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A B S T R A C T   

The stability of soybean yields in Brazil is regularly affected by drought periods, and soil management practices 
are crucial to expanding the water holding capacity of the soil and providing higher levels of moisture during 
critical periods, which contribute to increasing crop yields, relieving the need for non-agricultural areas to be 
converted into croplands. The research reported herein aimed to quantitatively monitor the soil moisture of a 
soybean crop through leaf-based hyperspectral reflectance and suggest a remote sensing-based approach that 
might assist in identifying soil management zones. A field experiment at the Brazilian Agricultural Research 
Corporation during 2016/2017, 2017/2018, and 2018/2019 cropping seasons had ten soybean genotypes sub
jected to four water conditions: irrigated, non-irrigated, and water deficit induced at the vegetative or repro
ductive stages. The soil of the experimental site is characterized as Udox Oxisol. Leaf reflectance (400–2500 nm) 
was collected by the spectroradiometer FieldSpec 3 Jr simultaneously with soil moisture (0–20 and 20–40 cm 
depths) at eleven dates. Data submitted to Principal Component Analysis (PCA) evaluated the clustering of water 
conditions and which are the most critical spectral wavelengths to characterize the plant water status. The Partial 
Least Squares Regression (PLSR) was applied to develop a quantitative spectral model to predict soil moisture. 
The PCA explained over 93% of the spectral variance within each assessment day, and shortwave infrared 
wavelengths presented a higher contribution to water status clustering. At the cross-validation step, the PLSR 
presented R2 up to 0.860 and 0.906 (0–20 and 20–40 cm) underperforming when soil moisture showed no 
significant differences between water conditions. Using samples from all assessment days, PLSR presented R2 =

0.609 and 0.722 (0–20 and 20–40 cm) at the external validation step (RMSE = 2.7 and 1.9, respectively), with a 
soil moisture range equal to 16–35% and 20–35% at both depths, remarkably outperforming the traditional 
univariate spectral models. Our results contribute to soil moisture assessment in extensive soybean areas 
regardless of the stage of crop development and provide a significant contribution since the Brazilian soybean 
crop calendar might present differences of over 30 days within the same production region. Due to that, soybean 
plants are rarely at the same phenological stage on a given date in the season.   

1. Introduction 

According to the Food and Agriculture Organization of the United 

Nations (Anon, 2018), the world population will exceed 9 billion people 
by 2050, which requires maximized food production to meet the food 
demand and assist food security policies. Concurrently to the 
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agricultural production expansion, only sustainable practices adoption 
shall guarantee environmental preservation (Anon, 2018). Hence, 
increasing crop yield is crucial to relieve the need for non-agricultural 
areas to be converted into croplands, meet the world food demand, 
and adopt sustainable production standards (Nepomuceno, 2021). 

Brazil is the largest soybean producer, responsible for nearly one- 
third (140 million tons – Anon, 2022) of soybeans produced world
wide (372 million tons – Anon, 2022). In the last decades, soybean yield 
in Brazil has grown at higher rates compared to the increment of pro
duction areas, which prevented, by the adoption of technologies for 
soybean production and, consequently, yield gains, millions of ha to be 
converted into agricultural areas to achieve the same production 
amount (Gazzoni and Dall’Agnol, 2018). However, the yield stability in 
Brazil is regularly affected by unfavorable climatic events, especially 
drought periods. Although dryness is not observable across the entire 
soybean cropping season, periods of water deficit regularly cause high 
yield losses, compromising over 30% of the Brazilian soybean produc
tion (Sentelhas et al., 2015) and leading to financial losses of over US$79 
billion in 38 years (Ferreira, 2016). 

Irrigated areas in Brazil represent a small percentage of the areas 
devoted to agricultural production. Specifically, only about 2% of the 
areas devoted to soybean production is irrigated (FAO, 2017; CONAB, 
2022). Thus, considering the need to optimize the use of water resources 
(Anon, 2018), several strategies to cope with water deficit periods 
during the soybean cropping season are available, including but not 
limited to: the development of soybean cultivars with drought tolerance 
(Stolf-Moreira et al., 2011; Rolla et al., 2014; Marinho et al., 2016; 
Honna et al., 2016; Fuganti-Pagliarini et al., 2017); the grouping of 
soybean production areas, based on their edaphoclimatic characteris
tics, indicating more suitable cultivars for each of them (Kaster and 
Farias, 2012); and the agricultural zoning of climatic risk, addressing the 
more favorable sowing periods for each production area to minimize the 
probability of occurrence of water deficit periods at critical stages of 
crop development (Farias et al., 2001). In addition, do Rio et al. (2016) 
have proposed alternative sowing dates based on the future climatic 
scenarios for soybean production. 

Another strategy is the adoption of soil management practices aim
ing at enlarging the soil water holding capacity, providing, thus, higher 
levels of water availability to support crop development during water 
deficit periods. However, the traditional methods for soil moisture 
determination are laborious and time-consuming, requiring the collec
tion of several samples in each production area, which impair the soil 
water status monitoring over large areas in short time intervals. In this 
context, remote sensing becomes a proxy for crop water status moni
toring, delivering accurate, fast, and spatial information about crop 
conditions non-destructively. 

Using remote sensing information, Peng et al. (2013), Xu et al. 
(2016), and Yuan et al. (2019) have reported the relation between soil 
moisture and soil spectral response. However, assessing soil moisture via 
spectral response requires laborious and time-consuming field cam
paigns for in situ samplings. Therefore, most existing methods using 
remotely sensed data for monitoring soil moisture rely on the indirect 
and qualitative relation between crop reflectance and soil moisture, 
which, in turn, bases itself on the direct relationship between reflectance 
and vegetation water content. This relation is a crucial indicator of soil 
water status (Kovar et al., 2019; Zhang et al., 2021). 

