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Abstract
Background The drought condition is responsible for considerable losses in soybean production, which in turn may result in bil-
lionaire losses. After drought perception, plants activate a cascade of protecting genes against water deficit (WD), many of which 
are responsive to abscisic acid, the most important phytohormone to plants’ adaptation. This work aimed to recover abscisic 
acid (ABA)-responsive differentially expressed genes (DEG) from an RNA-Seq, carried out from leaves and roots of drought-
sensitive (BR16) and tolerant (Embrapa 48) soybean cultivars under mild (MiWD), moderate (MoWD), and severe (SWD) 
water-deficit treatments. Enriched ABA-responsive pathways important to drought tolerance in soybean were also identified.
Results In drought-sensitive and tolerant soybean cultivars, approximately 75% of genes were identified as ABA-responsive 
by containing more than two ABRE (ABA-responsive elements) in the promoter region. Most of these genes were positively 
regulated. Roots were the tissue with more ABA-responsive genes and pathways triggered in response to WD in both culti-
vars, although, on the tolerant cultivar, these pathways were higher expressed. The most important enriched ABA pathways 
observed in the roots of both cultivars were involved in sugar and sulfur amino acid biosynthesis, osmoregulation, and 
crosstalk among ABA and ethylene, jasmonate, auxin, and cytokinin. Other pathways enriched were involved in phytoalexin 
production, ROS homeostasis, and membrane stability by glycerolipid and glycerophospholipid production. ABA-responsive 
genes were also ordered based on their expression profile in tissue and cultivar, and nine confidence groups could be observed. 
More than 80% of these clustered genes showed the same regulation profile under MiWd, MoWD, and SWD treatments. 
Activation of ABA biosynthesis under water deficit was validated by RT-qPCR by increasing the expression level of NCED3, 
an important enzyme in this pathway, and GOLS, a known ABA-responsive gene.
Conclusions A robust catalog of ABA-responsive genes was made available in this work. Considering ABA’s role in drought-
response mechanisms, the genes in the groups pointed out in this study would be reliable candidates to be used in strategies 
to develop soybean lines more tolerant to drought. This paper, presented for the first time, ABA-responsive genes and ABA-
enriched pathways in contrasting soybean cultivars for drought tolerance.
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Background

Soybean is one the most important commodity worldwide, 
showing high socio-economic relevance by participating 
actively in the economy of a lot of countries such as Brazil, 

Argentina, and the US. Periods of drought can severely dam-
age the crop, implying billion-dollar losses (Ferreira 2016; 
Fuganti-Pagliarini et al. 2017; Bijalwan et al. 2022).

Unfortunately, given the current climate change, for the 
next few years, it is expected that the average temperature 
of the planet will increase and extreme weather conditions, 
such as drought, will intensify, jeopardizing agriculture and 
the global food supply in the future (Intergovernmental Panel 
on Climate Change (2022). To minimize expected production 
losses, intensive research efforts around the world are being 
made to develop more drought-tolerant soybean cultivars 
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(Fuganti-Pagliarini et al. 2017; Honna et al. 2016a; Ortiz 
2019; Molinari et al. 2020, 2021a; Suhartina et al. 2022).

Among the most important pathways of plant adaptability 
to drought is the ABA-responsive (Shinozaki and Yamaguchi-
Shinozaki 2007; Yoshida et al. 2014; Aslam et al. 2022). This 
phytohormone is responsible for triggering the first defensive 
mechanisms and controlling a variety of different molecular, 
physiologic, and metabolic responses under drought condi-
tions (Munemasa et al. 2015; Bulgakov et al. 2019; Pizzio 
2022). ABA-responsive genes can be identified by contain-
ing in their promoter region at least 2 conserved sequences 
named ABRE motifs (ACGT core) that are required for gene 
transcription. Usually, this motif is proximally located within 
the − 1 to − 2000 bp upstream transcription start site (TSS) 
(Hobo et al. 1999; Uno et al. 2000; Maruyama et al. 2012; 
Duarte et al. 2019; Liu et al. 2020).

The present study allowed the identification of ABA-
responsive genes and the most expressed pathways in 
drought-tolerant and drought-sensitive soybean cultivars. 
Understanding the mechanism of action of the hub genes 
involved in these ABA-responsive pathways can provide 
essential information for the development of breeding strat-
egies using biotechnological tools aiming to cope with the 
lack of water and, ultimately, reduce production losses.

Methods

Plant Materials and WD Experiment

Two soybean cultivars contrasting for drought response 
were used to determine the gene expression profile under 
different WD levels. BR16 cultivar is considered drought-
sensitive and Embrapa 48 (E48) drought-tolerant (Oya et al. 
2004; Rodrigues et al. 2012). Soybean plants were grown 
in a greenhouse under a hydroponic system following the 
protocol established by Martins et al. (Martins et al. 2008). 
Briefly, seeds were pre-germinated on filter paper for four 
days in a growth chamber at 25 ± 1 °C and 100% relative 
humidity. Seedlings were placed in plastic boxes in a way 
that roots were completely immersed in 50% of Hoagland’s 
solution (Hoagland and Arnon 1950), which was continu-
ously aerated and weekly changed. Boxes were kept in a 
greenhouse under a natural photoperiod of 12/12 h light/
dark cycle with a temperature of 30 ± 5 °C and 60 ± 10% 
relative humidity.

