (Reagent Catalog number: 11668030, Thermo Fisher Scientific,
Life Sciences Solutions, 5781 Van Allen Way, Carlsbad, CA, USA 92008, Invitrogen) is a
transfection reagent able to inhibit nuclease activity and characterized by the presence of
cations at the phospholipid bilayer. These characteristics allow lipofectamine to overcome
the repulsion relation between cell membranes and nucleic acids, becoming a good candi-
date to be added to dsRNA formulations [116]. When used to treat the brown stink bug
(Euschistus heros; Hemiptera), lipofectamine was able to increase the mortality of second-
instar nymphs by 15% after 14 days of artificial feeding, in comparison with the naked
dsRNA molecules, which caused 33% mortality [118].

Another transfection reagent, Cellfectin® II Reagent (CFII) (Catalog number: 10362100,
Thermo Fisher Scientific, Life Sciences Solutions, 5781 Van Allen Way, Carlsbad, CA, USA
92008), was tested complexed with dsRNA against Spodoptera frugiperda. One group of
larvae was fed with CFII-dsRNA complex and the other group received naked dsRNA.
The diet without CFII caused 25% mortality, while the group that received CFII-dsRNA
registered 55%. These results indicate that CFII was able to protect dsRNA molecules from
the high pH and the nucleases of the hemolymph and midgut lumen, increasing dsRNA’s
final efficiency [119].

4.4. Macromolecular Polymers

Star polycation (SPc) is a cationic amino acid dendrimer nanocarrier that is able to
enhance gene transfection efficiency. Its dsRNA association capability, due to its positive
charge, allowed RNAi silencing of the CYP6CY3 gene up to 84.3% mortality in Aphis
gossypii [120]. SPc was also used in association with dsRNA to verify its capability in the
control an polyphage aphid (Myzus persicae; Hemiptera) [121]. To avoid water repellency a
0.1% detergent solution was added to the formulation. The penetration efficiency at the
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aphid, measured by fluorescence tests, showed that with SPc, dsRNA molecules were able
to penetrate the aphid’s whole body. The vestigial (vg) and Ultrabithorax (Ubx) genes were
downregulated 44.0% and 36.5%, respectively, 24 h after treatment.

SPc polymerized with DMAEMA (2-N-(dimethyl aminoethyl) methacrylate) was
made in association with dsRNA to control Chilo suppressalis by artificial feeding. The SPc
protection showed an increase of 60% in larvae mortality [122]. In S. frugiperda, the SPc
complexed with dsRNA was tested in Sf9 cells, hemolymph and midgut lumen contents
collected from S. frugiperda larvae. The performance of the complex and naked molecules
was measured by UV tests at 488 nm, showing that SPc was able to enhance dsRNA
molecules’ stability. After 12 h of incubation, the UV signal was much stronger in cells
that absorbed the complex dsRNA/SPc than in naked dsRNA, showing that SPc can
promote dsRNA uptake by cells. Also, SPc was able to protect dsRNA molecules from
being degraded by RNase A and the insect hemolymph [123].

Polymers containing guanidine were developed to stabilize dsRNA molecules in
very alkaline environments and to protect these molecules from nucleases. Since dsRNA
molecules are very sensitive to high pH environments because of the hydrolyzation caused
to double-stranded molecules [26], it is necessary to prevent degradation in lepidopterans’
guts, which can reach pH 12 [111]. dsRNA can form complexes with the guanylate polymer
due to its positive charge. In laboratory ex vivo tests, a guanylate polymer was able to avoid
dsRNA degradation for over 30 h at pH 11, while the naked molecules were degraded
after 10 min in Spodoptera exigua gut juice. In vivo bioassays showed that the mortality
associated with the dsRNA complexed with the guanylate polymer was around 53.3%,
while the naked molecules caused 16.7% of mortality [124].

Chitin can be deacetylated and become a natural material called chitosan. This cationic
nanopolymer is composed of biodegradable and biocompatible molecules [125]. Chitosan
nanoparticles (CNPs) were complexed to dsRNA molecules and sprayed over chickpea
leaves to control the lepidopteran Helicoverpa armigera. The CNPs/dsRNA complex led
to a reduction in length and weight of the larvae when compared to naked-molecule
silencing [126]. Chitosan (CS) can be further improved by other materials, such as sodium
tripolyphosphate (STPP), a nanosized cross-linker able to increase the protection of the
chitosan-dsRNA complex, forming a CS-STPP-dsRNA complex [127].