Many authors demonstrated the relation between reflectance and 
vegetation water content in several crops, including wheat (El-Hendawy 
et al., 2014; Feng et al., 2017; Zhang et al., 2021), maize (Ge et al., 2016 
and 2019b, Zygielbaum et al., 2009), cotton (Yi et al., 2013; Zhang et al., 
2012) and soybean (Kovar et al., 2019; Braga et al., 2021). In soybean, 
Braga et al. (2021) and Wijewardana et al. (2019) reported that physi
ological traits, such as photosynthesis, stomatal conductance, transpi
ration, internal CO2 content, leaf water potential, and leaf water content 
are affected by low levels of soil moisture. So, spectral measurements 
can be accurately related to crop traits for monitoring crop and soil 

water status. 
Although the many efforts to retrieve crop water status by spectral 

measurements, still lack discussion on the direct and quantitative soil 
moisture assessment through crop reflectance (Ge et al., 2019a). Sobrino 
et al. (2012) used an airborne hyperspectral scanner (AHS) and satellite 
images to estimate the soil moisture of several crops at distinct crop 
phenological stages. Ge et al. (2019a) assessed soil moisture via 
UAV-based hyperspectral image over wheat fields at a single pheno
logical stage, and Panigrahi and Das (2018) modeled soil water potential 
using ground-based hyperspectral measurements over rice fields at 
multiple phenological stages. However, models for soil moisture pre
diction using canopy spectral data might be susceptible to interferences 
from canopy structure, leaf area, angle and position, shadow, and 
background (Liu et al., 2015; Ma et al., 2019), imposing limitations on 
acquisition of the quantitative relation between soil moisture and leaf 
reflectance and the extendibility of the developed models to new agri
cultural areas. Moreover, considering the soybean sowing calendar in 
Brazil, which might extend over more than one month within the same 
production area (Crusiol et al., 2021b), it is highly desirable that spectral 
models accurately predict soil moisture regardless of crop phenological 
development. 

Based on the current progress, this research aims at monitoring the 
soil moisture quantitatively at 0–20 cm and 20–40 cm depths using leaf- 
based hyperspectral reflectance to support a soil water holding capacity 
enlargement through a more precise delimitation of soil management 
practices in a soybean crop. The specific goals are to assess the sensitive 
spectral bands for soybean water status monitoring, develop soil mois
ture prediction models at different stages of crop development, and 
develop soil moisture prediction models regardless of the soybean crop 
stage of development. 

2. Material and methods 

2.1. Experimental site 

The experiment (Fig. 1), in a split-plot model in a randomized 
complete block design, with four blocks, was undertaken on the exper
imental farm of the National Soybean Research Center (Embrapa Soja), a 
branch of the Brazilian Agricultural Research Corporation, located in 
Londrina Municipality, Paraná State, Southern Brazil (23◦ 11′ 37′′ S, 51◦

11′03′′ W, 630 m above sea level), in the 2016/2017, 2017/2018 and 
2018/2019 cropping seasons, following the soybean production tech
nologies (Embrapa Soja 2013). 

The soil of the experimental site (Table 1) is characterized as Udox 
Oxisol (Anon, 1999), with 75 mm of water holding capacity, with the 
following characteristics (soil analysis in March 2016): 

According to the Köppen climate classification, the experimental site 
is in a Cfa climate (i.e., subtropical climate), with a mean temperature in 
the hottest month higher than 22 ºC and rainfall concentrated in the 
summer months, with no defined dry season (Wrege et al., 2012; Alvares 
et al., 2013). Considering the soybean calendar in central and south 
Brazil, the largest soybean producers, the rainy season corresponds to 
the periods of soybean production, but not without water deficit periods. 

The field plots received four water condition treatments: irrigated 
(IRR, receiving rainfall and irrigation, when necessary, with a soil water 
matric potential between − 0.03 and − 0.05 MPa); non-irrigated (NIRR, 
receiving only rainfall); water deficit induced at the vegetative stages 
(WDV); water deficit induced at reproductive stages (WDR); and ten 
soybean genotypes, with drought tolerance genes and different re
sponses to water deficit, were distributed in the subplots: genotypes 
1Ea15, 2Ha11, 2Ia4, BR16 and BRS 184 in 2016/2017 and 2017/2018 
cropping seasons; and genotypes 1Ea2939, 3Ma2, BRS 283, 
BRT18–0089 and BRT18–0201 in 2018/2019 cropping season. 

Automated rainout shelters kept WDV and WDR subplots free from 
receiving rainfalls higher than 0.1 mm, in the vegetative and repro
ductive phases, respectively, and imposed the water deficit treatments, 
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and increased the soil gravimetric humidity variability across treat
ments. Shelters automatically uncovered plants once rainfalls had 
ceased. The plots had in their perimeter vertical concrete barriers 
(buried up to 90 cm depth) to prevent water lateral movement from 
outside into the plot soil. During the period in which WDV plots were 
deprived of rainfalls, WDR was under natural water availability condi
tions. From the flowering period to full maturity (harvesting), the WDR 
treatment was deprived of natural rainfall and WDV plots began to be 
rain watered (under natural water availability conditions). Thus, water 
deficit periods could be simulated both in the vegetative and repro
ductive stages of development. Drip irrigation was performed using 
groundwater from artesian well and kept in a water tank. 

Table 2 displays the sowing dates and periods of water deficit 
inducement in the vegetative and reproductive periods. Table 3 presents 
the irrigation schedule performed in the 2016/2017 and 2018/2019 
cropping seasons. 

The irrigation volume needed to keep the soil water matric potential 
between − 0.03 and − 0.05 MPa was determined by the soil moisture 
(0–20 and 20–40 cm depths) on IRR plots, daily monitored by tensi
ometers installed on each block. In the 2017/2018 cropping season, 
there was no need for irrigation, and, therefore, plants of IRR and NIRR 
treatments were under the same experimental conditions. In the 2016/ 
2017 cropping season, IRR plots received 69.4 mm of irrigation between 

November 11 and 25. In the 2018/2019 cropping season, IRR plots 
received irrigation during two periods: between December 6 and 20, 
2018 (63 mm) and between January 29 and February 11, 2018 
(43.1 mm), in a total of 106.1 mm). 

In all plots, soil moisture (0–20 and 20–40 cm depths) was monitored 
by gravimetric analysis on eleven dates across the three cropping sea
sons, as described in Table 4. In all plots, at 0–20 and 20–40 cm depths, 
soil samples were collected using a Dutch auger and immediately placed 
in hermetic aluminum boxes, weighted and placed in the oven at 105◦

for 48 h to reach constant weight. 
The growth stages of the soybean plants were weekly monitored 

from emergence to maturation according to Fehr and Caviness (1977), 
and grain yield was calculated and corrected for 13% grain moisture, 
according to Eq. (1): 

GY =
(100 − HGM)

(100 − DGM)
× HGW ×

10, 000
HPA

, Eq. 1 

Fig. 1. Experimental area overview (a) and description of the weather station and treatment plots (b): irrigated (IRR), non-irrigated (NIRR), and water deficit 
induced at vegetative (WDV) and reproductive (WDR) stages. RGB image obtained by an UAV carrying a regular digital camera. 