The experimental design was randomized blocks with 
nine biological replicates. When plants reached the V3 
developmental stage (Fehr et al. 1971), roots and leaves of 
both soybean cultivars were collected following WD treat-
ments levels: 0 min (T0—control), 25 min (T25), 50 min 
(T50), 75 min (T75), 100 min (T100), 125 min (T125), 
and 150 min (T150). Treatments were applied by removing 

plants from the hydroponic solution and placing them in 
empty boxes for the different water deprivation periods 
(minutes). Roots and leaf samples from all treatments and 
soybean cultivars were collected, deep in liquid nitrogen, 
and stored in a freezer until nucleic acids extraction.

mRNA‑Seq Libraries Sequencing

Total RNA was extracted from leaves and root tissues from 
both soybean cultivars using TRIzol® reagent (Invitrogen, 
California, USA). Removal of remaining DNA was carried 
out using DNAse I kit (Invitrogen, California, EUA), and the 
removal of rRNA was performed with RiboMinus™ plant 
kit (Invitrogen, California, EUA), following manufacturer’s 
instructions. RNA concentration and purity were measured 
using BioAnalyzer software (Agilent California, EUA), and 
the integrity was analyzed on a 1% agarose gel. Quantifica-
tion of the mRNA was carried out by Qubit (Thermofisher, 
Massachusetts, EUA). Samples with RNA Integrity Number 
(RIN) ≥ 8.0 were used for sequencing.

RNA from all water deficit treatments were equimolar 
pooled into four categories as follows: T0—control condi-
tion; T25–50 min, considered mild water deficit—MiWD; 
T75–100 min, considered moderate water deficit—MoWD; 
T125–150 min, considered severe water deficit—SWD. WD 
levels were chosen based on physiological analyses performed 
by Rodrigues et al. (Rodrigues et al. 2012) and Martins et al. 
(Martins et al. 2008), which showed that within prolonged 
exposure to the lack of water, photosynthesis of soybean cul-
tivars was maximum at time zero but affected and strongly 
inhibited after 100 min.

The libraries were prepared using Illumina TruSeq™ SBS 
v5 kit with 200 ng of mRNA. Single-end libraries of 100-bp 
size were synthesized by Fasteris company (Switzerland) 
and sequenced at Illumina HiSeq 2000 platform. A total of 
sixteen libraries (4 WD treatment levels × 2 soybean culti-
vars × 2 tissues) were synthesized, sequenced, and analyzed.

Bioinformatics Analysis

The quality of reads before and after the trimming pro-
cess was evaluated using FastQC software version 0.11.5 
(Andrews 2010). Removal of adapters, low-quality 
sequences (Phred quality score ≥ 30), and sequences 
shorter than 40 bp were carried out using Trimmomatic 
software version 0.36 (Bolger et al. 2014). The soybean 
reference genome (Gmax_Wm82.a2.v1) used was down-
loaded from Phytozome v13 (Goodstein et  al. 2012). 
Alignment of reads in the reference genome was performed 
using HISAT2 software version 2.1.0, retrieving unique 
alignments with higher quality (Kim et al. 2015). PCR 
artifacts (unnatural read duplications) were removed by 
Samtools rmdup software version 1.5 to improve mapping 
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quality (Li et al. 2009). Assembly of transcripts was per-
formed by StringTie software version 1.3.3 (Pertea et al. 
2015). The StringTie output was used in GFOLD soft-
ware version 1.1.4 (Feng et al. 2012) to obtain DEGs. For 
each soybean cultivar and tissue, DGEs were obtained by 
comparing control and WD treatment levels. Only genes 
that presented log2 fold-change (Log2 FC) ≤  − 1 (down-
regulated) and ≥ 1 (up-regulated) were considered differ-
entially expressed. This means that an expression level of 
at least 2 times between the control and WD levels was 
considered. The adoption of good practices of RNA-Seq 
(RNA sequencing) analyses was performed according to 
experimental design (Conesa et al. 2016; Molinari et al. 
2021b).

In Silico Recovery of ABA‑Responsive DEGs 
and Ontology

The promoter region of all DEGs from each WD treatment 
(MiWD, MoWD, and SWD) and plant tissue were sepa-
rately recovered using the RSAT plant (Contreras-Moreira 
et al. 2016). To recover only ABA-responsive genes among 
all DEGs, a script in shell language was applied to the 
data. Genes with at least two cis-elements ACGT core 
between − 1 to − 2000 bp within the promoter region were 
considered (Maruyama et al. 2012; Narusaka et al. 2003; 
Shen et al. 2004; Nakashima et al. 2006, 2014; Yoshida 
et al. 2010; Wang et al. 2019). The biological annota-
tion of ABA-responsive DEGs was performed using the 
Phytomine tool available at Phytozome (Goodstein et al. 
2012).

