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Abstract: Farmers in the Brazilian Cerrado are increasing grain production by cultivating second
crops during the same crop growing season. The release of PlanetScope (PS) satellite images represents
an innovative opportunity to monitor double cropping production. In this study, we analyzed the
potential of six PS monthly mosaics from the 2021/2022 crop growing season to discriminate double
cropping areas in the municipality of Goiatuba, Goiás State, Brazil. The four multispectral bands
of the PS images were converted into normalized difference vegetation index (NDVI), enhanced
vegetation index (EVI), green–red normalized difference index (GRNDI), and textural features derived
from the gray-level co-occurrence matrix (GLCM). The ten most important combinations of these
attributes were used to map double cropping systems and other land use and land cover classes
(cultivated pasture, sugarcane, and native vegetation) of the municipality through the Random Forest
classifier. Training and validation samples were obtained from field campaigns conducted in October
2021 and April 2022. PS mosaic from February 2022 was the most relevant data. The overall accuracy
and Kappa index of the final map were 92.2% and 0.892, respectively, with an accuracy confidence of
81%. This approach can be expanded for mapping and monitoring other agricultural frontiers in the
Cerrado biome.

Keywords: Random Forest; gray-level co-occurrence matrix; tropical savanna; land use and land
cover mapping; satellite constellation

1. Introduction

The Brazilian tropical savanna (Cerrado) covers an area surpassing 200 million ha in
the central part of the country and is one of the richest biomes in the world in terms of
biodiversity, includes more than 12,400 plant species that are endemic and has unique adap-
tation to the occurrences of fire, soils with low fertility and high acidity, and a six-month dry
season [1]. It is considered as one of the world´s hotspots for biodiversity conservation [2].
Roughly, half of this biome is covered by native vegetation [3], which corresponds to a mo-
saic of different species of grasses, shrubs, and trees in different proportions, depending on
the soil texture, soil structure, soil moisture, and rainfall conditions, among other factors [4].
The Cerrado is also well-known for its highly mechanized large-scale production of food
and energy [5]. In this biome, we find 47 million ha of cultivated pastures, mostly the
African Brachiaria species, 23 million ha of annual crops, mainly soybean, maize, and
cotton, and 500 thousand ha of perennial and semi-perennial crops, mostly coffee and
sugarcane [6]. Pasturelands are spread throughout the entire biome while croplands are
cultivated in more specific regions, that is, in agricultural frontiers with extensive flat
terrains and rainfall levels typically higher than 1000 mm per year in the rainy season (from
October to March) [1].
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According to the Brazilian Native Vegetation Protection Law no. 12,651 of 25 May
2012, also known as the Brazilian Forest Code, farmers located in the Brazilian Cerrado
must keep at least 20% of their rural properties with native vegetation or at least 35%
if the property is located in the Amazon-Cerrado ecotone (Brazilian Legal Amazon) [7].
Furthermore, only 7.2% of the Cerrado is protected in terms of conservation units [1].
This soft environmental regulation reinforces the fact that both national and international
conservation efforts tend to prioritize rainforests and to consider savanna ecosystems as
land reserves for agricultural expansion [8,9]. For example, the Amazon Soy Moratorium,
proposed to reduce soybean expansion even in the Brazilian Amazon, effectively reduced
the conversion of primary or secondary forests into soybean plantations in this region [10].
However, it caused a side effect in the Brazilian Cerrado, encouraging the opening of new
agricultural areas, mainly in the new agricultural frontier known as MATOPIBA [11,12].

At the same time, farmers in the Brazilian Cerrado are adopting different land man-
agement techniques to improve profitability and to reduce climatic risks (e.g., dry spell
occurrences and low rainfall conditions in some years). Among different techniques, we
can point out the use of the double cropping management system, which is becoming quite
popular mainly in the consolidated agricultural frontiers in the Brazilian Cerrado [13,14].
The double cropping system refers to crops that are planted twice in the same area and in
the same crop growing season and has been adopted extensively not only in Brazil but also
in other countries, especially China [15]. The harvested area of double-cropped maize in
Brazil is now about four times higher than that from the single crop system: 16.4 million ha
against 4.3 million ha in the 2021/2022 crop season, respectively [16].

Farms with the double cropping system can be identified accurately using in situ
surveys. However, they are time consuming, labor intensive, and costly. Several authors
have proposed different satellite data and procedures to monitor agricultural fields with
double cropping systems since crop intensification is an essential information for land
management and trade decisions. Mingwei et al. [17] used an 8-day time series of Moderate
Resolution Imaging Spectroradiometer (MODIS) data sets processed by the Fast Fourier
Transform to discriminate double cropping systems in Northern China, mainly winter
wheat-maize and winter wheat-cotton plantations. Picoli et al. [18] and Chaves et al. [19],
among others, proposed the use of the Time-Weighted Dynamic Time Warping (TWDTW)
method applied to the MODIS data to identify large-scale crop successions and rotations in
an ecotone region between Cerrado and Amazon in the Mato Grosso State, Brazil (soybean
as the first crop and maize and millet as the second crop), with promising results. The
rationale is the use of logistic functions to find the number of peaks in spectral indices in
a specific crop calendar. However, differences in climate, crop type, and planting dates
can cause differences in crop growth patterns, affecting the accuracy significantly. Another
drawback is the 250 m coarse resolution of the MODIS sensor, which is quite sensitive to
the occurrences of multiple targets within a single pixel.

More recently, NASA proposed the Harmonized Landsat and Sentinel-2 (HLS) ini-
tiative to produce analysis-ready, surface reflectance images acquired by the Landsat
Operational Land Imager (OLI) and Sentinel-2 Multispectral Instrument (MSI) sensors at a
2–4 day frequency and a 10–30 m spatial resolution [20]. Therefore, in theory, these images
are more suitable for mapping crop intensification besides presenting the possibility of
mapping smaller areas (typically, >2–3 ha), as demonstrated by the studies conducted,
for example, by Liu et al. [21] and Pan et al. [22]. Parreiras et al. [23] also demonstrated
the potential of HLS to monitor specific crop (soybean) in the western Bahia State, Brazil.
However, monitoring the double cropping system in the Cerrado biome using optical
remote sensing data is not an easy task, mainly because of the persistent cloud coverage
during the rainy season, even if the frequency of data acquisition is reduced to 2–4 days.

With the launch of the PlanetScope (PS) constellation of nanosatellites, we have the
opportunity to use the near daily-based satellite data with a pixel size of ~5 m to mon-
itor rainfed crop production with a reasonable number of cloud-free images during the
crop growing season. The PS satellite constellation that was launched by the Planet™
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is composed of more than 200 CubeSats that acquire daily images in four multispectral
bands in the blue, green, red, and near-infrared (NIR) spectral regions [24]. The monthly
mosaics of PS, released by Norway´s International Climate & Forests Initiative (NICFI) [25],
correspond to the combination of the best daily acquisitions during the month so that
they are mostly cloud-free. Consequently, the NICFI images provide the best available
multispectral data set to map double cropping systems in tropical regions. Several studies
have already demonstrated the potential of PS monthly mosaics for different applications,
including tree cover monitoring over tropical regions, based on the U-net deep learning
model [26], cropland mapping in smallholder landscapes in Mozambique, based on the
Random Forest (RF) machine learning model [27], planted Eucalyptus mortality in Mato
Grosso State, Brazil, the logistic regression model [28], and land-use following deforestation
in Ethiopia based on the U-net model [29], among others.