Table 1 
Soil characteristics of the experimental area.  

pH H++Al3+ Al3+ Ca2+ Mg2+ K+ CTC P C SB V% Clay 

H2O ————————————————————————— cmolc dm− 3 

————————————————————————— 
mg dm− 3 g dm− 3   g kg− 1 

4.9 3.5  0.03  3.9  1.8  0.7  10.0 24.2 15.6  6.5  64.8 710  

Table 2 
Sowing dates and periods of inducement of water deficit at the vegetative and 
reproductive periods during the 2016/2017, 2017/2018, and 2018/2019 
cropping seasons.  

Cropping 
season 

Sowing Water deficit 
induced at 
vegetative 
stages 

Water deficit 
induced at 
reproductive 
stages 

Harvesting 
period 

2016/ 
2017 

October 
19, 2016 

From 
37 DAS to 54 
DAS 

From 54 DAS to 
the harvesting 
period 

From 116 
DAS 

2017/ 
2018 

October 
18, 2017 

From 
33 DAS to 62 
DAS 

From 62 DAS to 
the harvesting 
period 

From 139 
DAS 

2018/ 
2019 

October 
16, 2018 

From 
41 DAS to 64 
DAS 

From 
64 DAS to 90 DAS 

From 119 
DAS  

Table 3 
Irrigation schedule for 2016/2017 and 2018/2019 cropping seasons.  

Cropping season Days after sowing Quantity (mm) Duration (minutes) 

2016/2017  24  14.4  60  
29  4.8  20  
30  7.2  30  
31  9.6  40  
34  4.8  20  
35  4.8  20  
36  4.8  20  
37  4.8  20  
38  14.4  60 

2018/2019  52  14.4  60  
53  14.4  60  
57  11.5  48  
58  5.7  24  
59  5.7  24  
61  8.4  35  
66  2.9  12  

106  7.2  30  
109  8.4  35  
114  11.5  48  
115  2.9  12  
116  8.4  35  
119  4.8  20  
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in which GY is the grain yield (kg ha− 1); HGM, the harvested grain 
moisture (%); DGM, the desired grain moisture (%); HGW, the harvested 
grain weight (kg); and HPA, the harvested plot area (m2). Harvested 
grain moisture was measured using the G810 grain moisture meter 
(Gehaka Inc.). 

Weather data – air temperature, relative air humidity, and rainfall – 
were monitored by the weather station located within the experimental 
area. The calculation of the climatic water balance was according to 
Thornthwaite and Mather (1955) for each experimental treatment of 
each cropping season. Additional information on the weather moni
toring of the experiment is available at Sibaldelli and Farias (2017, 
2018, 2019). 

2.2. Spectral data acquisition and processing 

Soybean leaf reflectance data was collected by the FieldSpec 3 Jr 
spectroradiometer (Analytical Spectral Devices, Boulder, CO, USA) with 
a spectral resolution of 3 nm between 350 and 1400 nm and 30 nm 
resolution between 1400 and 2500 nm. The output spectra are given in 
single bands of 1 nm intervals, and 2151 spectral bands (Fig. 2). Each 
spectral reading was averaged from 20 internal automatic spectral 
readings, preventing the occurrence of noise in the obtained data. 

The plant probe device, connected to the FieldSpec by a one-meter 
bare fiber (Fig. 2b), was used during the leaf reflectance spectral 
assessment to prevent illumination interferences of adjacent targets and 
to ensure pure leaf reflectance spectra collection without noises, scat
tering, or attenuations from the interaction between electromagnetic 
energy and atmospheric water vapor. Also, we used an internal 99% 
reflectance board (Spectralon ®) as the reflectance standard and a 1% 
reflectance blackboard as the opaque one. The use of the plant probe 
device does not require the application of spectral filters for noise 
removal and data smoothness (Streher et al., 2020). 

The acquisition of the reflectance spectra data was on the central 
leaflet of the fullest expanded third trifoliate leaf from the top. Leaf 
reflectance spectra were collected from four plants and then averaged to 
minimize spectral variability within the same subplot resulting in the 

values used for data processing and statistical analysis. 
The spectral assessment days coincided with the soil moisture 

assessment (Table 4), except for December 15, 2016, when the soil 
moisture was assessed on the day after (December 16, 2016), even 
though neither irrigation nor rainfall occurred on those dates. A total of 
3376 leaf reflectance data were collected, resulting in 844 spectral 
samples at 11 days of spectral assessment across the three cropping 
seasons. 

The collected leaf reflectance spectra were analyzed within each day 
of spectral assessment by the hyperspectral reflectance between 400 nm 
and 2500 nm. Wavelengths between 350 and 399 nm stayed out of the 
spectral analysis because of the frequent noises observed during vege
tation analysis in this spectral interval (Peng et al., 2018; Furlanetto 
et al., 2021). 

2.3. Statistical analysis 

Upon meeting the assumptions of the analysis of variance (ANOVA), 
we submitted soil moisture data of the eleven assessments on the three 
cropping seasons and grain yield data from each cropping season to 
ANOVA and compared means by the Tukey test (p ≤ 0.05) using the 
software Sisvar (Ferreira, 2011). 

We used two statistical approaches to monitor the soybean water 
status and predict soil moisture. The Principal Component Analysis 
(PCA) explored the qualitative differences in soybean leaf spectral 
response to investigate the possibility of clustering the water condition 
treatments. The use of Partial Least Squares Regression (PLSR) was to 
develop soil moisture prediction models by the soybean leaf-based 
hyperspectral reflectance. Both PCA and PLSR were performable by 
The Unscrambler® (CAMO Software - Norway). 

2.3.1. Principal Component Analysis – PCA 
We applied the Principal Component Analysis to the soybean leaf- 

based hyperspectral reflectance data within each assessment day 
(Table 4) to assess the explained variance from leaf-based reflectance 
and to evaluate whether the clustering of water conditions is possible. 
The PCA is a data mining method that transforms the full reflectance 
spectrum into a new group of variables (principal components – PC), 
using a matrix of covariances composed of all wavelengths. Most of the 
information on data variance resides in the first principal component 
(PC1), the second principal component carries the residual information 
of PC1, the third principal component carries the residual information of 
PC1 and PC2 (PC1 +PC2), and so on (Jolliffe and Cadima, 2016; Fur
lanetto et al., 2021). 

The PC can be defined as the linear combination of all wavelengths to 
explain their variance within the dataset. The percentage of explained 
variance can be assessed by each PC’s score, while the contribution of 
each wavelength to each PC, can be assessed by the loading correlation, 
expressed in (r). 

Table 4 
Dates of soil moisture assessment across 2016/2017, 2017/2018, and 2018/ 
2019 cropping seasons.  

