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1 | INTRODUCTION

| Saulo Fabricio da Silva Chaves! |
Luiz Antonio dos Santos Dias' |

Abstract

In cowpea breeding, multi-environment trials are conducted to select lines with
high yield. The occurrence of genetic and/or statistical imbalance is common in
these experiments, in addition to the possibility of (co)variance between genetic and
non-genetic effects. We explore the restricted maximum likelihood/best linear unbi-
ased prediction features to select the model with the most appropriated covariance
structure and compare the results with the traditional model (homogenous variances
and no covariances). Then, 17 inbred lines and three cultivars were evaluated in six
experiments during two crop years in the semiarid zone of Northeast Brazil. The
trait evaluated was the 100-grain weight. We selected the best model considering
the Akaike Information Criterion. The model with diagonal structure for the residual
effects and heterogeneous compound symmetry for the genetic effects had the best
fit. The predicted genetic gain of lines selected in this model was 1.18% higher com-
pared to the traditional model. Modeling different (co)variance structures for genetic
and non-genetic effects is an efficient approach in selecting superior genotypes in

multi-environment trials in cowpea breeding.

mainly in poor countries. An alternative to overcome these
issues is using nutritive crops in biofortification programs.

he World Health Organization (WHO, 2021) estimated that
in 2020 about 149 million children under 5 were stunted, 45
million were very thin, and 38.9 million were overweight or
obese. These problems are caused by malnutrition of nutri-
ents, for example, protein, vitamins, or minerals, which occurs

Abbreviations: AIC, Akaike information criterion; BIC, bayesian
information criterion; BLUP, best linear unbiased prediction; CS,
compound symmetry; CSH, heterogeneous compound symmetry; GEL,
genotype-by-environment interaction; IDH, diagonal structure; IDV,
identity variance; LRT, likelihood ratio test; MET, multi-environment trials;
REML, restricted maximum likelihood; UN, unstructured; VCU, value
cultivation and use; WHO, world health organization.
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Cowpea [Vigna unguiculata (L.) Walp.], also known as black-
eyed pea, southern pea, and crowder pea, is an example of a
crop that can be biofortified. Cowpea consumption can pro-
vide considerable amounts of protein (24.1%) (Aradjo et al.,
2021; Dakora & Belane, 2019), vitamins (Gongalves et al.,
2016), and micronutrients, such as iron (61.3 mg kg‘l) and
zinc (44.7 mg kg_l) (Feitosa et al., 2018). Therefore, bioforti-
fication programs are investing in the crop’s breeding, aiming
at combining grain yield and high nutrient content into the
best genotypes.

Cowpea is a food crop of great global importance, mainly
for populations of developing countries. Its cultivation is
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growing over the years. Some 12.5 million hectares are
planted with this crop globally, reaching seven million tons
of grain per year (FAOSTAT, 2020). In Brazil, the cultivated
area and production are about 1.35 thousand hectares and
716.9 thousand tons, respectively (CONAB, 2021). The
interest of companies and family farmers is due to the
crop’s ability to tolerate abiotic stresses (Goufo et al., 2017;
Jayawardhane et al., 2022), low fertilizer requirement, and
capacity to perform biological nitrogen fixation (Mndzebele
et al., 2020). Providing high-quality food is one of the targets
of breeding programs (Gondwe et al., 2019). For this, it is
essential to select genotypes that are more productive, with
high yield stability (Goa et al., 2022). In addition to these
traits, breeding programs prioritizes genotypes with disease
resistance (Boukar et al., 2016), nutritional and cook techno-
logical quality (Gondwe et al., 2019; Jayathilake et al. 2018),
and erect and semi-erect plant architecture, allowing mecha-
nized harvest and expansion of cultivation areas (Guerra et al.
2017).

During the breeding process, it is most natural to evalu-
ate the candidates in multi-environment trials (MET). MET
aims at identifying the behavior of genotypes when facing the
genotype-by-environment interaction (GEI). Predicting GEI
allows the identification of optimal gene combinations for
target environments. In other words, neglecting GEI disre-
gards the genotypes’ adaptability and, consequently, reduces
the genetic gain (Heslotet al., 2014; Jarquin et al., 2014; Millet
et al., 2016). Thus, it is necessary to evaluate the performance
of genotypes in MET (Islam et al., 2016). Nevertheless, MET
have experimental and statistical peculiarities that cannot be
ignored. The different environmental conditions and manage-
ment decreases the chance of homoscedasticity of variance
(Silva et al., 2019; Souza et al., 2021). Moreover, METs are
more susceptible to genetic and/or statistical imbalance (Elias
et al., 2016; Schmidt et al., 2019).