To retrieve genes expressed in all levels of WD treat-
ments, a Venn diagram was executed (Bardou et al. 2014). 
This group of genes represents 100% of expression repro-
ducible along with the WD treatments and was highly accu-
rate to evaluate ABA responses, minimizing sequencing 
biases. ABA-responsive DEGs identified in all three levels 
of WD levels (MiWD, MoWD, and SWD) were used to gen-
erate 09 genic groups according to their expression profile in 
tissues and cultivars. The KEGG pathways were evaluated 
using ShinyGO software version 0.66 (p-value ≥ 0.05) (Ge 
et al. 2020).

RT‑qPCR

To validate the expression of NCED3 (9-cis-epoxycarotenoid 
dioxygenase) and GOLS (galactinol synthase), known drought-
responsive genes, identified in the RNA-Seq, an RT-qPCR 
(reverse transcriptase quantitative polymerase chain reaction) 
was performed. Total RNA was extracted from soybean leaves 
and root samples from both soybean cultivars using  TRIzol® 
reagent and treated with DNAse I kit (Invitrogen, Carlsbad, 

CA) to remove possible remaining DNA. After that, cDNA 
was synthesized using  SuperScript® III First-Strand Synthesis 
System (Invitrogen, Carlsbad, CA) according to the manufac-
turer’s instructions.

Sets of primers for GOLS (Glyma.10G145300—primer F 
5′GCT ACC CGA TGT TCC CCA AG3′/ primer R 5′GGG GTA 
CAC GGG CTC AAT CT3′), NCED (Glyma.15G250100—
primer F 5′CCA GAA GCC TTA CCT CAA AT3′/primer R 
5’TCA TGG TGG GTT CTT TCA AA3′) genes were designed. 
Sequences were obtained from Phytozome v13, and specific 
primers were designed using Primer3Plus software (Primer-
3Plus software. 2022). Homo and heterodimers were checked 
using Multiple Primer Analyze software (Multiple Primer 
Analyze software 2022).

RT-qPCR reactions were composed of cDNAs, 0.2 μM 
F and R primers, and 1 × reaction buffer  Platinum® SYBR 
 Green® qPCR SuperMix UDG (Invitrogen, Carlsbad, CA). 
PCR primer efficiencies were estimated using LinRegPCR 
software v.2012.0 (Ruijter et al. 2019), considering efficient 
primers displaying values ≥ 90%. Gene expression relative 
quantification was performed using three random biologicals 
and three technical replicates (n = 9). Reactions were made 
through 7900HT thermocycler equipment (Applied Biosys-
tems). Cycling conditions used were denaturation at 95 °C for 
20 s, followed by 40 cycles of 95 °C for 3 s, 60 °C for 26 s, 
and 1 cycle for the Melting curve at 95 °C for 15 s, 60 °C for 
1 min, and 95 °C for 15 s.

Gene expression calibration was performed using β-actin 
(Glyma.15G050200—primer F 5′GAG CTA TGA ATT GCC 
TGA TGG3′/primer R 5′CGT TTC ATG AAT TCC AGT AGC3′) 
and Fyve (Glyma.13G114700—primer F 5′TTC TGT CTT 
CTG CAA GTG GTG3′/primer R 5′GAT CCC TCA TCC ATA 
CAT TTCAG3′) genes, as described by Marcolino-Gomes 
et al. (Marcolino-Gomes et al. 2015). The expression level 
was determined using the formula  2−∆∆Ct adapted according 
to the primer’s efficiencies (Livak and Schmittgen 2001).

Results

ABA‑Responsive DEG in Three Levels of WD Treatment

Results showed that the total number of differentially 
expressed genes identified in leaves were 5256 and 5279, 
respectively, in BR16 (sensitive cultivar) and Embrapa 
48 (tolerant cultivar). In roots, for BR16 and Embrapa 
48, the total number of DEG was 4957 and 5665, respec-
tively (Fig. 1). In Fig. 1, it can also be observed the num-
ber of ABA-responsive genes identified in each dataset 
(3875; 3753; 3875; 4256). Those numbers indicated 
that an average of 75% of the DEG were identified as 
ABA-responsive, once at least two cis-elements ACGT 
core were found between − 1 to − 2000 bp within their 
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promoter region. Among the ABA-responsive genes, 
approximately 40% were differentially expressed in all 
three levels of water deficit treatments (MiWD; MoWD; 
SWD). This subset of genes is important for both soy-
bean cultivars as the drought intensifies and has 100% 
reproducibility within the independent libraries of the 
present study (756; 1892; 865; 2535 genes identified in 
all treatments, in leaves and roots of BR16 and Embrapa 
48), representing an accurate gene set to study the ABA-
enriched pathways among soybean cultivars (Fig. 1). The 
individual expression of these data sets’ genes is available 
in Additional file 1 and Additional file 2.