Cropping season Date of assessment Days after sowing 

2016/2017 December 16, 2016  58 
February 08, 2017  112 

2017/2018 December 14, 2017  57 
January 22, 2018  96 
February 01, 2018  106 
February 07, 2018  112 

2018/2019 November 26, 2018  41 
December 12, 2018  57 
January 11, 2019  87 
January 25, 2019  101 
January 31, 2019  107  

Fig. 2. Spectral assessment in the field (a) and detailed view of the plant probe device (b). Photo by Décio de Assis – Embrapa Soja.  
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2.3.2. Partial Least Squares Regression – PLSR 
The Partial Least Squares Regression is a multivariate statistical 

analysis method widely used when the number of predictor variables (e. 
g., wavelengths) is larger than the number of response variables (e.g., 
soil moisture) and has the advantage of overcoming the multi
collinearity of independent variables often observed in hyperspectral 
data (Zhou et al., 2019). Based on a new dataset of latent variables (or 
PLSR factors or orthogonal base vectors) that account for most of the 
variation in a trait variable, the spectral data (matrix ‘X′) is correlated to 
the soil moisture (matrix ‘Y′) using a linear model composed by wave
length scaling coefficients derived from the full-spectrum data (Yendrek 
et al., 2017). The number of PLSR factors, a critical process in the PLSR 
deeply affecting its prediction capacity (Streher et al., 2020), was set 
based on the lowest value of root mean square error (RMSE), highest 
coefficient of determination (R2), and value of Bias close to zero through 
the “leave-one-out” cross-validation method (Souza et al., 2013). On 
each spectral dataset, we normalized the reflectance spectra by sub
tracting the mean reflectance from the actual reflectance at each 
wavelength, enabling the comparison among the fitted wavelength 
scaling coefficients. Outliers and homogeneity of the spectral data 
assessment were by the Leverage and Hotelling’s T2 tests. 

In the first stage, we used PLSR to develop soil moisture prediction 
models, at both 0–20 and 20–40 cm depths, by the soybean leaf-based 
hyperspectral reflectance within each assessment day (Table 4). In the 
second stage, we evaluated the possibility of developing a soil moisture 
prediction model based on soybean leaf reflectance at different pheno
logical stages. To do so, PLSR models for soil moisture prediction, at 
both 0–20 and 20–40 cm depths, were developed using all the 844 
samples (leaf reflectance and soil moisture) acquired on the eleven 
assessment days on the three cropping seasons. This randomly divided 
dataset had two subsets: calibration/cross-validation steps (containing 
80% of data – 669 samples) and external validation (with the remaining 
20% of the data – 175 samples). 

Each developed PLSR model had its accuracy assessed by the coef
ficient of determination (R2), the root mean squared error (RMSE), and 
the systematic error (BIAS) in the calibration and cross-validation (using 
the leave-one-out cross-validation method) steps. In the second stage, 
PLSR models developed using 80% of samples and tested over the 
remaining 20% of samples (external validation) were assessed by the R2 

and RMSE between predicted and observed soil moisture values at both 
depths, 0–20 and 20–40 cm. 

2.3.3. Comparison of PLSR performance with traditional univariate 
spectral models 

We used three approaches to investigate whether traditional uni
variate spectral models might deliver competitive results compared to 
the PLSR using spectral and soil moisture data from all assessment days 
from the three cropping seasons. We performed tests using the calibra
tion dataset (containing 80% of data – 669 samples) of soil moisture 
values (0–20 and 20–40 cm) to check their correlation to (a) reflectance 
from each one of the 2101 single wavelengths; (b) reflectance resampled 
to broad multispectral bands (Anon, 2021 – supplementary Table 1) and 
derived vegetation indices (supplementary Table 2); (c) hyperspectral 
vegetation indices (HVI), derived from all possible combination between 
two spectral bands, calculated under a normalized difference vegetation 
index formula, according to Eq. (2): 

HVI =
Wavelength1 − Wavelength2

Wavelength1 + Wavelength2
Eq. 2 

The accuracy was assessed by the coefficient of determination (R2) 
from the linear regression (p ≤ 0.05) between soil moisture and: each 
narrow or broad spectral band; and each multispectral or hyperspectral 
vegetation index. The linear regression models from the outstanding 
single wavelength, broad multispectral band or vegetation index, and 
hyperspectral vegetation index were then applied to the remaining 20% 
of samples (external validation dataset), and the accuracy was assessed 

by the R2 and RMSE between the predicted and observed values of soil 
moisture at both depths, 0–20 and 20–40 cm. 

3. Results and discussion 

3.1. Effect of experimental treatments on climatic water balance, soil 
moisture, and grain yield 

Fig. 3 presents the climatic water balance, calculated according to 
Thornthwaite and Mather (1955), for each experimental treatment of 
each cropping season. 

The efficiency of the experimental treatments in simulating water 
deficit periods at the vegetative and reproductive stages of plant 
development are in Fig. 3(a, e, i – at December 1 and 2 10-day periods) 
and Fig. 3(b, f, j - at December 3 and January 1, 2, and 3 10-day periods) 
respectively, in the three cropping seasons. Higher deficits can be 
observable in WDR plants, in contrast to WDV, most likely because of the 
more extended water withholding period to which plants were 
submitted. 

In the 2016/2017 cropping season, the irrigation performed on IRR 
plots provided good water availability conditions during November 3 
and December 1 10-days periods (Fig. 3d). In the 2018/2019 cropping 
season, it is possible to observe severe natural water deficit periods 
during both vegetative and reproductive phases (Fig. 3k), and the irri
gated treatment promoted good conditions of water availability during 
December 1, 2, and 3, January 2 and February 2 10-days periods 
(Fig. 3l). 

Fig. 4 presents the soil moisture in the eleven assessment days across 
the three evaluated cropping seasons. On all assessment days but at 57 
DAS in the 2017/2018 cropping season and 41 DAS in the 2018/2019 
cropping season, the experimental treatments produced differences in 
soil gravimetric humidity at both depths, 0–20 cm and 20–40 cm. 
Considering the dates of water deficit inducement and the irrigation 
schedule (Tables 2 and 3), the differences among treatments follow the 
water availability provided by the treatments. At 41 DAS in the 2018/ 
2019 cropping season, the differences between treatments were unde
tectable since IRR plots had not received irrigation until that day, and 
the water deficit in the WDV treatment was not present yet. 

The effects of differential water availability on soybean yields in the 
2016/2017, 2017/2018, and 2018/2019 cropping seasons are in Fig. 5. 
The effectiveness of the experimental treatments in promoting differ
ential water availability levels to plants is demonstrated by the intense 
decreases in yield of WDR treatment, especially during the 2017/2018 
and 2018/2019 cropping seasons when its attained productivity was less 
than half of the other treatments. 