These peculiarities hinder the usage of traditional meth-
ods in the statistical analysis of MET data, such as the
ordinary least squares. As an alternative, the breeder may
employ methodologies that are flexible enough to deal with
heteroscedasticity, imbalance, and/or non-orthogonality. In
this context, the use of the residual maximum likelihood
method (REML) (Patterson & Thompson, 1971) to estimate
the best linear unbiased predictors (BLUP) (Henderson, 1975)
is an interesting alternative. The REML/BLUP method allows
modeling the covariance structure of the random effects, pro-
viding the model with flexibility and adequacy to diverse
situations (Melo et al., 2020). Despite the aforementioned
advantages, the use of this methodology in cowpea data
analysis is still limited.

In this article, we explore the REML/BLUP features to
select the model with the most appropriated covariance struc-
ture and compare the results with the traditional model, that
is, homogeneous variances. In addition, we select the supe-

Core ideas

* Multi-environment trials have peculiarities that
must be accounted for in the statistical modeling.

* The genetic and homoscedasticity
assumption is unlikely to be true.

* By modeling the covariance structures of a mixed
model random effects, there are higher accuracy
and gains.

» The cowpea breeder must not ignore this step in the
breeding process.

residual

rior cowpea genotypes for 100-grain weights based on the
best-fitted model.

2 | MATERIALS AND METHODS
2.1 | Experimental conditions and plant
material

We evaluated 20 genotypes, being 17 inbred lines and three
commercial cultivars (Table S1), from the value for culti-
vation and use (VCU) trials of color type. These 17 inbred
lines are candidates for new cultivars of the Cowpea Breeding
Program of Embrapa Meio-Norte, Piaui state, Brazil. These
genotypes were evaluated in four locations from semi-arid
zone of Piaui State, and in two crop-years (Table 1).

The trials were established in a randomized complete block
design, with four replications. Each treatment was represented
by a plot of four rows of 5.0 m, with spacing between rows of
0.50 m and with spacing between plants within row of 0.25 m.
The two central rows were the useful plot. The soil of the four
sites were Red-Yellow Podzolic type. The evaluated trait was
100-grain weight taken at random from the useful plot.

Management practices followed the technical recommen-
dations for the crop (Freire-Filho et al., 2011). The soils of
the trials were prepared and then harrowing was performed.
Soon after, pre-emergence herbicide based on s-metolachlor
(1 L ha™") was applied and weed control was done at 20 and
30 days. We also applied insecticides based on dimethoate (1
L ha~!) and thiamethoxam (100 gha~ 1 for aphid control. We
harvested at 70 days after planting.

2.2 | Statistical analyses

All statistical procedures are based on the REML (Patterson
& Thompson, 1971), for estimation of the variance com-
ponents; and on the BLUP for genotypic values prediction
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TABLE 1 Localization and environmental conditions of the trials located in Piaui, during two crop seasons: 2019/2020 and 2020/2021
Geographic coordinates Temperature
D Sites Year Latitude Longitude Altitude (m) Min. (C) Max. ("C)
1P Ipiranga do Piaui 2020 649’ S 41°44' W 410 22 28
PI1 Pio IX 2019 6°50" S 40°35' W 513 18 36
P12 Pio IX 2020 6°50" S 40°35' W 513 19 36
MH1 Monsenhor Hipdlito 2019 7°00" S 41°01' W 262 25 38
MH2 Monsenhor Hipdlito 2020 7°00" S 41°01' W 262 21 38
SM Sao Miguel do Tapuio 2019 5729'S 41°18' W 272 20 32

Abbreviations: Min., minimum; Max., maximum.