However, as pointed out by Wagner et al. [26], the main drawback of NICFI mosaics is
the variation in the reflectance values between different Planet satellite sensors and between
dates within the same mosaics. As reported in the NICFI documentation [25], the absolute
radiometric calibration is not guaranteed in the normalized surface reflectance base maps.
Therefore, it seems that the performance of PS monthly mosaics for different applications
is site-specific.

In this study, we assessed the potential of PS monthly mosaics acquired from October
2021 to April 2022 (rainy season) to identify double cropping systems and other land
use and land cover (LULC) classes in the municipality of Goiatuba, southwestern Goiás
State, Brazil. We selected this study area because it is representative of the Cerrado´s
municipalities presenting large areas with double cropping systems and because of its
regional socio-economic importance. To the best of our knowledge, there is no study
evaluating this high spatial and temporal resolution and NICFI´s monthly products to
discriminate double crop agricultural fields over the Cerrado biome. Our ultimate goal is
to analyze the feasibility of using PS monthly mosaics in an operational way to monitor
agricultural areas of the Brazilian Cerrado with double cropping systems. Within this
context, this work presents the following scientific contributions: (i) it is the first proposal
of mapping the double cropping system in the Brazilian Cerrado using PS monthly mosaics;
and (ii) it presents a framework to select the best spectral and textural attributes to identify
areas with double cropping based on the machine learning Random Forest classifier. Since
there are no other PS monthly mosaics-based studies on mapping double cropping systems
in the Cerrado biome, this work is intended to serve as a benchmark to help generate
consistent and accurate LULC maps of the Brazilian Cerrado that include, for the first time,
double cropping in their legends.

2. Materials and Methods
2.1. Study Area

The study area corresponds to the municipality of Goiatuba, covering an area of
approximately 247,000 ha in the southern part of Goiás State, Brazil (latitude: −18.00◦;
longitude: −49.60◦) (Figure 1). Goiatuba is becoming one of the most important munici-
palities of the Cerrado in terms of agricultural production in the south/southwest part of
Goiás State. According to MapBiomas [6], 45% of this municipality was covered by annual
crops in 2021, followed by sugarcane (17%) and cultivated pastures (9%). Nowadays,
annual crops are replacing degraded pastures while sugarcane is advancing in croplands.
For example, in this municipality, areas occupied by cultivated pastures decreased from
45,000 ha in 1985 to 23,000 ha in 2021 while harvested areas of soybean increased from
42,500 ha in 1985 to 76,000 ha in 2021, respectively [30,31].

The climate is tropical, with hot and humid summers and dry winters—Aw in the
Köppen climate classification system [32]. According to the rain gauge station located
in the neighboring municipality of Itumbiara (station code: 83523; latitude: −18.41◦;
longitude: −49.19◦) [33], average annual precipitation is 1394 mm, concentrated between
November (monthly average of 199 mm) and March (monthly average of 204 mm). The
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topography is dominantly flat (47% of the municipality, typical slope of 0–3%), with
surrounding depressed landforms (41%).
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Figure 1. Location of the study area, municipality of Goiatuba in Goiás State, Brazil (A) and the RGB
color composite of PlanetScope of bands 4 (near-infrared), 3 (red), and 2 (green) from October 2021
over the study area (B). GO = Goiás State.

Reddish, deep, and well-developed Ferralsols, according to the World Reference Base
for Soil Resources (WRS) proposed by the Food and Agriculture Organization (FAO) [1]
(Latossolo Vermelho in the Brazilian System of Soil Classification or Oxisols in the U.S.
Soil Taxonomy), are the dominant type of soil in this municipality [34], which is highly
weathered, deep (>2 m), well-drained, and with low levels of fertility and high contents
of Si and Al toxicity [35]. This soil type is representative of the Cerrado biome where the
two most common soil types are Ferralsols (44%) and Arenosols (21%). Figure 2 shows the
ternary diagram of 153 soil texture analyses from this municipality. The soil samples were
obtained at the 0–5 cm depth during the field campaign conducted in October 2022. The
average percentages of sand, silt, and clay were 33%, 23%, and 44%, respectively, which is
classified as fine texture in the FAO´s classification or loam in the U.S. Soil Taxonomy, that
is, soils having roughly balanced proportions of sand, silt, and clay contents.
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Figure 2. Ternary diagram of the soil texture from the municipality of Goiatuba, Goiás State, Brazil.
Soil samples were obtained at a soil depth of 0–5 cm in October 2021.

2.2. Methods

Figure 3 shows the main steps of our methodological approach. We based our study
on six monthly mosaics of PS satellite that were converted into spectral indices and tex-
tural attributes based on the Gray-Level Co-occurrence Matrix (GLCM) algorithm. The
images were acquired during the 2021/2022 crop growing season. A combination of most
relevant multispectral bands, spectral indices, and textural attributes was used as input
parameters for the RF classifier [36]. The reference samples for training and validation of
RF classification were obtained during two field campaigns conducted in October 2021 and
April 2022.

We relied on the PS mosaics released by the NCIFI and made available for download
in the Google Earth Engine cloud computing platform [37]. The mosaics are prepared
primarily to combat deforestation and forest degradation and cover an area limited be-
tween 30◦ north latitude to 30◦ south latitude that corresponds to the world´s tropical
region [38]. They are composed by the blue (0.455–0.515 µm), green (0.500–0.590 µm),
red (0.590–0.670 µm), and NIR (0.780–0.860 µm) spectral bands and a spatial resolution
of 4.77 m. Two mosaics per year were produced between the period of December 2015 to
August 2020, becoming monthly since then.

In this study, we selected six normalized analytic mosaics from October 2021 to
March 2022, which correspond to the crop growing season for most of the crop plantations
in the study area. These mosaics are based on the PS surface reflectance data that are
atmospherically corrected and normalized to reduce scene-to-scene variability [38]. The
seamlines are also removed to minimize scene boundaries. According to Pandey et al. [38],
PS normalized surface reflectance products work well whenever spatial consistency is
prioritized and/or training data for machine learning algorithms are considered.
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Figure 3. Flowchart showing the main steps of the methodological approach considered in this study.
NCIFI = Norway´s International Climate and Forests Initiative; NDVI = Normalized Difference
Vegetation Index; EVI = Enhanced Vegetation Index; GRNDI = Green–Red Normalized Difference
Index; and GLCM = Gray-Level Co-occurrence Matrix.

For illustration purposes, Figure 4 shows three RGB color composites of PS mosaics of
the study area (bands 3, 4, and 2, respectively) from October 2021, January 2022, and March
2022. In the October composite, greenish areas are mostly occupied by either evergreen
native vegetation, sugarcane, or irrigated annual crops, while reddish areas correspond
mainly to cultivated pastures and rainfed annual crops covered with crop residues. In
January, there is a predominance of greenish color which corresponds to the peak of wet
season in the study area, when most of the annual crops are also in the peak of crop growing
season. In March (end of wet season), the areas with dominant greenish color are reduced
in relation to the previous image since not all areas of second cropping are in the peak of
growing season. The planting season for the second crop in this municipality usually occurs
at the beginning of February (unpublished information provided by local producers).