Although WDV plants were under water scarcity, they revealed 
similar yield compared to the non-irrigated treatment and higher yield 
compared to the WDR treatment, reinforcing that the water deficit 
during the reproductive stages of plant development is more harmful to 
yield. Rolla et al. (2014) also reported the similar grain yield of soybean 
plants subjected to water withholding at vegetative stages and plants 
under natural rainfall or irrigation. 

In the 2016/2017 cropping season, a severe natural water deficit was 
not observed (Fig. 3c), and the 69.6 mm of irrigation on IRR plots, 
received between 24 and 38 DAS, did not increased yields. However, 
when severe natural water deficit occurred across both vegetative and 
reproductive stages, as it occurred in the 2018/2019 cropping season 
(Fig. 3k), the irrigated treatment revealed higher grain yields compared 
to plants receiving only natural rainfall. 

3.2. Principal Component Analysis of soybean leaf spectral response 

We submitted the collected leaf-based hyperspectral data to Prin
cipal Component Analysis to explore the qualitative spectral differences 
among the experimental treatments. The spectral response of soybean 
genotypes evaluated at 87 DAS in the 2018/2019 cropping season, 
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under maximum and minimum soil moisture content at 0–20 cm and 
20–40 cm depths, is presented in Fig. 6. 

At both depths, it is possible to observe differences in the soybean 
spectral response across wavelengths, with higher reflectance from 
plants under lower soil moisture, agreeing with Damm et al. (2018), 
which described the interference of plant water status in crop spectra. 
The most conspicuous changes in reflectance due to changes in plant 
water status were observed across the shortwave infrared spectrum. 
However, it is worth mentioning that the differences in spectral re
sponses of soybean plants under different levels of water availability are 
not the same across the wavelengths due to leaf biochemical properties 
and structure (Maimaitiyiming et al., 2016; Falcioni et al., 2020). 

The differential effects of the crop water status on the interaction 
between electromagnetic energy and soybean leaves across wavelengths 
can be considered primary or secondary. The primary effects are directly 
related to the absorption of radiation by water, imposing a strong in
fluence over shortwave infrared (SWIR) wavelengths. The secondary 
effects cannot be explained solely by the water absorption of radiation 
but also by its indirect relation to the leaf structure and physiology, 
imposing a substantial influence over visible and near-infrared wave
lengths (Carter, 1991; El-Hendawy et al., 2019). 

Visible wavelengths (between 400 nm and 720 nm) are associated 
with the leaf pigments and the absorption of photosynthetically active 
radiation and, under water stress, there is lower light absorption, lead
ing to higher values of reflectance (Carter, 1991; Singer et al., 2011; 
Gitelson et al., 2015; Gitelson, 2019). Near-infrared wavelengths (be
tween 720 and 1300 nm) relate to the light scattering along the meso
phyll under the influence of internal leaf structures such as cell wall 
width, intercellular air spaces, and the amount of mesophyll per unit of 
leaf area inside the mesophyll (Carter, 1991; Liu et al., 2016, 2020). 
Hence, changes in crop water status might lead to changes in the internal 

scattering of the incident light, resulting in higher light absorption and 
lower reflectance from plants under higher levels of water content. 

Between 1300 nm and 2500 nm, the SWIR spectrum demonstrated 
to be more affected by changes in soil moisture, presenting higher values 
of reflectance under lower levels of water content. This spectral interval 
is closely related to leaf water content, one of the critical parameters for 
establishing the crop water status (Gao, 1996; Wang and Qu, 2007, 
2021). 

Considering the effects of water availability on leaf reflectance, Fig. 7 
presents the results from Principal Component Analysis for each 
assessment day (Table 4), demonstrating the possibility of clustering the 
water condition treatments. 

For all the eleven evaluation dates across the 2016/2017, 2017/ 
2018, and 2018/2019 cropping seasons, the first PC (PC 1) explained 
over 44% of the spectral variance within each dataset, and the cumu
lative percentage of PC 1 and PC 2 demonstrated to be over 82%. The 
cumulative results from PC1, PC 2, and PC 3 revealed over 93% of the 
explained variance within each dataset. 

In the 2016/2017 cropping season, the scatterplot from PC 1 and PC 
2 at 58 DAS (Fig. 7a) showed a similar distribution of the four water 
condition treatments. By this day, the IRR plots had been receiving 
69.4 mm irrigation, and the WDV deprived of 123.8 mm rainfall until 
flowering (55 DAS), receiving 3.8 mm within three days before the 
spectral assessment. At 112 DAS, WDR had been deprived of 407.4 mm 
rainfall since flowering (55 DAS), leading to its distinct spectral 
response, as demonstrated by Fig. 7(b). On this day, the three other 
water condition treatments showed similar responses. 

In the 2017/2018 cropping season, when WDV had been deprived of 
71.4 mm rainfall, the scatterplot from PC 1 and PC 2 at 57 DAS 
demonstrated similar distribution among the four water condition 
treatments (Fig. 7c). However, as observed in the previous cropping 

Fig. 3. Climatic water balance at 10-day periods in the WDV (a), WDR (b), NIRR (c), and IRR (d) treatments during the 2016/2017 cropping season; WDV (e), WDR 
(f), NIRR (g) and IRR (h) treatments on 2017/2018 cropping season; WDV (i), WDR (j), NIRR (k) and IRR (l) treatments on 2018/2019 cropping season. 
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season, the WDR plots subjected to water scarcity presented a distinct 
response from the other treatments at 96, 106, and 112 DAS (Fig. 7d, e, 
f). As for these three assessment dates, the WDR plots had been deprived 
of 507.9 mm rainfall until 96 DAS and 562.7 mm until 106 and 112 DAS. 