(Henderson, 1975). First, we tested the normality assumption
using the quantile—quantile plot, as recommended by Kozak
and Piepho (2018). We assumed the residual independency,
and the heteroscedasticity will be accounted for in the model-
ing of the residual covariance matrix. Once we were assured
of data normality, we performed individual analyses for each
environment, using the following model:

y=Xm+7Zg+e

where y is the phenotypic data vector, m is the vector of
fixed effects (effects of replications and the intercept), g is
the vector of the genotypic effect, considered random [g ~
N(O, Io-é)], and e is the vector of random residual effects
[e ~ N(O, Io-ez)]. X and Z are the incidence matrices for m and
g, respectively. Individual analyses were performed to assess
the significance of the genotypic effect, using the likelihood
ratio test (LRT) (Wilks, 1938):

LRT = -2 (LogL — LogLy)

where L is the maximum point of residual likelihood func-
tion of the complete model and Ly, is the same for the reduced
model, that is, without the effect to be tested. The LRT value
was compared with a tabulated value based on the chi-square
table, with one degree of freedom and 0.95 probability.
Then, we performed the joint analysis, considering all the
environments, using the following model:

y=Xm+Zg+ Wge +e

where m is the vector of fixed effects (effects of envi-
ronments, replications and their combinations, added to the
overall mean); g is the vector of the genotypic effect, consid-
ered random [g ~ N(0, Gg)]; ge is the vector of the random
GEI effects [ge ~ N(O, Iagg)]; and e is the vector of random
errors effect [e ~ N(O,R)]. X, Z, and W are the incidence
matrices for m, g, ge, respectively. G, and R refer to the
covariance matrices for genotype and residual effects, respec-

tively. The model above was the basis for the elaboration of
other models, with different covariance structures for Gg and
R.

The R matrix was modeled using two different structures.
The first was the identity of variances (IDV), which consid-
ers homoscedasticity between environments. The second was
the diagonal structure (IDH), which assumes that different
environments have distinct residual variances. The genetic
effects were modeled after residual effects. We tested four
structures. The first one, contained in the base model, is
the homogeneous compound symmetry (CS), which consid-
ers a single genetic variance for all environments and an
explicit variance attributed to the GEI. The second one was the
diagonal (IDH). The third one was heterogeneous compound
symmetry (CSH), which considers heterogeneity of genetic
variances between environments and the presence of covari-
ance between them. Finally, we tested the unstructured model
(UN), which considers each environment as a different trait.
Table 2 compiles the structure of the random effects of each
model.

The best-fit model was selected based on Akaike infor-
mation criterion (AIC) (Akaike, 1973) and the Bayesian
information criterion (BIC), given by, respectively:

AIC = —2LogL + 2p

BIC = —2LogL + pLog [n — r (x)]

where L is the maximum point of the residual likelihood func-
tion, p is the number of estimated parameters, and r(x) is the
rank of the fixed effects incidence matrix. The smaller the AIC
and BIC values, the better the fit.

From the best-fit model, were estimated the generalized
heritability (H2 =1- "S5 where V[A(g, - g,)] is
the mean variance of the digfference between two BLUPs
[Cullis et al., 2006]}, and the selective accuracy [rgg =

PEV

1-( p ), where PEV is the variance of the prediction
&
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TABLE 2
Matrix R

Model Structure Representation
Mi IDV a1, ®1,

M2 IDH ®)_01,®1,
M3 IDH @ 0’1, ®1,
M4 IDH GB;LIGfla RI,
M5 IDH @& o’1,®1,

j=1"¢

Models and covariance structures used in the R and G, matrices and their respective linear representations

Matrix G,

Structure Representation

CS (O’;J + G;I) ®I,

CS (agJ a4 cﬁSI) I,

IDH ®F 01, 1,

CSH {D[I, + p(J-1,)ID} ®
I

UN >l

Note: rrf, residual variance; o-g, genetic variance; I, I, and I, identity matrices of size @ X a, t X t, and n X n, respectively, where a is the number of environments and

t the number of genotypes and n is the number of observations; D, a X a diagonal matrix of standard deviations; J, a X a matrix of ones; X, full covariance matrix; ®,

Kronecker product; @, direct sum.

Abbreviations: CS, compound symmetry; CSH, heterogeneous compound symmetry; IDH, diagonal structure; IDV, identity variance; UN, unstructured.