Groups of ABA‑Responsive Genes

The intersection of ABA-responsive genes (756; 1892; 
865; 2535) was clustered into 09 ABA-responsive groups 
(Fig. 2). In group 01, 105 genes were observed in leaves, 

mostly being upregulated (61). Forty-one genes showed 
downregulation in all WD treatments and soybean cul-
tivars, and 3 genes presented different expression pro-
files, varying accordingly with WD treatments (MiWD, 
MoWD, and SWD) (Additional file 3, sheet: group 01). 
Group 02 comprised 1071 genes expressed in the roots, 
with 888 and 182 genes showing, respectively, upregula-
tion and downregulation. Only one gene showed expres-
sion profile variation among WD treatments (Additional 
file 3, sheet: group 02).

Groups 03 and 04 clustered ABA-responsive genes 
classified as cultivar-specific. In group 03, 16 genes were 
identified as being expressed in the leaves and roots of 
drought-sensitive cultivar BR16. Among these genes, 12 
were upregulated and 1 downregulated, with 3 other genes 
showing different expression profiles, varying accord-
ingly with treatments (additional file 3, sheet: group 03). 
Group 04 comprised genes expressed in leaves and roots of 

Fig. 1  The total set of differentially expressed genes (DEGs) and 
the subset of ABA-responsive genes in BR16 (drought-sensitive) 
and Embrapa 48 (drought-tolerant) soybean cultivars during mild 
(MiWD—T25–50  min), moderate (MoWD—T75–100  min), and 
severe water deficit (SWD—T125–150  min) treatments compared 

to the control (no WD). The error bar represents the standard error 
among the number of the average genes in the three water-deficit 
levels. Venn diagrams represent the intersection of ABA-responsive 
genes expressed in the three water-deficit levels (756; 1892; 865; 
2535)
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drought-tolerant cultivar E48. In this group, 40 genes were 
observed, 13 being upregulated, 19 downregulated, and 8 
genes presented expression profiles discrepant among WD 
treatments (Additional file 3, sheet: group 04).

Groups 05 and 06 included genes expressed, respectively, 
in leaves and roots of sensitive cultivar BR16. Thus, in group 
05, a total of 187 genes were identified, with 129 and 43 
showing upregulation and downregulation, respectively, in 
all three WD treatments. Fifteen genes presented expression 
profiles differing among MiWD, MoWD, and SWD treat-
ments (Additional file 3, sheet: group 05). In group 06, 381 
genes expressed only in the roots of BR16 were identified. 
Among them, 179 were upregulated, 201 were downregu-
lated, and one gene showed an expression profile varying 
accordingly with WD treatments (Additional file 3, sheet: 
group 06). In these groups, most of the genes were down-
regulated, opposing previous groups.

Groups 07 and 08 included genes expressed, respectively, 
in leaves and roots of drought-tolerant cultivar E48. Again, 
in these groups, most of the genes were downregulated. In 
group 07, from a total of 488 genes, 152 and 301 genes 
showed, respectively, upregulation and downregulation. 
Thirty-five genes presented expression profiles varying 
accordingly with WD treatments (additional file 3, sheet: 
group 07). In group 08, genes expressed only in roots of 
E48 were gathered. From a total of 933 genes, 533 were 
upregulated and 400 were downregulated. No genes show-
ing expression profile variation among WD treatments were 
identified.

Finally, in group 09, ABA-responsive DEGs were identi-
fied in both soybean cultivars (E48 and BR16), and tissues 
(leaves and roots) in all levels of WD treatments (MiWD, 
MoWD, and SWD) were collected (Additional file 3, sheet: 
group 09). In this group, 134 genes were observed, with 125 
being upregulated and 9 downregulated. No genes show-
ing expression profile variation among WD treatments were 
identified.

ABA‑Enriched Responsive Pathways in Three Levels 
of Drought (MiWD; MoWD; SWD)

KEGG analyses indicated 06 ABA-enriched pathways in 
leaves of BR16. These were involved in sugar, camalexin, 
glycerophospholipid, ethylene, jasmonate biosynthesis, and 
reactive oxygen species (ROS) homeostasis. In BR16 roots, 
10 enriched pathways were observed, being 06 of them the 
same as observed in leaves. The remaining four were identi-
fied as involved in glycolipid, amines, auxin, and cytokinin 
biosynthesis (Fig. 3).

In leaves of drought-tolerant Embrapa 48, 07 ABA-
enriched pathways were observed. They were glycerolipid, 
sulfur amino acid, sugar, auxin, camalexin, ethylene, and 
jasmonate biosynthesis. In Embrapa 48 roots, 11 enriched 

pathways were found, 7 of them as identified in leaves, plus 
pathways related to amines, glycerophospholipid, auxin, and 
cytokinin biosynthesis.

Despite the similarities among the ABA responses 
between soybean cultivars, the number of compounds in 
each pathway was higher in the tolerant cultivar than in the 
sensitive one. This was seen mainly for membrane com-
ponents like glycerolipid and glycerophospholipid in the 
roots, suggesting that ABA responses may be more intense 
in Embrapa 48 (tolerant cultivar) (Fig. 3).