In the 2018/2019 cropping season, the four water condition treat
ments demonstrated similar distribution at 41 DAS when WDV plots had 
not received the water deficit treatment yet, and the IRR plots had not 
been irrigated still (Fig. 7g). At 57 DAS (Fig. 7h), the four treatments 
demonstrated similar responses, regardless of the irrigation performed 
on IRR (40.3 mm) and the low amount of rain (1.4 mm) prevented to fall 

on WDV. 
As seen in the previous two cropping seasons, the water shortage in 

WDR is better identifiable by its leaf reflectance analyzed through PCA. 
At 87 DAS (Fig. 7i), despite the irrigation received (63 mm), the IRR 
could not be clearly identified in the scatterplot between PC 1 and PC 2. 
Notwithstanding, the WDR, deprived of 137.4 mm of rainfall, could be 
undoubtedly clustered from the others. At 101 DAS (Fig. 7j), WDR had 
been deprived of 143.6 mm of rainwater until 90 DAS (when this 
treatment started to be rain watered), received 19.8 mm of rainfall since 
then, which affected the spectral response from this treatment and led to 

Fig. 4. Soil moisture content (%) at 0–20 cm and 20–40 cm depths in the 2016–2017 (a), 2017/2018 (b) and 2018/2019 (c) cropping seasons. Means followed by the 
same letter among treatments within each depth and on each date do not differ by Tukey test (p ≤ 0.05). 
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its clustering concerning the other three water conditions. At 107 DAS 
(Fig. 7k), IRR could not be clustered out from the other three treatments, 
although it had received 70.2 mm of total irrigation. WDR, which had 
received 23.4 mm of rainfall since it started to be rain watered (90 DAS, 
been previously deprived of 143.6 mm of rainfall), demonstrated dif
ferential spectral response relative to the other three water conditions. 

As observed in the three cropping seasons, WDR could be better 
identified (compared to WDV) due to its more extended water deficit 
period (Table 2) and the consequent impact on the climatic water bal
ance (Fig. 3). Accordingly, as shown in Fig. 5, WDV demonstrated a 
similar yield to NIRR, while WDR largely impaired yield. Despite the 
irrigation performed on IRR plots (69.4 mm across the 2016/2017 
cropping season and 106.1 mm across the 2018/2019 cropping season), 
this treatment did not present spectral behavior that could lead to its 
cluster from the other three water conditions. 

Considering the explanatory power from the first three principal 
components on the eleven spectral assessments for soybean water status 
monitoring, Fig. 8 presents the loading correlation from the PCA per
formed across the 2016/2017, 2017/2018, and 2018/2019 cropping 
seasons. The results revealed three trends in most of the eleven spectral 
datasets: SWIR wavelengths were the main contributors to the first 
principal component, NIR wavelengths were the major contributors to 
the second principal component, and the VIS wavelengths were the 
predominant contributors to the third principal component. 

In the 2016/2017 cropping season, at 112 DAS (Fig. 8b), VIS 
wavelengths showed a higher contribution to PC 2, while NIR wave
lengths contributed mainly to PC 3. That might be associated with 
changes in leaf structure and photosynthetically active radiation 

absorption when plants are about to reach the maturation stages of crop 
development, as highlighted in Crusiol et al. (2021a). In the 2018/2019 
cropping season, at 41 DAS (Fig. 8g), NIR wavelengths demonstrated a 
higher contribution to PC 1, while SWIR wavelengths showed a higher 
contribution to PC 2. On this date (41 DAS), the four water condition 
treatments were under the same water status since IRR irrigation had not 
happened yet, and WDV was still not subjected to water deficit, pre
senting similar soil moisture contents (Fig. 4c). 

3.3. Partial Least Squares Regression for soil moisture prediction by 
soybean leaf spectral response 

The results of PLSR in the prediction of soil moisture for 2016/2017, 
2017/2018, and 2018/2019 cropping seasons are in Table 5. On all days 
of spectral assessment, one observes higher correlation coefficients (R2) 
at the calibration step and, consequently, higher values of RMSE at the 
cross-validation step. 

The lowest soil moisture prediction accuracies, both at 0–20 and 
20–40 depths, were obtained at 57 DAS in the 2017/2018 cropping 
season and 41 DAS in the 2018/2019 cropping season. At 57 DAS (2017/ 
2018 cropping season) the coefficients of determination (R2) at 0–20 cm 
depth were 0.332 (calibration) and 0.230 (cross-validation), while the 
values of R2 at 20–40 depth were 0.602 (calibration) and 0.492 (cross- 
validation). At 41 DAS (2018/2019 cropping season), the values of R2 at 
0–20 cm depths were 0.308 (calibration) and 0.212 (cross-validation), 
while the values of R2 at 20–40 depth was 0.006 (calibration) and pre
sented non-significance in the cross-validation step. 

The results obtained at the two days (41 and 57 DAS) are related to 

Fig. 5. Grain yield in the 2016/2017, 2017/2018 and 2018/2019 cropping seasons (kg ha− 1). Means followed by the same letter within each cropping season do not 
differ by Tukey test (p ≤ 0.05). 

Fig. 6. Spectral response of soybean genotypes under maximum and minimum soil moisture content at 0–20 cm (a) and 20–40 cm (b) depths at 87 DAS on the 2018/ 
2019 cropping season. 
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Fig. 7. Principal component analysis of the spectral response of soybean crop under the evaluated water conditions in the: 2016/2017 cropping season at 57 DAS (a) 
and 112 DAS (b); 2017/2018 cropping season at 57 DAS (c), 96 DAS (d), 106 DAS (e) and 112 DAS (f); 2018/2019 cropping season at 41 DAS (g), 57 DAS (h), 87 DAS 
(i), 101 DAS (j) and 107 DAS (k). 
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Fig. 8. Loading correlation of PCA of soybean reflectance under the evaluated water condition in the: 2016/2017 cropping season at 57 DAS (a) and 112 DAS (b); 
2017/2018 cropping season at 57 DAS (c), 96 DAS (d), 106 DAS (e) and 112 DAS (f); 2018/2019 cropping season at 41 DAS (g), 57 DAS (h), 87 DAS (i), 101 DAS (j) 
and 107 DAS (k). 
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the low amplitude of soil moisture values (Fig. 9) and to the absence of 
significant differences among the water condition treatments (Fig. 4). 
On the other nine assessment days across the three cropping seasons, 
large amplitudes in soil moisture were observed (Fig. 9), and significant 
differences between the experimental treatments were detected (Fig. 4). 

Hence, at 0–20 cm depth, the R2 ranged from 0.702 to 0.938 (calibration 
step) and from 0.519 to 0.860 (cross-validation step), with soil moisture 
values ranging from 18% to 35%. At 20–40 cm depth, the R2 ranged 
from 0.735 to 0.950 (calibration step) and from 0.589 to 0.906 (cross- 
validation step), with soil moisture values ranging from 20% to 35%. 

Table 5 
Statistical parameters of PLSR for soil moisture prediction in the 2016/2017, 2017/2018, and 2018/2019 cropping seasons on each day of spectral assessment 
(expressed in days after sowing – DAS) at 0–20 cm and 20–40 cm depths.  