We conducted a field survey in October 2021 to characterize the most representative
LULC classes in the study area. We visited 201 sampling points that were previously defined
based on visual interpretation of a Landsat 8 RGB color composite of bands 4, 5, and 6
acquired on 27 August 2021. We tried to include all representative LULC classes, both
natural Cerrado formations (grasslands, shrublands, and forestlands) and land use classes
(cultivated pastures, annual crops, semi-perennial crops, reforestation, and bare soils). These
are the representative LULC classes of the municipality, according to the annual LULC maps
produced by MapBiomas [6] for the entire country at the 30 m pixel size.
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Figure 4. Monthly mosaics of PlanetScope RGB color composites of bands 3 (red), 4 (near-infrared),
and 2 (green) from the municipality of Goiatuba, Goiás State, Brazil from October 2021 (A),
January 2022 (B), and March 2022 (C).

For each site, we recorded its coordinates and LULC class and obtained panoramic
pictures using an RGB digital camera with a resolution of 7.1 MPixel. Field data were
collected using the AgroTag platform, developed by Embrapa Meio Ambiente, Jaguariúna,
SP, Brazil, for recording georeferenced field data. AgroTag has an integrated WebGIS
interface that allows access and analysis of data registered in this platform [39]. In the
second field trip, conducted in April 2022, we revisited all points classified as annual crops
and bare soils in October 2021 to estimate the level of adoption of double cropping by
farmers as well as to record the type of second crop adopted by farmers. In the Goiatuba
municipality, the most common second crops are maize and sorghum. Field data collected
in this study are available upon request to the corresponding author.

Besides the four spectral bands of PS images converted into normalized surface
reflectance, we included multitemporal information derived from vegetation indices and
textural metrics as input parameters for the RF classification. We calculated three vegetation
indices (VIs): Normalized Difference Vegetation Index (NDVI) [40] (Equation (1)), Enhanced
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Vegetation Index (EVI) [41] (Equation (2)), and Green–Red Normalized Difference Index
(GRNDI) [42] (Equation (3)).

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(1)

EVI = 2.5 × ρNIR − ρRed
ρNIR + 6 × ρRed − 7.5 × ρBlue + 1

(2)

GRNDI =
ρGreen − ρRed
ρGreen + ρRed

(3)

where ρ is the surface reflectance in the blue, green, red, and NIR spectral bands.
These VIs take into consideration different combinations of PS spectral bands posi-

tioned in the visible and NIR wavelengths. NDVI is the most popular VI in the literature
and depicts differences in photosynthetic activities in the plant canopies while EVI was
developed to reduce NDVI-related constraints of signal saturation over dense vegetation
cover as well as to minimize its soil and atmosphere effects [12,41]. GRNDI may detect sea-
sonal changes in old/new foliage associated with seasonal changes of native vegetation [43]
or crop growing processes.

We also derived textural features from the four spectral bands of the PS images based
on the GLCM [44]. These attributes have been used by several authors for LULC classifica-
tion in different landscapes and data sets [45,46]. The GLCM requires the setting of four
parameters by users: Kernel´s window size, spectral band, level of quantization, and direc-
tion. Small windows (e.g., 3 × 3) may amplify noise while large windows (e.g., 31 × 31)
may over-smooth texture [47]. However, other studies reported improvements in the crop
classification when textural features derived from larger Kernel sizes were used [48].

Based on preliminary tests involving a randomly selected smaller area in the mu-
nicipality of Goiatuba, we selected the following parameters: window size of 7 × 7, all
four spectral bands, level of quantization of 64 bits, and azimuth direction of 45◦. From
this matrix, it is possible to extract 10 textural features from, for example, the open-source
Sentinel Application Platform (SNAP) image processing software developed by the Euro-
pean Space Agency (ESA). However, some of these features may present redundant spatial
context information. The most important textural features were selected based on the
ranking of mean decrease accuracies [36] of the following metrics: contrast, dissimilarity,
homogeneity, angular second moment, energy, entropy, mean, variance, correlation, and
maximum probability. The equations and the definitions of each feature can be found in
Iqbal et al. [46].

All attributes summarized in Table 1 were used as the input parameters for non-
parametric, machine learning RF classification, with a 60%/40% training and test subset
ratio. RF was proposed by Breiman [36] to improve the accuracy of image classification
and regression trees through several combinations of random subsets of trees. Each tree
contributes with one vote, and the final classification is produced considering the votes
from all forest trees. We used the default value for the number of variables in the random
subset at each node (mtry). The number of trees (ntree) was set as 300, which is the square
root of the number of variables. Preliminary tests with 100, 300, and 500 trees showed
that changing from 100 to 300 trees resulted in small improvements in the classification
results. The ten most relevant combinations of spectral bands, spectral indices, and textural
features were selected for the RF classification.

Using the validation dataset, we obtained the overall classification accuracy, Kappa
index, F1-score, and omission and commission errors derived from a confusion matrix with
a level of significance of 0.05. The overall accuracy and Kappa index provide an overview
of the classification performance, while the omission and commission errors and the F1-
score provide a by-class analysis. The overall accuracy refers to the number of correctly
classified samples divided by the total number of samples, while Kappa index measures
the degree of agreement of an image classification, and its values typically range from
0 (no agreement) to 1 (complete agreement). The main diagonal of the matrix indicates the
correct classifications, while the off-diagonal elements indicate omission and commission
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errors [49]. F1-score is derived from the precision (a relation between true positives and
the total number of true positives and false positives) and recall (a relation between true
positives and total number of true positives and false negatives) values and is considered
as the harmonic mean of these two values.

Table 1. Description of input parameters derived from six PlanetScope monthly mosaics for Random
Forest classification, seeking the discrimination of the double cropping plantations and other land
use and land cover classes in the 2021–2022 crop growing season in the municipality of Goiatuba,
Goiás State.

Parameters Description

Spatial resolution 4.77 m
Processing level Atmospherically corrected, normalized, analytic mosaics

Spectral bands Blue (0.455–0.515 µm), green (0.500–0.590 µm), red (0.590–0.670 µm), and
near-infrared (0.780–0.860 µm)

Vegetation indices NDVI, EVI, GRNDI

Textural features Contrast, dissimilarity, homogeneity, angular second moment, energy,
entropy, mean, variance, correlation, and maximum probability

Monthly mosaics October 2021 to March 2022

In addition to the classification performance estimators, a confidence map was also
produced for the municipality of Goiatuba. This map indicates, on a per-pixel basis, the
percentage of votes for the majority class (i.e., the class chosen for the pixel) out of the total
votes from the RF decision trees [50]. High confidences indicate that the class is more likely
to be correct as there was a clearer majority of votes by the ensemble of trees.

3. Results
3.1. Field Data

Table 2 summarizes the number of LULC classes visited in the two field campaigns. A
total of 61 bare soils in October 2021, which correspond to the areas prepared for planting
in this month, were revisited in April 2022. We found that only four sites were not used for
second crop plantation. Maize and sorghum were the most common second crops in the
municipality. Another six sites were planted with sugarcane.

Table 2. Summary of number of sites per land use and land cover (LULC) class visited during the
field campaigns conducted in October 2021 and April 2022.