4.5. Other Materials

Layered double hydroxide (LDH) clay nanosheets have a flat, hexagonal, positively
charged structure that interacts with dsRNA molecules, forming a complex named BioClay.
This structure allows for dsRNA detection on the surface of leaves even 30 days after appli-
cation via foliar spray. Moreover, it also enables improved permanence of the molecules
over the leaves, avoiding removal by the application of other products [128].

Carbon Quantum Dots (CQD) are another possible formulation reagent. When associ-
ated with dsRNA molecules, CQD was able to improve gene depression by 41% in the gut,
45% in other tissues and 43% in the whole organism. In contrast, control naked dsRNA did
not show any expression level reduction. The downregulation caused by silencing resulted
in 70% mortality 6 days after diet feeding in C. suppressalis. The CQD also showed a very
good stability result in comparison to chitosan, Lipofectamine® 2000 and naked molecules
of dsRNA when tested on midgut homogenates [129].

5. dsRNA Production

In the last few years, dsRNA production methods have been continuously optimized
to promote the wider application of this technology. dsRNA can be produced using ei-
ther in vitro transcription or in vivo expression in bacteria, yeast, microalgae and other
species [130–134]. Bacteria are a low-cost alternative for the production of large amounts
of dsRNA [135]. Escherichia coli HT115 (DE3) were first used as an heterologous dsRNA
production system by [136]. Since then, it has become a useful tool for functional studies
in invertebrate physiology [134,137–139]. Still, other kinds of bacteria, such as Bacillus
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thuringiensis (Bt) [130,133,140], B. subtilis [141,142], symbiotic bacteria [143–147], Pseu-
domonas syringae, Corynebacterium glutamicum and Chlamydomonas reinhardtii are useful
biopesticide production strains that have been widely used for the control of several pests.

In addition, eukaryotic species Saccharomyces cerevisiae has also been used as a rel-
evant dsRNA production system. S. cerevisiae does not contain the core genes Dicer2
and Argonaute-2 of the RNAi pathway [132], which allows efficient dsRNA synthesis
in S. cerevisiae compared with E. coli and other bacterial species [148]. Fungi [131] and
viruses [149,150] have also been engineered to produce dsRNA.

In experimental settings, three main approaches are used to produce dsRNA: chemical
synthesis of NTPs, in vitro synthesis through RNA-dependent RNA polymerases and
fermentation through microorganisms. To this goal, in vitro synthesis is best suited for the
synthesis of short dsRNAs [151] and to reach high-purity dsRNA standards, despite its
relatively high production cost [152].

For field application, the main requirement is the establishment of large-scale pro-
duction at low cost. Bacterial systems are the most used alternative [138] and promising
methods to biologically synthesize long dsRNAs for the control of Lepidoptera species
and other insect pests [42,153]. Although in vivo production supplies low-cost dsRNA in
high yields, this strategy requires later purification of the product and inactivation of the
engineered microbial strain [154,155]. Efficient production involves the proper release of
dsRNA from the cells, without affecting dsRNA integrity during the extraction process
Methods for the Cost-Effective Production of Bacteria-Derived Double [138]. Despite the
risk of compromised integrity inherent to this method, dsRNA extracted from bacteria
efficiently induced knockdowns in a lepidopteran cell line [138].

In 2008, the cost of synthetic dsRNA was approximately 12,000 USD/g, dropping to
60 USD/g in 2018 [156]. RNAGri had the ability to produce tons of dsRNA at a cost of 1
USD/g, while Greenlight’s GreenWorX™ system can further reduce the cost of dsRNA
synthesis to < 0.5 USD/g [49,152,157–159]. In 2009, a study showed that producing 30 mg
of dsRNA in vivo was approximately one-third the cost of the in vitro methodology [160].