Depth (cm) Cropping season DAS PLSR factors Rc
2 Rcv

2 RMSEc RMSEcv BIAScv 

0–20 2016/2017  57  10  0.938 0.858  0.902  1.392  -0.000  
112  5  0.702 0.623  2.072  2.370  0.050 

2017/2018  57  4  0.332 0.230  1.479  1.607  0.006 
96  10  0.899  0.829 1.250  1.646  0.031 
106  9  0.900  0.817 1.329  1.818  0.022 
112  11  0.882  0.792 1.038  1.365  -0.000 

2018/2019  41  4  0.308 0.212  0.668  0.722  0.009 
57  14  0.779  0.519 2.105  3.149  -0.054 
87  8  0.914  0.860 1.456  1.881  0.014 
101  6  0.766  0.703 1.186  1.353  0.011 
107  6  0.713  0.618 1.661  1.941  0.022 

20–40 2016/2017  57  10  0.940 0.871  0.855  1.273  -0.023  
112  10  0.851 0.674  1.120  1.688  -0.020 

2017/2018  57  6  0.602 0.492  1.028  1.176  0.007 
96  10  0.895  0.835 1.238  1.568  0.003 
106  8  0.914  0.840 1.080  1.493  0.012 
112  1  0.735  0.727 1.049  1.078  0.005 

2018/2019  41  1  0.006 n.s.  0.887  0.920  -0.002 
57  13  0.805  0.589 1.327  1.951  -0.020 
87  10  0.950  0.906 1.018  1.415  0.004 
101  6  0.747  0.678 1.079  1.232  0.001 
107  6  0.770  0.694 1.246  1.456  0.013 

c. calibration step; c.v. cross-validation step; n.s. non-significant. 

Fig. 9. Soil moisture at 0–20 cm (a) and 20–40 cm (b) during the 2016/2017, 2017/2018, and 2018/2019 cropping seasons.  
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For developing a soil moisture prediction model based on soybean 
leaf reflectance at different phenological stages, at 0–20 and 20–40 cm 
depths, we analyzed spectral and soil moisture data acquired on the 
eleven assessment days on the three cropping seasons into the same 
PLSR model. Fig. 10 presents the soil moisture values comprising all the 
844 samplings (all data) and their random division into calibration/ 
cross-validation subset (80%) and external validation subset (20%). 
Within each depth, the soil moisture values from each dataset demon
strated having a similar distribution. When comparing the two evalu
ated depths, it is possible to observe the similarity in their maximum 
values but with smaller minimum values at 0–20 cm depth. 

Table 6 displays the results of the PLSR in the prediction of soil 
moisture comprising spectral data collected in the three evaluated 
cropping seasons (2016/2017, 2017/2018, and 2018/2019). At 
0–20 cm depth, the obtained R2 during the calibration and cross- 
validation steps was over 0.58 and RMSE lower than 2.855. At 
20–40 cm depth, the PLSR model showed higher accuracy during the 
calibration and cross-validation steps, with R2 over 0.69 and RMSE 
lower than 2.014. 

Fig. 11 presents the regression coefficients of the PLSR model for soil 
moisture prediction at 0–20 cm and 20–40 cm depths. The shape of the 
regression coefficients curve from both depths was similar but with 
larger amplitudes (positive and negative peaks) observed at 20–40 cm 
depths. At the two evaluated depths, though the adequate distribution of 
PLSR coefficients across the spectrum, positive and negative sizable 
peaks were observed across visible wavelengths (highly influenced by 
the absorption of photosynthetically active radiation) and across 
shortwave wavelengths (deeply influenced by the leaf water content). 

When applying the generated soil moisture prediction models to 
external samples (external validation), a positive correlation was ach
ieved between the observed and predicted values at 0–20 cm and 
20–40 cm depths, as demonstrated in Fig. 12. 

The regression analysis with an intersection passing through the 
origin (y = bx) revealed, at 0–20 depth, an adjusted model (y = 0.9948 
x) with a coefficient of determination (R2) equal to 0.609. At 20–40 
depth, the regression analysis with an intersection passing through the 
origin (y = bx) revealed an adjusted model (y = 0.9958 x) with R2 equal 
to 0.722. 

The similar accuracies (R2 and RMSE), within each depth, among the 
calibration, cross-validation, and external validation steps, demonstrate 
the prediction capacity, and stability of the PLSR models, strengthening 
the possibility of their application to new soybean cropping areas. 

The developed PLSR model based on the eleven assessment days and 
both depths, despite the lower accuracy compared to the PLSR models 
intended specifically for each assessment day (Table 5), comprises the 
variability from plants at different water statuses and different pheno
logical stages across three cropping seasons, with soil moisture values 

ranging from 16% to 35% (0–20 cm depth) and from 20% to 35% 
(20–40 cm depth). Brazil has enormous variability in weather condi
tions (Sentelhas et al., 2015) and an extended soybean sowing calendar 
in each region (Kaster and Farias, 2012). That fact impairs the spectral 
assessment of the crop in extensive areas at the same phenological stage. 

A soil moisture prediction model applicable throughout the cropping 
season would help to improve agricultural practices, resulting in better 
soil moisture management for optimum crop development. The contri
butions of the results from the present manuscript include the possible 
identification of zones with limitations to the development of the root 
zone due to soil compaction, and consequent lower levels of soil water 
availability to support crop development during water deficit periods, 
enabling the soil management in specific areas. Added to that, the 
methodology presented might assist the delimitation of managements 
zones according to the levels of soil water availability, maximizing the 
potential for crop production in each area and reducing the cost of 
production. Although irrigation represents a small percentage of soy
bean areas in Brazil, the definition of irrigation schedule in soybean crop 
might benefit from the soil moisture monitoring through leaf reflectance 
assessments, enlarging the percentage of irrigated soybeans in Brazil 
with sustainable practices, promoting the environment preservation and 
contributing for a larger stability of grain yield during water deficit 
periods. 

The methodology described in the present research has large po
tential to be applied in different soil types. However, the coefficients of 
the spectral models are expected to be different in each soil type due to 
its physical-chemical characteristics. Therefore, spectral models for crop 
water status monitoring and soil moisture prediction should be devel
oped specifically for each soil type, considering its specific edaphocli
matic characteristics, guarantying, thus, the prediction of values in 
accordance to the real values observed in field conditions. 

3.4. Performance comparison of Partial Least Squares Regression with 
spectral bands and vegetation indices for soil moisture monitoring 

Following the soil moisture prediction, using samplings from the 
eleven assessment days on the three cropping seasons, results from PLSR 
were compared to the results from single-wavelength reflectance, 
hyperspectral vegetation index, and broadband reflectance and 

Fig. 10. Soil moisture values from samples collected in the 2016/2017, 2017/2018, and 2018/2019 cropping seasons.  

Table 6 
Statistical parameters of PLSR for soil moisture prediction.   