LULC Class Number of Sites Visited
in October 2021 LULC Class Number of Sites

Visited in April 2022

Forestland 36 Forestland −
Shrubland 10 Shrubland −

Pastureland 46 Pastureland −
Sugarcane 45 Sugarcane −

Reforestation 2 Reforestation −
Cotton 1 Cotton −

Bare soil 61

Maize 35

Sorghum 14

Sugarcane 6

Crop residue 4

Crotalaria 2

TOTAL 201 61
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3.2. Spectral Signatures and Indices

Figure 5 shows the spectral signatures of forestlands, cultivated pastures, single
cropping, and double cropping found in the municipality of Goiatuba over the 2021/2022
crop growing season. The spectral signature of forestlands was derived based on averaging
36 sampling points that were visited during the field campaign of October 2021. A varying
number of pixels was extracted from each sampling point, ranging from 418 to 555 pixels,
with a total of 4300 pixels. In the same way, the spectral signature of cultivated pastures
was obtained based on 46 sampling points (range: 254–646 pixels; total: 22,496 pixels).
The spectral signature of double cropping was obtained considering the 49 field sampling
points recorded as bare soil in October 2021 and as maize or sorghum in April 2022 (range:
402–604 pixels; total: 21,891 pixels). Finally, the spectral signature of single cropping was
obtained through six sampling points recorded as bare soil in October 2021 and sugarcane
in April 2022 (range: 418–552 pixels; total: 4300 pixels). The typical spectral signature
of sugarcane (older than one year) is not shown in this paper because of varying plant
growing conditions found in the study area.
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Figure 5. Multitemporal surface reflectance of forestlands (A), cultivated pasturelands (B), single
croplands (C), and double croplands (D) from the municipality of Goiatuba, Goiás State, Brazil
(2020/2021 crop growing season). The bands 1, 2, 3, and 4 represent the spectral bands of PlanetScope
satellite in the blue, green, red, and near-infrared ranges, respectively.

The forestlands presented spectral signatures that are typical of those from green
leaves, that is, low reflectance in the red band due to the absorption of electromagnetic
radiation related to the photosynthetic activities and high reflectance in the NIR band due
to the high reflection of solar incident radiation controlled by the internal structure of
leaves during the entire time series. Similar signatures were also found for shrubland and
reforestation (not show in this figure).

In October, cultivated pastures did not show strong absorption in the red band or strong
reflection in the NIR band, indicating that the pastures were mostly dry. The main difference
between the temporal signatures of areas with single cropping and double cropping is in
the red and NIR spectral bands from December and January. Most of the double cropping
areas are in the peak of growing season in December and early January, while the harvesting
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season is in early February. The single crop spectral signature from December does not show
the typical reflectance of green vegetation because most of these areas were recently planted
with sugarcane, which presents a much longer crop growing season.

The most stable EVI values during the 2021/2022 crop growing season were found in
the forestlands (typical range: 0.40–0.65) (Figure 6). Although we found some sites with
deciduous forest, most of the forestlands in the study area were composed by gallery forests
and semideciduous forests. As expected, the cultivated pastures were driest in October
(lowest EVI values, typically around 0.25) and greenest in January, the peak of rainy season
in the study area. The most impressive aspect is the difference in EVI values between single
cropping and double cropping from February. EVI from double cropping showed much
lower EVI values (average: 0.19) than those from single cropping (average: 0.37). The
variance of EVI values for single cropping was also much higher than that from double
cropping for this period.
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(2020/2021 crop growing season).

3.3. Textural Features

We found that some GLCM textural features were highly correlated regardless of
spectral band or month of the year. This is the case, for example, between asymmetry
and maximum probability (r = 0.969) or between mean and variance (r = 0.973) derived
from the mosaic obtained in October 2021 and band 4 (Table 3). In this figure, there
are 13 combinations with coefficients of correlation higher than 0.80, which agrees with
the statement made by ESA [51] that some textural features produced by the GLCM can
present some redundancy. Therefore, further analysis of reduction of data dimensionality
for optimizing processing was addressed (see Table 3 below).
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Table 3. Coefficients of correlation of 10 GLCM textural features derived from band 4 of Plan-
etScope mosaic obtained in October 2021. All positive and negative correlations higher than 0.80
are highlighted in red color. ASM = angular second moment; CON = contrast; COR = correlation;
DIS = dissimilarity; ENE = energy; ENT = entropy; HOM = homogeneity; MAX = maximum value;
MEAN = mean value; VAR = variance.

ASM CON COR DIS ENE ENT HOM MAX MEAN VAR

ASM 1
CON −0.343 1
COR 0.067 −0.381 1
DIS −0.561 0.924 −0.358 1
ENE 0.957 −0.477 0.178 −0.719 1
ENT −0.772 0.641 −0.234 0.862 −0.912 1

HOM 0.822 −0.636 0.180 −0.869 0.937 −0.966 1
MAX 0.969 −0.400 0.084 −0.628 0.975 −0.834 0.880 1

MEAN 0.025 0.049 0.423 0.059 0.149 −0.086 −0.038 0.006 1
VAR 0.149 0.006 0.359 −0.012 0.266 −0.189 0.061 0.123 0.973 1

Table 4 shows the statistical results of RF classification involving all spectral bands
and vegetation indices and 20 out of 240 most important combinations involving textural
features (10 textural features × 6 months × 4 bands). As the option with the 10 combinations
presented the highest accuracies (overall accuracy = 90.91%; Kappa index = 0.8784), we
selected this option for producing the final RF classification map of the municipality of
Goiatuba. We chose to generate the final map using the Orfeo Toolbox (OTB) plug-in in
the QGIS 3.10 software because of the confidence map, an output that represents the level
of confidence in the classification of each pixel considering the proportion of votes for the
majority class [51].

Table 4. Statistical results of Random Forest classification involving 4 spectral bands, 3 vegetation
indices, and 20 out of 240 possible combinations involving Gray-Level Co-occurrence Matrix (GLCM)
textural features (10 GLCM features × 6 months × 4 bands).

Model Attributes
Overall

Accuracy
(%)

Kappa
Index p-Value mTry nTree

1 4 Bands + 3 VIs + 1 GLCM 88.31 0.8438 <2.2 × 10−16 6 300
2 4 Bands + 3 VIs + 2 GLCMs 88.31 0.8438 <2.2 × 10−16 7 300
3 4 Bands + 3 VIs + 3 GLCMs 89.61 0.8611 <2.2 × 10−16 7 300
4 4 Bands + 3 VIs + 4 GLCMs 89.61 0.8611 <2.2 × 10−16 7 300
5 4 Bands + 3 VIs + 5 GLCMs 89.61 0.8611 <2.2 × 10−16 7 300
6 4 Bands + 3 VIs + 6 GLCMs 89.61 0.8611 <2.2 × 10−16 7 300
7 4 Bands + 3 VIs + 7 GLCMs 89.61 0.8611 <2.2 × 10−16 7 300
8 4 Bands + 3 VIs + 8 GLCMs 89.61 0.8611 <2.2 × 10−16 7 300
9 4 Bands + 3 VIs + 9 GLCMs 90.91 0.8780 <2.2 × 10−16 7 300
10 4 Bands + 3 VIs + 10 GLCMs 90.91 0.8784 <2.2 × 10−16 7 300
11 4 Bands + 3 VIs + 11 GLCMs 88.31 0.8437 <2.2 × 10−16 7 300
12 4 Bands + 3 VIs + 12 GLCMs 88.31 0.8436 <2.2 × 10−16 7 300
13 4 Bands + 3 VIs + 13 GLCMs 88.31 0.8436 <2.2 × 10−16 7 300
14 4 Bands + 3 VIs + 14 GLCMs 89.61 0.8611 <2.2 × 10−16 7 300
15 4 Bands + 3 VIs + 15 GLCMs 89.61 0.8610 <2.2 × 10−16 7 300
16 4 Bands + 3 VIs + 16 GLCMs 89.61 0.8610 <2.2 × 10−16 8 300
17 4 Bands + 3 VIs + 17 GLCMs 88.31 0.8436 <2.2 × 10−16 8 300
18 4 Bands + 3 VIs + 18 GLCMs 88.31 0.8435 <2.2 × 10−16 8 300
19 4 Bands + 3 VIs + 19 GLCMs 88.31 0.8437 <2.2 × 10−16 8 300
20 4 Bands + 3 VIs + 20 GLCMs 88.31 0.8437 <2.2 × 10−16 8 300

Figure 7 shows the 10 most relevant input parameters for the RF classification based
on the mean decrease accuracy criterion. This figure also shows the importance of PS
mosaics from February, a month in which the seven top-ranked input parameters are
involved. In terms of GLCM attributes, the variance, mean, and correlation were the most
relevant parameters.
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Figure 7. Rank of 10 most important attributes for Random Forest classification. See Figure 7 for
identification of textural attribute short names. NDVI = normalized difference vegetation index;
GRNDI = green–red normalized difference index; EVI = enhanced vegetation index.