RT‑qPCR of Known ABA‑Responsive Genes

RT-qPCR and RNA-Seq showed the same expression profile 
of GmNCED3 and GmGOLS genes. Both genes were upreg-
ulated in both techniques (Fig. 4). These genes presented 
higher expression on the roots of both soybean cultivars. 
Also, more than two ABRE motifs were observed in the 
promoters of the GmNCED3 (5 ABRE motifs identified) and 
GmGOLS (6 ABRE motifs identified) genes, confirming the 
ABA biosynthesis activation under water deficit conditions 
(Fig. 4).

Discussion

ABA‑Responsive DEGs and Enriched Pathways Under 
WD Treatments

Most of the drought and ABA-related genes identified here 
are greatly known in literature, increasing the reliability 
of this approach to identify genes with a real profile under 
drought in silico. Besides that, the same expression profile 
(mostly upregulation) of genes, showing slight modulation 
differences, reinforces the involvement of these genes in 
WD defense mechanisms and the accuracy of the pipeline 
employed. This is possible to infer due to all libraries’ being 
completely independent but presenting similar responses to 
the conditions applied.

In general, a higher number of differential expressed 
genes were identified in both leaves and roots for both soy-
bean cultivars, with a high percentage being ABA-respon-
sive as well. Most DEGs and ABA-responsive genes identi-
fied in root-specific groups (Additional file 2; Additional 
final 3/group 02/group 06 and group 08) were drought-
response genes such as heat shock proteins and heat shock 
TFs (transcription factors), genes related to osmotic adjust-
ment (proline, oligosaccharides, trehalose, and glucose), 
hormone-related (ethylene, auxin, and gibberellin), LEA 
(late embryogenesis abundant) and chaperones, water chan-
nels (aquaporins) and other WD-response related TFs such 
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as DREB (dehydration-responsive element-binding protein), 
NAC (NAM—no apical meristem, ATAF1-2-Arabidopsis 
transcription activation factor, and CUC2—cup-shaped coty-
ledon), MYB and WRKY. As reported here, these genes 
were also described to be associated with drought responses 
in roots of different plant species (Janiak et al. 2016) and 
recently identified in RNA-Seq analyses carried out in roots 
of rice (Zhang et al. 2017), sorghum (Zhang et al. 2019), 
chickpea (Mashaki et al. 2018), and wheat (Chaichi et al. 
2019; Iquebal et al. 2019).

As an organ in direct contact with the soil, roots are capa-
ble of precepting and signalizing soil status toward the shoot, 
which triggers changes in the regulation of gene expression 
that afterward controls molecular mechanisms of drought 
responses (Janiak et al. 2016). In this role, ABA plays an 
important part in regulating drought sensing by roots. The 
increase in ABA of roots in response to drought was cor-
related with an increase in foliar-ABA concentrations, sug-
gesting that drought-induced ABA plays a significant role in 
controlling leaf water potential (Zegada-Lizarazu and Monti 
2019). ABA accumulated in roots is transported to trigger 
stomatal closure, limiting transpirational water loss while 
up-regulating genes to promote osmotic adjustment in leaves 
(Haworth et al. 2018; Bharath et al. 2021). This data corrob-
orates and reinforces the expression of the ABA-responsive 
genes and their role in leaves' response to water deficit.

Among the 134 genes clustered as commonly expressed 
in both soybean cultivars, tissues, and in all WD levels 
(Additional final 2/group 09), drought response genes show-
ing upregulation profile were also identified, such as NAC 
and WRKY TFs, heat shock TFs and heat shock proteins, 
and NCED. The NAC TF family is involved in various stress 
responses. High-throughput transcriptome studies of plants 
submitted to drought showed that NAC-encoding genes 
were differentially expressed in roots of rice (Moumeni et al. 
2011), pine (Lorenz et al. 2011), cotton (Ranjan and Sawant 
2014), and common bean (Recchia et al. 2013). In poplar and 
soybean, differential expression of NAC genes was identified 
specifically or preferentially in roots (Cohen et al. 2010; Le 
et al. 2011), corroborating results found here. Many reports 
have shown the involvement of WRKYs and ABA, mainly in 
the stomata closure response (Finatto et al. 2018). In Arabi-
dopsis, AtWRKY genes are involved in increasing salt and 
osmotic stress sensibility (Chen et al. 2010). In tobacco, data 
showed that ABA participated in WRKY-induced stomatal 

closure (Chu et al. 2015). In addition, overexpression of 
WRKY genes increased drought tolerance in Vitis vinifera 
(Wang et al. 2014), cotton (Gossypium hirsutum) (Yan et al. 
2015), rice (Wu et al. 2009), and tobacco (Ding et al. 2015).

Heat shock factors (HSFs) are important transcription 
factors that are frequently induced by heat along with other 
abiotic stresses like salt, drought, and cold (Manna et al. 
2020). The involvement of HSFs in drought responses has 
been reported in many crop species, such as chickpea (Ma 
et al. 2016), maize (Li et al. 2015), wheat (Huang et al. 
2016), sorghum (Tashi et al. 2018), and rice (Yoshida et al. 
2011).