0–20 cm 20–40 cm  

R2 RMSE BIAS R2 RMSE BIAS 
Calibration 0.589 2.855 – 0.715 1.928 – 
Cross-validation 0.607 2.794 -0.034 0.690 2.014 -0.003  
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vegetation index to evaluate whether univariate linear regression based 
on simple spectral models can deliver competitive results. 

Fig. 13 presents the coefficient of determination (R2) from the cali
bration step (using 80% of samples) between soil moisture and: single 
wavelengths reflectance (a), broadband reflectance and vegetation 
index (b), and all possible band-to-band combinations to calculate the 
hyperspectral vegetation indices (c and d - Eq. 2). 

Using single-wavelength reflectance across the Vis-NIR-SWIR spec
trum (Fig. 13 a), the highest correlations were observed across SWIR 
wavelengths, followed by the Vis spectrum and NIR spectrum (the 
lowest correlations). The outstanding spectral bands were 1965 nm (R2 

= 0.335) and 1957 nm (R2 = 0.331) for 0–20 cm and 20–40 cm 
respectively. 

Using broadband reflectance and vegetation indices (Fig. 13 b), 
spectral bands outperformed vegetation indices, and the outstanding 
spectral features were the SWIR 3 (R2 = 0.219) and SWIR 2 (R2 = 0.219). 
The calculated hyperspectral vegetation indices (Fig. 13 c and d) dis
played a low correlation for Vis-Vis, Vis-NIR, Vis-SWIR, and NIR-NIR 
band combinations, with an intermediate correlation for NIR-SWIR 
band combination and the highest correlations for SWIR-SWIR band 
combinations. The index outperformance was composed of 1878 nm 
and 2004 nm (R2 = 0.418) at 0–20 cm, and by 2065 nm and 2067 nm 
(R2 = 0.405). 

Fig. 14 presents the results from the external validation step (spectral 
models developed during the calibration step applied to the remaining 
20% of data) using the univariate regression models. All strategies using 
univariate linear regression from a simple spectral model demonstrated 
to underperform the use of all spectral bands under the Partial Least 
Squares Regression. Hyperspectral sensors are a potential benchmark for 
spectral analysis and identification of essential absorption features 
associated with agronomic traits, to be transferred later to multispectral 
sensors (Prey and Schmidhalter, 2019). Our results demonstrated that 
the PLSR has higher accuracy (R2 over 0.60) than the other methods 
tested (R2 under 0.41). 

broadband reflectance and vegetation index, and hyperspectral 
vegetation indices. 

According to Sakamoto (2020), broadband vegetation indices are 
usually derived from satellite images to assess their direct relationship to 
biomass and infer the indirect relationship between biomass and crop 
traits, such as soil moisture. Since the PLSR and univariate models were 
developed using leaf-based reflectance, without external interferences 
(solar light, atmosphere conditions, and canopy background, recognized 
the effect of the development of spectral models – Liu et al., 2015, Ma 
et al., 2019), the vegetation indices performed poorly compared to the 
other models. Besides that, Cao et al. (2015) have shown that the larger 
the bandwidth, the weaker the correlation with plant water-related 

Fig. 11. Regression coefficients of PLSR for soil moisture prediction.  

Fig. 12. Correlation between observed and predicted (external validation) values of soil moisture at 0–20 cm (a) and 20–40 cm (b) through PLSR (developed using 
80% of data – 669 samples and validated with the remaining 20% of the data – 175 samples). 
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Fig. 13. Correlation between soil moisture and single wavelengths reflectance (a), broadband reflectance and vegetation index (b), and hyperspectral vegetation 
indices at 0–20 cm (c) and 20–40 cm (d) using the calibration dataset. 
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properties due to spectral information loss (Mirzaie et al., 2014). 
While hyperspectral vegetation indices avoid losses of spectral in

formation contained in broadband data and have the advantage of 
detecting spectral features related to vegetation biophysical properties, 
being more suitable than the use of single wavelengths (Ge et al., 2019b; 
Shu et al., 2021; Zhang et al., 2012), PLSR is an efficient multivariate 
and machine learning regression method since it deals with multi
collinearity, usually found in spectral data. The model also enables the 
simultaneous use of hundreds of spectral bands into the same model, 
weighting each one of them according to their contribution as key 
spectral features to predict the crop trait (Inoue et al., 2012, 2017). 
Thus, PLSR outperformed the broadband reflectance and vegetation 
indices, single wavelength reflectance and hyperspectral vegetation 
indices for monitoring water-related properties in several plant species 
(Ullah et al., 2014; Mirzaie et al., 2014; El-Hendawy et al., 2019; Ge 
et al., 2019b). 

4. Conclusion 

This research quantitatively monitored the soil moisture at 0–20 cm 
and 20–40 cm depths in a soybean field using leaf-based hyperspectral 
reflectance. Based on the effects of water condition treatments on soy
bean leaf reflectance, the Principal Component Analysis (PCA) 
contributed to the clustering of the experimental treatments, especially 
when the water deficit is during the soybean reproductive phase, the 
highest contribution of shortwave infrared wavelengths to crop water 
status monitoring. 

The Partial Least Squares Regression (PLSR) demonstrated efficiency 
for predicting soil moisture, admitting the poor performance observed 
under the absence of significant soil moisture differences between water 
conditions. The PLSR models developed using samples from all assess
ment days across the three cropping seasons presented R2 of 0.607 
(0–20 cm) and 0.690 (20–40 cm) in the cross-validation step, and R2 of 
0.609 (0–20 cm) and 0.722 (20–40 cm) in the external validation step, 
with RMSE of 2.7 and 1.9 at 0–20 cm and 20–40 cm depths, 
respectively. 

A remarkable outperformance of the PLSR was observed when using 
the entire soybean leaf spectra (Vis-NIR-SWIR) in the calibration and 
external validation steps compared to traditional univariate regression 
methods (single wavelength reflectance, hyperspectral vegetation index, 
and broadband reflectance and vegetation index), emphasizing the 
contribution of hyperspectral data in the quantitative monitoring of soil 
moisture in soybean areas. 

While most publications address soil moisture monitoring based on 
qualitative and indirect measurements, this article demonstrates the 
potential of developing spectral models capable of quantitatively 
describing the levels of water availability for plants under field 

conditions. The present methodology enhances the possibility of 
applying spectral models for soil moisture assessment in extended soy
bean areas regardless of their stage of development. That constitutes a 
distinguished contribution since, in Brazil, the sowing calendar might 
present differences of over 30 days within the same production region 
and rarely with plants at the same phenological stage. 
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