3.4. Random Forest Classification

Figure 8 shows the final map of RF classification, after smoothing the classification
result by using a 4 × 4 window size filter. The dominant LULC class was the double cropped
area (37%), followed by cultivated pasture (22%) and sugarcane (21%). The majority of
the municipality (80%) is dominated by crop, cattle meat, sugar, and biofuel production,
while native vegetation occupies only 18% of the municipality, contrasting with the average
portrait of the Cerrado biome, which is roughly occupied by 50% of agriculture and 50% of
native vegetation.
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showing the dominant presence of double cropping areas.
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3.5. Accuracy Assessment

The overall accuracy and the Kappa index of the final map were 90.91% and 0.8784,
respectively (Table 5). Class-specific omission errors ranged from 0 for native vegetation
and cultivated pasture to 20% for sugarcane, while commission errors ranged from 0
for native vegetation to 26% for cultivated pasture. For double cropping, the omission
and commission errors were 13% and 5%, respectively, while the F1-score was 0.91. In
other words, from a total of 24 field validation sites of double cropping, one site was
misclassified as single crop and two sites as cultivated pasture (omission error). On the
other hand, one single crop field was misclassified as double crop (commission error).
There was no confusion to discriminate natural vegetation, while single crop presented the
highest omission error (20%). In the same way, cultivated pastures presented the highest
commission error (26.3%).

Table 5. Confusion matrix for Random Forest classification based on the PS mosaics for municipality
of Goiatuba, Goiás State, with 95% of confidence interval. DC = double cropping; SC = sugarcane;
CP = cultivated pasture; NV = native vegetation; O.E. = omission error; C.E. = commission error.

RF Classification

Fi
el

d
D

at
a

DC SC CP NV Total O.E. (%) C.E. (%) Precision Recall F-score

DC 21 1 2 0 24 13.0 4.5 0.95 0.88 0.91
SC 1 16 3 0 20 20.0 5.9 0.94 0.80 0.86
CP 0 0 14 0 14 0 26.3 0.74 1 0.85
NV 0 0 0 19 19 0 0 1 1 1

Total 22 17 19 19 77

Overall accuracy (%) 90.91
Kappa index 0.8784

Figure 9 shows the classification confidence map of the LULC classification result for
the municipality of Goiatuba. The majority of the municipality presented overall high
confidence (81.0% ± 18.8%) (Figure 10). The classification confidence was high for double
cropping (87.6% ± 16.1%) and native vegetation (88.0% ± 16.7%) and relatively low for
sugarcane (73.3% ± 18.3%) and cultivated pasture (75.5% ± 17.3%).
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Figure 10. Percentage of classification confidence for the 2021/2022 crop growing season in the
municipality of Goiatuba, Goiás State, Brazil, discriminated by land use and land cover (LULC)
classes considered in the Random Forest classification.

4. Discussion

In the municipality of Goiatuba, Goiás State, Brazil, we found 1330 rural properties
registered in the Brazilian Rural Environmental Registering system (CAR—Cadastro Am-
biental Rural) on 8 December 2022. The average size of farms in this municipality was
171 ha [52], much smaller than the average size of farms located in the Brazilian Amazon
(e.g., 1737 ha; 615 farms with an average size of 1737 ha in the municipality of Sapezal,
Mato Grosso State). This means that the recent investigations, such as the one conducted by
Chaves et al. [19] in the municipality of Sapezal to distinguish single cropping from double
cropping based on the MODIS time series data processed through the TWDTW strategy,
may not work properly. In other words, the MODIS data processed by the TWDTW work
well in large farms such as those found in agricultural frontiers located in the transition
zone between Cerrado and Amazonia biomes, which are the cases of the municipalities
of Lucas do Rio Verde, Sapezal, and Sorriso, among others. For smaller farms, the much
better spatial resolution of PS monthly mosaics (4.77 m) offers a more promising possibility
of discriminating single cropping from double cropping with high accuracy.

In general, most of the agricultural activities in the Cerrado biome using remote
sensing data have been monitored based on optical satellite images with a broad range
of spatial resolution (10–250 m), often converted into spectral indices or phenological
metrics [5,53]. To the best of our knowledge, only the study conducted by Vizzari [53]
has used GLCM-related textural features derived from a six-month PS mosaic to produce
an LULC map over the western Bahia State, Brazil. The image classification based on
this object-based strategy showed higher performance (overall accuracy of 82%) than the
classification based on pixel-based strategy (overall accuracy of 67%).

The GLCM-derived textural features have been more related to the radar remote
sensing and to the very high spatial resolution images obtained by unmanned aerial
vehicles (UAVs). There are a number of studies available in the literature using these
attributes derived from synthetic aperture radar (SAR) data to identify clear-cut deforested
areas, selective logged areas, and different stages of secondary vegetation. The UAV-
derived optical images have been more frequently used in the agricultural applications.
In theory, GLCM-related textural features derived from both the UAV platform and PS
mosaics can provide relevant information for identifying different types of LULC classes
in the Cerrado biome, since crop planting rows with varying distance, different levels of
biomass, and different azimuth angles, among other aspects, produce distinct textural
patterns not only in SAR images, but also in optical images.

In the list of our 10 most important input parameters for the RF classification, we found
the following textural features: correlation, variance, and mean from the mosaic of February.
The selection of most relevant textural features is both site-specific and sensor-specific, as
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confirmed by other studies such as the one conducted by Sothe et al. [47], who reported
contrast and dissimilarity as the most important textural attributes associated with the
infrared spectral bands of Landsat 8 and RapidEye satellite images. The selection of most
important textural features is crucial to reduce computational demand for running RF and
other non-parametric machine learning or deep learning classifiers. Besides, as demon-
strated in our study, increasing the number of input parameters for the RF classification
does not assure increase in the accuracy of the classification results.