6. Field Application of dsRNA Assets
6.1. Foliar Spray

Foliar application is a very practical and convenient SIGS method that has been
reducing in cost over time [161]. Reliable dsRNA market products must present convincing
low-cost and high-efficiency characteristics. Foliar spray application fits the synthesis price,
as the costs of this method are around 0.5 and 1 USD per gram on a cell-free bioprocessing
platform [159], with about 2 to 10 g per hectare required [156,162,163]. The convenience of
pulverization is that it is a method already used in most production areas, which represents
a shortcut to application on farms.

The most advanced commercial foliar spray product launched is the dsRNA-based
Ledprona®. Its active ingredient is a dsRNA artificially synthesized and applied via foliar
spray. It has been demonstrated to be a very promising product in field trials [86].

Another factor that makes RNAi a difficult strategy to be applied is the uptake of
the product when applied via foliar spray. Many leaf surfaces are re-covered, mostly by
wax, or have a hydrophobic cuticle, which makes absorption more difficult; the presence
of trichomes and stomata density and position also interfere directly with the dsRNA
absorption by the plants [161].

Naked dsRNA molecules require some kind of protection or association with other
compounds to be used as an active principle to any product, in order to avoid being de-
graded before they reach their final destination and allow the product to reach its maximum
potential [159]. The dsRNA strategy currently faces other drawbacks to application, such as
the low pH that many plants present on the leaf surface, which causes dsRNA degradation.
Furthermore, UV light can reduce the biological activity of dsRNA. Rain, which is usually
an excellent factor for dsRNA application, can become a threat to the stability of dsRNA
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molecules. These are crucial factors that dsRNA strategies must overcome to reach a good
market position [164,165].

Using bacteria to deliver dsRNA presents advantages compared to in vitro dsRNA
synthesis [29]. Silencing of five different target genes caused significant larval mortality to
the CPB after 12 days feeding on DE3 E. coli expressing dsRNAs [166]. RNAi effects were
also observed by ingestion of bacteria expressing dsRNA in Spodoptera exigua [167,168],
Chilo infuscatellus [57] and Tuta absoluta [169].

Feeding with bacteria expressing a homologous dsRNA was effective to silence an
immune gene of the noctuid moth Spodoptera littoralis [130], although dsRNA delivery to
the hemocoel in lepidopteran insects needs high amounts of dsRNA to achieve significant
knockdowns. In field conditions, the quantity required is even higher [42,170].

6.2. Trunk Injection

Trunk injection is another application method that can be especially useful to apply in
the field, particularly for those crops that are perennial plants and those that present woody
trunks, such as citrus, coffee and pine [49]. The low efficiency of dsRNA delivery methods
can be circumvented by trunk injection, a promising method that reduces environmental
impacts. This process relies on the phloem as a channel where dsRNA may remain stable
for a long time due to the presence of sap. Besides being a medium free of RNase, the
sap has the advantage of facilitating the injected material’s dissipation throughout the
plant [171].

The feasibility of the trunk injection process was demonstrated for the first time in
citrus trees and vines that were exposed to a single injection of 2 g of dsRNA diluted in 15
L of water [172]. The delivery was confirmed after the detection of dsRNA in the treated
plants. Additionally, the authors demonstrated that two hemipteran insects that fed on sap
also absorbed dsRNA, suggesting that this method would be an excellent choice for sucking
pests. It is important, however, to note that the trunk injection strategy may be costly, as it
requires the massive production of dsRNA and a specific injection apparatus [29].

Some products for injection delivery are currently available: Arbojet® https://arborjet.
com/ (accessed on 19 September 2022), which proposes injection by the insertion of a
drilling plug [171] and ChemJet® (https://www.chemjet.com.au/ (accessed on 19 Septem-
ber 2022) a rechargeable injector to be inserted within a previously pierced hole

Depending on the characteristics of the insect pest to be controlled, it is important to
evaluate which injection type favors dsRNA delivery to the tissues on which the pest feeds—
in the case of the CLM, for example, to the palisade parenchyma of leaf mesophyll. It is also
important to evaluate the orifice size and the plug fixation options, since the open orifice
becomes an entrance port for pathogens. In addition, there is a risk of generating embolisms
in the vessels or compartmentalization of the vascular system after piercing. Despite
this, efficient trunk injection for systemic conduction in perennials was demonstrated
in apple trees with essential oil emulsions applied through 1 mm-wide and 1 cm-deep
perforations [173].