ABA-enriched pathways were identified in both tissues 
and soybean cultivars under all three levels of WD treat-
ments. Sugar-related, camalexin, glycerophospholipid, and 
pathways for ethylene and jasmonate hormones biosynthe-
sis were identified in both leaves and tissues. In addition 
to these pathways, amines, auxin, and cytokinin pathways 
were root specific (Fig. 3). Cellular sugar status is essen-
tially maintained during normal growth conditions but is 
adversely affected during various environmental perturba-
tions. Drought presents such an unfavorable environmen-
tal condition that it hinders the photosynthetic fixation of 
carbon in sugars and affects their transport, decreasing the 
cellular osmotic potential (Kaur et al. 2021). However, the 
tolerant cultivar was able to produce greater amounts of 
these compounds under drought and guarantee their osmo-
protection and thus, adaptation to lack of water. Besides, 
drought reprograms the distribution of sugar in cellular 
and subcellular compartments. Usually, plants more toler-
ant to drought present higher levels of sugars, guarantee-
ing osmotic potential maintenance, protection of photosyn-
thetic apparatus, maintenance of ROS, positive feedback 
in ABA biosynthesis, biosynthesis of heat shock proteins, 
increase in numbers of polyamines, proline accumulation, 
and prevention of water loss by lignin deposition (Kaur 
et al. 2021) (Fig. 3).

In addition to the sugar content, drought induces changes 
in glycerolipid metabolism and glycerophospholipid metab-
olism (Liu et al. 2021a). In general, lipids play important 
roles in cellular functions, including serving as structural 
molecules in membranes, affecting membrane proteins’ 
function, and enhancing their protection. As drought induces 
an increase in fatty acid saturation of plasma membrane 
lipids and ROS accumulation, this leads to membrane stiff-
ness (Liu et al. 2021a). However, the accumulation of lipids 
leads to the protection of these membranes in dry conditions. 
The presence of these pathways in the Embrapa 48 cultivar 
suggested that, besides many other defense mechanisms trig-
gered by water deficit, this could be an additional one to 
cope with drought in tolerant cultivars (Fig. 3).

Furthermore, the presence of enriched camalexin path-
ways in both soybean cultivars shows the well-known 

Fig. 2  Venn diagram of 09 clusters of ABA-responsive DEGs 
identified in all three levels of water-deficit (MiWD—25–50  min, 
MoWD—75–100  min, and SWD—125–150  min) treatments, in 
drought-sensitive (BR16) and drought-tolerant (E48) soybean cul-
tivars and tissues (roots and leaves). Legend: L, leaves; R, roots; 
orange, BR16L, leaves; green, BR16R, roots; blue, E48L, leaves; 
pink, E48R, roots. Graphics show the total of genes identified in each 
soybean cultivar, tissue, and WD treatment level

◂
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crosstalk between biotic and abiotic stress responses. The 
phytoalexin camalexin plays a crucial role in defense against 
fungal and bacterial pathogens (Mewis et al. 2012), and high 
levels of camalexin in plants subjected to drought can poten-
tially reduce infection by pathogens (Mewis et al. 2012; 
Zhang et al. 2014).

The ROS homeostasis pathway was only enriched in 
leaves of BR16, a drought-sensitive cultivar. Some of the 
secondary messengers triggered by ABA can participate 
in plants’ adaptation to abiotic and biotic stress. Examples 
are ROS (enriched pathway identified in leaves of BR16), 
nitric oxide (NO), and cytosolic-free  Ca2+ (León et al. 2014; 
Huang et al. 2019). The generation of ROS in plants under 
water deficit is due to ABA binding to its receptor, which 
inactivates protein phosphatase 2C, resulting in the activa-
tion of OST1 (open stomata 1) kinase, which stimulates 
NADPH oxidase (due to phosphorylation) enzyme to gen-
erate ROS and then the production of NO. Both ROS and 
NO can elevate levels of cytosolic  Ca2+. The high levels of 
ROS, NO, and  Ca2+ act either directly or together to acti-
vate anion/cation efflux channels while inhibiting the influx 
channels. The result is the loss of cations/anions from guard 

cells, resulting in turgor loss and stomatal closure (Agurla 
et al. 2018), a well-known response triggered by water defi-
cit conditions.

Besides ABA, several other hormones increase when 
plants are exposed to stress, which closes stomata and 
helps plant defense responses. As pathways enriched 
here, auxins, cytokinins, jasmonate, and ethylene usually 
complement ABA’s role in drought conditions responses 
(Iqbal et al. 2022). Auxins are involved in many plants’ 
developmental processes as well as in a dynamic role in 
mediating and improving plant tolerance to noninfectious 
stresses, such as deficiency conditions (Kazan 2013). 
When plants are exposed to drought, different modula-
tions in the synthesis, metabolism, transport, and activity 
of auxins take place (Ljung 2013). In tobacco seedlings, 
auxins promote root branching and have a potential role 
in drought tolerance mechanisms (Verma et al. 2016; 
Wang et al. 2018). Molecularly, according to Jung and 
co-workers (Jung et al. 2015), among auxin-coding genes 
recognized in rice plants, some genes were activated by 
drought stress. In addition, the overexpression of auxin-
related genes also resulted in enhanced drought tolerance 