The RF classification showed that 82% of the municipality is covered by different
types of land occupation, which is in disagreement with the Brazilian Forest Code, which
determines a maximum of 80% of land occupation (see more details in the Introduction
Section). Our results of RF classification present a relatively good agreement with those
from the MapBiomas initiative [6] (Figure 11), except for cultivated pasture. PS mosaics
underestimated annual crops by 8%. This difference was somewhat expected because
of differences in the image acquisition modes, matching mapping legends, and satellite
overpasses. According to IBGE [30], the total harvested area with annual crops in the
municipality of Goiatuba was 176,032 ha in 2021, that is, 71% of the municipality, a percent-
age much higher than those estimated by PS (37%) or MapBiomas (45%). This difference
is because this institution (Brazilian Institute of Geography and Statistics—IBGE) counts
the harvested area twice whenever the double cropping system is adopted. For example,
Goiatuba harvested 27,400 ha of corn in 2021, but 94% of this area corresponded to the
second crop [54].
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Some authors have used Bayesian-based dropouts during the calibration phase of
the methodology so that the model uncertainty can be statistically estimated [55,56]. In
practice, this method, known as Monte Carlo dropout, has become attractive since it deals
well with large amounts of data [57]. We recommend testing this approach in order to
investigate the radiometric consistency of PS monthly mosaics in terms of signal variations
associated with varying image acquisition modes and multiple dates of individual satellites
that are part of the PS constellation.

Regarding the limitations of this study, we can point out the differences in the crop
type (mostly for two types—maize and sorghum) and main differences in the crop planting
dates that can cause large radiometric variations in the PS monthly mosaics, leading to
misclassifications. As pointed out above, the radiometric variations due to different image
acquisition modes and different dates of individual PS satellites that are considered in
the production of monthly mosaics are another source of classification errors, although
these mosaics are processed for normalization to reduce scene-to-scene variability and for
seamline removal to minimize scene boundaries [38].
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5. Conclusions

Results of this study allowed elucidation of the following conclusions:

a. The high spatial and temporal resolution of the PS constellation of over 200 nanosatel-
lites allows the addition of “double cropping” into the legend of LULC maps of the
Cerrado biome.

b. The use of textural attributes derived from the GLCM as input parameters in the
supervised machine learning classification procedures is highly recommended.

c. The most relevant PS images for identifying double cropping farm management
systems are the ones obtained in February.

The products and the models selected in this work can be used as a powerful public
policy to monitor agricultural intensification in the Cerrado biome or in other biomes
in an operational way. As the texture attributes showed good performance to identify
double-cropped fields, these metrics derived from GLCM can be tested to identify crop-
livestock-forest integration systems in Brazil, which have been increasingly adopted in
the country. The methodological approach used in this study is a good candidate to be a
benchmark to generate consistent and accurate LULC maps of the Brazilian Cerrado with
the unprecedented presence of the double cropping in their legends.

Author Contributions: Conceptualization, E.E.S. and É.L.B.; methodology, E.E.S.; validation, E.E.S.;
formal analysis, E.E.S.; investigation, E.E.S. and É.L.B.; resources, É.L.B. and E.E.S.; data curation,
E.E.S. and T.C.P.; writing—original draft preparation, E.E.S.; writing—review and editing, E.E.S.,
É.L.B., I.D.S., D.d.C.V., L.E.V., T.C.P. and G.M.B.; visualization, T.C.P.; supervision, E.E.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the São Paulo Research Foundation (FAPESP), grant #
2019/26222-6 “Agricultural mapping in the Cerrado via combined use of multisensor images” (Édson
Bolfe) and by the National Council for Scientific and Technological Development (CNPq)—grant
# 406494/2018-5 “Analysis of possibility of mapping abandoned agricultural areas in the Cerrado
through Google Earth Engine” (Edson Sano) and Research Productivity Fellowship of Edson Sano
(grant # 303502/2019-3), Édson Bolfe (302706/2019-4), and Ieda Sanches (310042/2021-6). This study
was also partially financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
(CAPES), Brazil, Finance Code 001.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request to the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sano, E.E.; Rodrigues, A.A.; Martins, E.S.; Bettiol, G.M.; Bustamante, M.M.C.; Bezerra, A.S.; Couto, A.F., Jr.; Vasconcelos, V.;

Schuler, J.; Bolfe, E.L. Cerrado ecoregions: A spatial framework to assess and prioritize Brazilian savanna environmental diversity
for conservation. J. Environ. Manag. 2019, 232, 818–828. [CrossRef] [PubMed]

2. Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature
2000, 403, 853–858. [CrossRef] [PubMed]

3. Alencar, A.; Shimbo, J.Z.; Lenti, F.; Marques, C.B.; Zimbres, B.; Rosa, M.; Arruda, V.; Castro, I.; Ribeiro, J.P.F.M.; Varela, V.; et al.
Mapping three decades of changes in the Brazilian savanna native vegetation using Landsat data processed in the Google Earth
Engine platform. Remote Sens. 2020, 12, 924. [CrossRef]

4. Ribeiro, J.F.; Walter, B.M.T. As principais fitofisionomias do bioma Cerrado. In Cerrado: Ecologia e Flora; Sano, S.M., Almeida, S.P.,
Ribeiro, J.F., Eds.; Embrapa-CPAC: Planaltina, DF, Brazil, 2008; pp. 151–212.

5. Bendini, H.N.; Fonseca, L.M.G.; Schwieder, M.; Körting, T.S.; Rufin, P.; Sanches, I.D.; Leitão, P.J.; Hostert, P. Detailed agricultural
land classification in the Brazilian Cerrado based on phenological information from dense satellite image time series. Int. J. Appl.
Earth Obs. Geoinf. 2019, 82, 101872. [CrossRef]

6. MapBiomas. MapBiomas v. 7.0. Available online: https://mapbiomas.org/download (accessed on 29 September 2022).
7. Soares Filho, B.; Rajão, R.; Macedo, M.; Carneiro, A.; Costa, W.; Coe, M.; Rodrigues, H.; Alencar, A. Cracking Brazil’s forest code.

Science 2014, 344, 363–364. [CrossRef] [PubMed]

http://doi.org/10.1016/j.jenvman.2018.11.108
http://www.ncbi.nlm.nih.gov/pubmed/30529869
http://doi.org/10.1038/35002501
http://www.ncbi.nlm.nih.gov/pubmed/10706275
http://doi.org/10.3390/rs12060924
http://doi.org/10.1016/j.jag.2019.05.005
https://mapbiomas.org/download
http://doi.org/10.1126/science.1246663
http://www.ncbi.nlm.nih.gov/pubmed/24763575


Land 2023, 12, 581 18 of 19

8. Rattis, L.; Brando, P.M.; Macedo, M.N.; Spera, S.A.; Castanho, A.D.A.; Marques, E.Q.; Costa, N.Q.; Silverio, D.; Coe, M.T. Climatic
limit for agriculture in Brazil. Nat. Clim. Chang. 2021, 11, 1098–1104. [CrossRef]

9. Rodrigues, A.A.; Macedo, M.N.; Silvério, D.V.; Maracahipes, L.; Coe, M.T.; Brando, P.M.; Shimbo, J.Z.; Rajão, R.; Soares-Filho, B.;
Bustamante, M.M.C. Cerrado deforestation threatens regional climate and water availability for agriculture and ecosystems.
Glob. Chang. Biol. 2022, 28, 6807–6822. [CrossRef] [PubMed]

10. Hellmayr, R.; Rausch, L.L.; Munger, J.; Gibbs, H.K. Brazil´s Amazon soy moratorium reduced deforestation. Nat. Food 2020, 1,
801–810. [CrossRef]

11. Silva, V.P.R.; Silva, R.A.; Maciel, G.F.; Souza, E.P.; Braga, C.C.; Holanda, R.M. Soybean yield in the Matopiba region under climate
changes. Rev. Bras. Eng. Agríc. Amb. 2020, 24, 8–14. [CrossRef]

12. Souza, A.A.; Galvão, L.S.; Korting, T.S.; Almeida, C.A. On a data-driven approach for detecting disturbance in the Brazilian
savannas using time series of vegetation indices. Remote Sens. 2021, 12, 4959. [CrossRef]