A perennial large crop that could benefit from the trunk injection method is coffee.
Similar to the apple tree, coffee is a perennial shrub that could be treated by trunk injection
to direct dsRNA to the leaf mesophyll, aiming at CLM larval stage feeding, as illustrated in
Figure 2.

7. Limitations of RNAi Technology in Lepidoptera

During the last decade, many studies have proven that RNAi technology is efficient in
pest control mainly via transgenic plants, feeding, trunk injection, or spraying [56,57,174,175].
Lepidopteran insects, however, present variable RNAi efficiency for several reasons, even
though their successful uptake of dsRNA has been evidenced in injection, transfection,
or transgenic assays that reported good responses to dsRNA stimuli [29,94]. Studies
concerning persistence of dsRNA in the digestive tract of lepidopterans indicate that
dsRNA can be quickly degraded by nucleases present in the saliva, hemolymph and

https://arborjet.com/
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https://www.chemjet.com.au/
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gut juice [176,177]. This means that the successful usage of dsRNA in a SIGS approach
relies on the protection of the dsRNA from degradation in the field and the insect gut.
Formulation technologies can also be used to improve cellular internalization of dsRNA
and to protect dsRNA against nucleolytic degradation, hence improving overall delivery to
the pest [108,124]. Nevertheless, formulation contents might present a risk on their own
and the impact of the formulation itself on the environment and non-target organisms
(NTO) should be assessed as well.

Other aspects to consider for commercial application of RNAi are cost-efficiency, safety,
the delivery to the site of action in the target organism and adverse effects in NTOs. The
exposure of NTO is dependent on several parameters, including application rate, timing of
application, application method, number of applications, off-site movement of the dsRNA
and stability and persistence of the dsRNA [178,179].

Hence, RNAi efficiency varies greatly among different insect species and the major
limitations for efficient RNAi include dsRNA instability, refractory gene targets, low ef-
ficiency of dsRNA cellular internalization, deficient core RNAi machinery and impaired
systemic spreading of dsRNA, which constrains the application of RNAi-based pest man-
agement [123].

8. Final Considerations

RNAi-based biopesticides have fewer harmful effects than most conventional chemical
pesticides and no pest resistance development is expected in the field when using long
dsRNA strategies. These molecules are processed in many different siRNAs to silence
the target genes, minimizing the probability of acquired RNAi-resistance. Moreover, non-
transformative strategies likely prevent insects from adapting and circumventing resistance
to dsRNA silencing, perhaps because the intermittent presence of the dsRNAs—in contrast
to a constant supply provided by HIGS—presents lower selection pressure [180].

RNAi-based pesticide control of lepidopteran pests encompasses environmental sta-
bility and low silencing efficiency limitations that may be surmounted by nanocarriers and
adjuvants associated to dsRNAs [181].

From a regulatory perspective, exogenous delivery methods are more likely to be
accepted for commercialization due to their biosafety appeal. These products offer pest
gene control without introducing GMO plants into the environment. Moreover, the topical
application of dsRNAs is expected to be minimally impactful due to their fast environmental
fate, low non-target and off-target risks and other advantages over HIGS solutions. As
the importance of research and commercial interests in exogenous RNAi technology has
risen strikingly in recent years, many forums for discussing the regulatory frameworks for
pesticide authorization in the United States (US) and European Union (EU) have formed
within the European Food Safety Authority (EFSA), the Organization for Economic Co-
operation and Development (OECD) European Co-operation in Science and Technology
(COST) and the scientific community [44]. Currently, while dsRNA-based insecticides are
being generated, documents from these initiatives are gathering knowledge and outlining
the classification and authorization procedures for the environmental risk assessment (ERA)
guidelines to this new MoA, considering factors such as the introduction and mobility
of dsRNA within target species, its environmental fate, prediction and determination of
off-target and non-target effects and resistance development [44,181].

Considering all the aspects discussed above, one can infer that in the medium-term
future the control of lepidopterans by topical dsRNA will be widely adopted in world
agriculture.
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