Fig. 3  ABA-enriched responsive pathways under all levels of water deficit treatments (mild, MiWD; moderate, MoWD; severe, SWD) in 
drought-sensitive (BR16) and tolerant E48 (Embrapa 48) soybean cultivars. Green arrows represent activation; red arrow represents modulation
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in poplar and potato (Ke et al. 2015). Moreover, in toma-
toes, auxin response factors (ARFs) bind directly to the 
promoters of auxin-responsive genes, allowing them to 
be activated or repressed transcriptionally and enhanc-
ing stress tolerance (Bouzroud et al. 2018). These ARFs 
also regulate genes involved in drought response and 
enhanced tolerance in clovers (Zhang et  al. 2020a). 
Auxin also enhanced drought resistance by interacting 
with other phytohormones. By regulating members of 
the ACS (1-aminocyclopropane-1-carboxylate synthase) 
gene family, which is a rate-limiting enzyme in ethylene 

biosynthesis, drought resistance in plants was enhanced 
(Colebrook et al. 2014). Overall, auxin has the potential 
to stimulate drought tolerance by regulating antioxidant 
enzyme activities, secondary metabolites, ABA content, 
expression of stress-responsive genes, and oxidative 
damage to plants (Singh et al. 2022).

Cytokinins are important for plant regulation, growth, 
and acclimation to drought conditions (Li et al. 2016). The 
enhancement or reduction of the cytokinin level depends 
on the period and severity of the drought stress (Zwack 
and Rashotte 2015). In Arabidopsis, the independent 

Fig. 4  Results of the expression level of known ABA-responsive genes 
GmNCED3 and GmGOLs in the RNA-Seq and RT-qPCR. Green bars 
represent the gene expression in Log2FC for RNA-Seq and  2−ΔΔCT 
for RT-qPCR. The asterisk represents significant expression by t-test 

(p ≥ 0.05). The blue Web logo represents the core of the ABRE motif 
(ACGT) in the promoter of both genes. The sequences represent the 
promoter region between − 1 and – 2000 bp of TSS (transcription start 
site) and ABRE motifs are highlighted in light blue



269Plant Molecular Biology Reporter (2023) 41:260–276 

1 3

overexpression of CKX1, CKX2, CKX3, and CKX4 genes 
resulted in transgenic lines with reduced CK levels and sub-
sequently greater drought tolerance (Nishiyama et al. 2011). 
Ethylene is strongly involved in the response to dehydration. 
In addition to acting on osmoregulation, it involves the acti-
vation of transcription factors of the ERF (responsive fac-
tors of ethylene) family, involved in drought tolerance (Kaur 
et al. 2021). In Arabidopsis, the overexpression of an ERF 
gene resulted in lines showing drought tolerance by less-
ening transpiration, squeezing the aperture of the stomata, 
and thinning the cuticle (Scarpeci et al. 2017). In cotton, 
ethylene-responsive genes or binding protein elements such 
as AP2 (apetala2), EREBPs (ethylene-responsive element 
binding proteins), and Apetala2 were identified in response 
to heat and drought conditions (Liu and Zhang 2017). Fur-
thermore, in soybean, GmERF3 was induced by drought, 
ABA, salicylic acid (SA), jasmonic acid (JA), and ethylene 
(ET), and its overexpression in tobacco plants lead to lines 
exhibiting more tolerance to drought due to high contents 
of proline and solubilized sugar (Zhang et al. 2009). It is 
worth emphasizing that in the present study, the ERF1 gene 
was upregulated in the roots of both soybean cultivars, cor-
roborating ethylene’s role in activating drought responses 
in plants.

Jasmonate also plays a substantial role in water stress 
tolerance. Its role is well established in crops such as pea-
nuts, rice, soybeans, and broccoli (Kaur et al. 2021). When 
this phytohormone is applied exogenously, it leads to the 
accumulation of soluble sugars among other metabolites, 
in addition to improving the activity of genes that eliminate 
ROS, thus improving drought tolerance (Abdelgawad et al. 
2014; Shan et al. 2015). This data corroborates our data on 
sugar and ROS homeostasis-enriched pathways in both BR 
16 and Embrapa 48 soybean cultivars. Under normal condi-
tions, the proteins JAI3/JAZ bind to various transcription 
factors, including MYC2, and limit their activity. However, 
during drought, the degradation of JAZ proteins occurs, 
resulting in active transcription factors that upregulate genes 
of JA, enhancing tolerance (Ollas and Dodd 2016; Ullah 
et al. 2018).