13. Scopel, E.; Triomphe, B.; Affholder, F.; Silva, F.A.M.; Corbeels, M.; Xavier, J.H.V.; Lahmar, R.; Recous, S.; Bernoux, M.;
Blanchart, E.; et al. Conservation agriculture cropping systems in temperate and tropical conditions, performances and im-
pacts. A review. Agron. Sustain. Dev. 2013, 33, 113–130. [CrossRef]

14. Xu, J.; Gao, J.; Holanda, H.V.; Rodríguez, L.F.; Caixeta-Filho, J.V.; Zong, R.; Jiang, H.; Li, H.; Du, Z.; Wang, X.; et al. Double
cropping and cropland expansion boost grain production in Brazil. Nat. Food 2021, 2, 264–273. [CrossRef]

15. Guo, Y.; Xia, H.; Pan, L.; Zhao, X.; Li, R. Mapping the northern limit of double cropping using a phenology-based algorithm and
Google Earth Engine. Remote Sens. 2022, 14, 1004. [CrossRef]

16. CONAB. Companhia Nacional de Abastecimento. In Acompanhamento da Safra Brasileira; Grãos. Safra 2021/22, 12o Levantamento;
CONAB: Brasília, DF, Brazil, 2022.

17. Mingwei, Z.; Qingbo, Z.; Zhongxin, C.; Jia, L.; Yong, Z.; Chongfa, C. Crop discrimination in Northern China with double cropping
systems using Fourier analysis of time-series MODIS data. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 476–485. [CrossRef]

18. Picoli, M.C.A.; Camara, G.; Sanches, I.; Simões, R.; Carvalho, A.; Maciel, A.; Coutinho, A.; Esquerdo, J.; Antunes, J.;
Begotti, R.A.; et al. Big earth observation time series analysis for monitoring Brazilian agriculture. ISPRS J. Photogramm. Remote
Sens. 2018, 145, 328–339. [CrossRef]

19. Chaves, M.E.D.; Alves, M.C.; Sáfadi, T.; Oliveira, M.S.; Picoli, M.C.A.; Simões, R.E.O.; Mataveli, G.A.V. Time-weighted dynamic
time warping analysis for mapping interannual cropping practices changes in large-scale agro-industrial farms in Brazilian
Cerrado. Sci. Remote Sens. 2021, 3, 100021. [CrossRef]

20. Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.C.; Skakun, S.V.; Justice, C. The harmonized Landsat and
Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [CrossRef]

21. Liu, C.; Zhang, Q.; Tao, S.; Qi, J.; Ding, M.; Guan, Q.; Wu, B.; Zhang, M.; Nabil, M.; Tian, F.; et al. A new framework to map fine
resolution cropping intensity across the globe: Algorithm, validation, and implication. Remote Sens. Environ. 2020, 251, 112095.
[CrossRef]

22. Pan, L.; Xia, H.; Yang, J.; Niu, W.; Wang, R.; Song, H.; Guo, Y.; Qin, Y. Mapping cropping intensity in Huaihe basin using
phenology algorithm, all Sentinel-2 and Landsat images in Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102376.
[CrossRef]

23. Parreiras, T.C.; Bolfe, E.L.; Chaves, M.E.D.; Sanches, I.D.; Sano, E.E.; Victoria, D.C.; Bettiol, G.M.; Vicente, L.E. Hierarchical
classification of soybean in the Brazilian savanna based on Harmonized Landsat Sentinel data. Remote Sens. 2022, 14, 3736.
[CrossRef]

24. Planet. Planet Imagery Product Specifications. 2022. Available online: https://assets.planet.com/docs/Planet_Combined_
Imagery_Product_Specs_letter_screen.pdf (accessed on 30 September 2022).

25. NICFI. Norway´s International Climate and Forest Initiative. Standing with the World´s Tropical Forests. 2021. Available online:
https://www.nicfi.no/ (accessed on 30 September 2022).

26. Wagner, F.H.; Dalagnol, R.; Silva-Júnior, C.H.L.; Carter, G.; Ritz, A.L.; Hirye, M.C.M.; Ometto, J.P.H.B.; Saatchi, S. Mapping
tropical forest cover and deforestation with Planet NICFI satellite images and deep learning in Mato Grosso State (Brazil) from
2015 to 2021. Remote Sens. 2023, 15, 521. [CrossRef]

27. Rufin, P.; Bey, A.; Picoli, M.; Meyfroidt, P. Large-area mapping of active cropland and short-term fallows in smallholder landscapes
using PlanetScope data. Int. J. Appl. Earth Obs. Geoinf. 2022, 11, 102937. [CrossRef]

28. Pascual, A.; Tupinambá-Simões, F.; Guerra-Hernández, J.; Bravo, F. High-resolution planet satellite imagery and multi-temporal
surveys to predict risk of tree mortality in tropical eucalypt forestry. J. Environ. Manag. 2022, 310, 114804. [CrossRef] [PubMed]

29. Masolele, R.N.; De Sy, V.; Marcos, D.; Verbesselt, J.; Gieseke, F.; Mulatu, K.A.; Moges, Y.; Sebrala, H.; Martius, C.; Herold, M.
Using high-resolution imagery and deep learning to classify land-use following deforestation: A case study in Ethiopia.
Gisci. Remote Sens. 2022, 59, 1446–1472. [CrossRef]

30. IBGE, Instituto Brasileiro de Geografia e Estatística. PAM—Produção Agrícola Municipal. 1985. Available online: https:
//biblioteca.ibge.gov.br/visualizacao/periodicos/66/pam_1985_v12_t3_sul_centro_oeste.pdf (accessed on 30 September 2022).

31. IBGE, Instituto Brasileiro de Geografia e Estatística. PAM—Produção Agrícola Municipal. 2021. Available online:
https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9117-producao-agricola-municipal-culturas-
temporarias-e-permanentes.html?=&t=resultados (accessed on 30 September 2022).

http://doi.org/10.1038/s41558-021-01214-3
http://doi.org/10.1111/gcb.16386
http://www.ncbi.nlm.nih.gov/pubmed/36073184
http://doi.org/10.1038/s43016-020-00194-5
http://doi.org/10.1590/1807-1929/agriambi.v24n1p8-14
http://doi.org/10.3390/rs13244959
http://doi.org/10.1007/s13593-012-0106-9
http://doi.org/10.1038/s43016-021-00255-3
http://doi.org/10.3390/rs14041004
http://doi.org/10.1016/j.jag.2007.11.002
http://doi.org/10.1016/j.isprsjprs.2018.08.007
http://doi.org/10.1016/j.srs.2021.100021
http://doi.org/10.1016/j.rse.2018.09.002
http://doi.org/10.1016/j.rse.2020.112095
http://doi.org/10.1016/j.jag.2021.102376
http://doi.org/10.3390/rs14153736
https://assets.planet.com/docs/Planet_Combined_Imagery_Product_Specs_letter_screen.pdf
https://assets.planet.com/docs/Planet_Combined_Imagery_Product_Specs_letter_screen.pdf
https://www.nicfi.no/
http://doi.org/10.3390/rs15020521
http://doi.org/10.1016/j.jag.2022.102937
http://doi.org/10.1016/j.jenvman.2022.114804
http://www.ncbi.nlm.nih.gov/pubmed/35240567
http://doi.org/10.1080/15481603.2022.2115619
https://biblioteca.ibge.gov.br/visualizacao/periodicos/66/pam_1985_v12_t3_sul_centro_oeste.pdf
https://biblioteca.ibge.gov.br/visualizacao/periodicos/66/pam_1985_v12_t3_sul_centro_oeste.pdf
https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9117-producao-agricola-municipal-culturas-temporarias-e-permanentes.html?=&t=resultados
https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9117-producao-agricola-municipal-culturas-temporarias-e-permanentes.html?=&t=resultados


Land 2023, 12, 581 19 of 19

32. Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Spavorek, G. Köppen’s climate classification map for Brazil.
Meteorol. Z. 2014, 22, 711–728. [CrossRef] [PubMed]

33. INMET, Instituto Nacional de Meteorologia. Banco de Dados Meteorológicos. Available online: https://bdmep.inmet.gov.br/
(accessed on 1 October 2022).

34. IBGE. Instituto Brasileiro de Geografia e Estatística. In Manual Técnico de Pedologia, 2nd ed.; IBGE: Rio de Janeiro, RJ, Brazil, 2007.
35. Reatto, A.; Correia, J.R.; Spera, S.T.; Martins, E.S. Solos do bioma Cerrado. Aspectos pedológicos. In Cerrado: Ecologia e Flora;

Sano, S.M., Almeida, S.P., Ribeiro, J.F., Eds.; Embrapa Cerrados: Planaltina, DF, Brazil, 2008; pp. 107–149.
36. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
37. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial

analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]
38. Pandey, P.; Kington, J.; Kanwar, A.; Curdoglo, M. Addendum to Planet basemaps product specifications: NICFI basemaps.

Revision: v02. NICFI. 2021. Available online: https://assets.planet.com/docs/NICFI_Basemap_Spec_Addendum.pdf. (accessed
on 1 October 2022).

39. Embrapa. Embrapa Meio Ambiente. AgroTag. Available online: https://www.agrotag.cnptia.embrapa.br/#!/ (accessed on
9 October 2022).

40. Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150.
[CrossRef]

41. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance
of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [CrossRef]

42. Hunt, E.R., Jr.; Cavigelli, M.; Daughtry, C.S.T.; McMurtrey III, J.; Walthall, C.L. Evaluation of digital photography from model
aircraft for remote sensing of crop biomass and nitrogen status. Precis. Agric. 2005, 6, 359–378. [CrossRef]

43. Haddad, I.; Galvão, L.S.; Breunig, F.M.; Dalagnol, R.; Bourscheidt, V.; Jacon, A.D. On the combined use of phenological metrics
derived from different PlanetScope vegetation indices for classifying savannas in Brazil. Remote Sens. Appl. Soc. Environ.
2002, 26, 100764. [CrossRef]

44. Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern 1973, 3,
610–621. [CrossRef]

45. Tassi, A.; Vizzari, M. Object-oriented LULC classification in Google Earth Engine combining SNIC, GLCM, and machine learning
algorithms. Remote Sens. 2020, 12, 3776. [CrossRef]

46. Iqbal, N.; Mumtaz, R.; Shafi, U.; Zaidi, S.M.H. Gray level co-occurrence matrix (GLCM) texture based crop classification using
low altitude remote sensing platforms. PeerJ Comput. Sci. 2021, 7, e536. [CrossRef]

47. Sothe, C.; Almeida, C.M.; Liesenberg, V.; Schimalski, M.B. Evaluating Sentinel-2 and Landsat-8 data to map successional forest
stages in a subtropical forest in southern Brazil. Remote Sens. 2017, 9, 838. [CrossRef]

48. Kwak, G.H.; Park, N.W. Impact of texture information on crop classification with machine learning and UAV images. Appl. Sci.
2019, 9, 643. [CrossRef]

49. Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and
assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–47. [CrossRef]

50. Clark, M.L.; Aide, T.M.; Riner, G. Land change for all municipalities in Latin America and the Caribbean assessed from 250-m
MODIS imagery (2001–2010). Remote Sens. Environ. 2012, 126, 84–103. [CrossRef]

51. OTB Team. OTB CookBook Documentation: Release 6.6.1. 2018. Available online: https://www.orfeo-toolbox.org/packages/
archives/Doc/CookBook-6.6.1.pdf (accessed on 11 November 2022).

52. CAR. Cadastro Ambiental Rural. Available online: https://www.car.gov.br/#/ (accessed on 8 December 2022).
53. Vizzari, M. PlanetScope, Sentinel-2, and Sentinel-1 data integration for object-based land cover classification in Google Earth

Engine. Remote Sens. 2022, 14, 2628. [CrossRef]
54. IBGE, Instituto Brasileiro de Geografia e Estatística, SIDRA. Produção Agrícola Municipal.. Available online: https://sidra.ibge.gov.

br/pesquisa/pam/tabelas (accessed on 20 December 2022).
55. Gal, Y.; Ghahramani, Z. Dropout as a bayesian approximation: Representing model uncertainty in deep learning Interna-

tional conference on machine learning. In Proceedings of the 33rd International Conference on Machine Learning Research,
New York, NY, USA, 19–24 June 2016.

56. Padarian, J.; Minasny, B.; McBratney, A.B. Assessing the uncertainty of deep learning soil spectral models using Monte Carlo
dropout. Geoderma 2022, 425, 116063. [CrossRef]

57. Milanés-Hermosilla, D.; Codorniú, R.T.; López-Baracaldo, R.; Sagaró-Zamora, R.; Delisle-Rodriguez, D.; Villarejo-Mayor, J.J.;
Núñez-Álvarez, J.R. Monte Carlo dropout for uncertainty estimation and motor imagery classification. Sensors 2021, 21, 7241.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1127/0941-2948/2013/0507
http://www.ncbi.nlm.nih.gov/pubmed/24622815
https://bdmep.inmet.gov.br/
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1016/j.rse.2017.06.031
https://assets.planet.com/docs/NICFI_Basemap_Spec_Addendum.pdf.
https://www.agrotag.cnptia.embrapa.br/#!/
http://doi.org/10.1016/0034-4257(79)90013-0
http://doi.org/10.1016/S0034-4257(02)00096-2
http://doi.org/10.1007/s11119-005-2324-5
http://doi.org/10.1016/j.rsase.2022.100764
http://doi.org/10.1109/TSMC.1973.4309314
http://doi.org/10.3390/rs12223776
http://doi.org/10.7717/peerj-cs.536
http://doi.org/10.3390/rs9080838
http://doi.org/10.3390/app9040643
http://doi.org/10.1016/j.rse.2014.02.015
http://doi.org/10.1016/j.rse.2012.08.013
https://www.orfeo-toolbox.org/packages/archives/Doc/CookBook-6.6.1.pdf
https://www.orfeo-toolbox.org/packages/archives/Doc/CookBook-6.6.1.pdf
https://www.car.gov.br/#/
http://doi.org/10.3390/rs14112628
https://sidra.ibge.gov.br/pesquisa/pam/tabelas
https://sidra.ibge.gov.br/pesquisa/pam/tabelas
http://doi.org/10.1016/j.geoderma.2022.116063
http://doi.org/10.3390/s21217241
http://www.ncbi.nlm.nih.gov/pubmed/34770553

	Introduction 
	Materials and Methods 
	Study Area 
	Methods 

	Results 
	Field Data 
	Spectral Signatures and Indices 
	Textural Features 
	Random Forest Classification 
	Accuracy Assessment 

	Discussion 
	Conclusions 
	References