It is important to highlight that all these hormones nor-
mally do not work in exclusive pathways but depend on each 
other at different stages to control responses to environmen-
tal factors (Ullah et al. 2018), such as drought. Thus, via jas-
monate, the MYC2 transcription factor was enriched, mainly 
in the roots of both soybean cultivars assayed here. As a 
result of ABA and jasmonate activation, soybean exhibit 
pivoting roots with a great ability to penetrate deeper soils 
in search of water (Kaur et al. 2021). This strong hormonal 
relationship in the roots could have led the tolerant culti-
var to better adapt to the condition of lack of water, as it 
is observed that these pathways were more expressive in 
the tolerant cultivar in a number of genes (Fig. 4). Other 

examples of these hormones’ crosstalk are described below. 
Exogenous application of auxin enhanced drought toler-
ance and levels of ABA and JA in Trifolium repens (Zhang 
et al. 2020b). Moreover, JA signaling pathways interact 
with ABA signaling pathways, suggesting their role in 
response to drought stress. It has been recently revealed 
that JA enhanced the hydraulic conductivity of plant roots 
under drought stress by interacting with calcium and ABA-
dependent and independent signaling pathways (De Ollas 
and Dodd 2016).

Drought‑Responsive Genes Expressed Under WD 
Treatments

ABA increased synthesis is a well-known mechanism trig-
gered by plants to cope with water deficit conditions. The 
NCED enzyme is a key point control in ABA biosynthesis 
(Bhaskara et al. 2012; Behnam et al. 2013) and the over-
expression of NCED genes have improved drought toler-
ance in many plants such as Arabidopsis (Iuchi et al. 2001; 
Tong et al. 2017), avocado (Persea americana) (Chernys and 
Zeevaart 2000), citrus (Citrus sinensis) (Neves et al. 2013; 
Pedrosa et al. 2015; Rodrigo et al. 2006), common bean 
(Phaseolus vulgaris) (Qin and Zeevaart 1999), tobacco (Qin 
and Zeevaart 2002; Pedrosa et al. 2017), rice (Oriza sativa) 
(Sultana et al. 2014; Huang et al. 2018), petunia (Estrada-
Melo et al. 2015), cotton (Gossypium hirsutum) (Souza 
et al. 2016), cowpea (Vigna unguiculata) (Iuchi et al. 2000), 
grape (Vitis vinifera) (Soar et al. 2004), peanuts (Arachis 
hypogaea) (Wan and Li 2006), tomato (Solanum lycoper-
sicum) (Burbidge et al. 1999; Thompson et al. 2000), and 
turmeric (Curcuma longa) (Ahrazem et al. 2012). In soy-
bean lines overexpressing the NCED3 gene, plants showed 
higher concentrations of ABA under WD (Molinari et al. 
2020), reinforcing the role of this phytohormone in drought-
response mechanisms as well as corroborating data found 
here for soybean cultivars BR16 and Embrapa 48.

Galactinol synthase (GOLs) is a key enzyme in raffinose 
family oligosaccharide (RFO) biosynthesis. In different 
environmental stresses such as cold, heat, and dehydration 
drought, RFOs regulate the osmotic potential and protect 
enzymes and membranes (Crowe et al. 1984; Wang et al. 
2004). The expression of some GOLS genes was induced 
by drought, heat shock, salinity, and osmotic shock (Taji 
et al. 2002; dos Santos et al. 2015). In addition, the involve-
ment of GOLS genes in drought responses, as well as the 
overexpression of these in successfully increasing drought 
tolerance, has been reported for many plants, such as Arabi-
dopsis (Taji et al. 2002), Brachypodium distachyon (Himuro 
et al. 2014), poplar (Liu et al. 2021b), rice (Takahashi et al. 
1994; Shimosaka and Ozawa 2015), maize (Gu et al. 2016), 
coffee (Santos et al. 2015, 2011), tomato (Lycopersicon 
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esculentum Mill. cv Moneymaker) (Downie et al. 2003), 
grape (Vitis vinifera) (Pillet et al. 2012), and Salvia miltior-
rhiza (Wang et al. 2012).

Corroborating our findings here, that the GmGOLs gene 
participates closely in drought defense responses in soy-
bean, Marcolino and co-workers (Marcolino-Gomes et al. 
2014) described a diurnal oscillation and induced expres-
sion for GmGOLS-like gene in lines submitted to water 
deficit. Gene expression quantification for soybean GOLS 
(Glyma19g40680) confirmed the expression induction in 
plants submitted to water deficit (Rodrigues et al. 2015). 
In addition, soybean lines overexpressing AtGOLS2 showed 
increased galactinol transcripts, which may have acted as 
osmoprotectants, leading to higher drought tolerance and 
survival rate. In field conditions, these plants presented 
higher yields, probably due to the increased synthesis of 
RFOs under well-watered conditions (Honna et al. 2016b).

Conclusions

Gene group 09, a hub of drought and ABA-responsive genes, 
are reliable candidates to be used in projects to develop 
more drought-tolerant lines, which, in the long-term, can 
positively impact the soybean crop, minimizing losses due 
to water scarcity.

Enriched pathways confirmed the complexity of 
responses triggered in both tolerant and sensitive soybean 
cultivars by water deficit conditions as well as the large-scale 
hormonal crosstalk responsible and involved in these defense 
mechanisms.
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