TABLE 3
environment and genotypes-by-environment interaction effect for all

Likelihood ratio test for genotypic effect on each

the environments

Effect Environment” LogL Deviance LRT

Genotype SM —56.8461 —113.692  16.388%**
PI1 —79.9993 —159.999  15.829%**
MHI1 —78.8114  —157.623  21.055%*
IP —-969116  —193.823 0.4912
MH?2 —73.4207 —146.841 0.7452
PI2 —88.2007 —176.401 0.0138

GEI — —503.7645 —1007.53  27.288%**

Abbreviation: GEI, genotype-by-environment interaction.

“See Table 1 for explanation of environments.

error, obtained from the diagonal of the generalized inverse
of the coefficient matrix of the mixed model equations]. We
also estimated the selection gains (SG = % % 100, where
BLUP; are the selected genotypes BLUP a.ri)d Ho 1s the over-
all mean), considering the top five genotypes. We estimated
the aforementioned parameters for the first, traditional model
(M1), and for the best-fitted model, for comparison purposes.
The genotype ranking between models was compared with
: N 6314

Spearman correlation coefficient [p =1 — — D)
d is the difference between ranking and n is the number of

in which

observations]. All analyses were performed in R software (R
Core Team, 2022), using the ASReml-R package (Butler etal.,
2018).

3 | RESULTS

The genetic variance was significant (p < 0.001) only in the
trials evaluated in year one. The GEI was also significant,
indicating that genotypes performed differently across trials
(Table 3).

TABLE 4  Akaike information criterion (AIC) and Bayesian
information criterion (BIC) values of five fitted models with different
covariance structures for genetic (Gg) and residual (R) effects

Covariance structures®

Model Matrix G, Matrix R AIC BIC
Ml CS IDV 986.2409 998.58
M2 CS IDH 947.2736 980.20
M3 IDH IDH 951.8634 1001.25
M4 CSH IDH 921.1129 974.61
M5 UN IDH — —

Note: In italic, the best fit model, according to AIC and BIC, the model M5 did
not converge.

Abbreviations: CS, compound symmetry; CSH, heterogeneous compound sym-
metry; IDH, diagonal structure; IDV, identity variance; UN, unstructured.

“See Table 2 for explanation of structures.

The model that the genotypic and residual effects were
modeled using the CSH and IDH structures (M4), respec-
tively, had the best fit according to AIC and BIC (Table 4).

There is a clear difference between the variance compo-
nents and genetic parameters of M1 and M4. In the traditional
model, M1 (CS for the genetic effect and ID for the resid-
ual effect), one would not observe the differences between the
genetic variance of the two evaluated years. By particulariz-
ing the variances, there is no generalization in the reckoning
of the accuracy and heritability. Note that the accuracies and
heritabilites of the environments where the genetic variance
was significant are higher than the generalized value indicated
by M1. This emphasizes that the non-significant trials were
biasing the estimation of these parameters (Table 5).

The aforementioned differences reflect in the geno-
types ranking, according to their breeding value (BLUPs)
(Figure 1). Modeling of G and R cause a 25% change in the
rankings. Considering the top five genotypes the expected
genetic gains change from 2.60% in M1 to 3.78% in M4
(Table 5).
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TABLE 5 Variance components and genetic parameters estimated from the traditional model (M 1) and best fit model (M4)

M4

Environments
Component/Parameter M1 SM PI1 MH1 P MH2 PI2
0'; 0.140 0.931 2.322 1.949
a; 0.662 — — — — — —
0,2 2.158 0.880 1.506 1.312 4.069 2.188 3.376
ai, 2.961 1.810 3.828 3.261 4.096 2.242 3.376
Hﬁ 0.356 0.875 0.894 0.891 — — —
Tz 0.596 0.866 0.888 0.885 — — —
SG (%) 2.60% 3.78%
Spearman correlation 0.75

- > . . 2 . . . . . .
Abbreviations: o, genotypic variance; o, genotypes-by-environment interaction variance, o'f, residual variance; o

heritability; Tgs selective accuracy.
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FIGURE 1

4 | DISCUSSION
In this study, we tested different statistical models with
distinct covariance structures for 100-grain weight. The
results showed that by modeling the random effects, one
could improve cowpea’s genetic evaluation by elevating the
preciseness of the results.

The existence of genetic variability for the evaluated trait
indicates the population’s potential for selection (Owusu et al.,
2021a). According to Alidu et al. (2020) and Owusu et al.
(2021b), cowpea has wide genetic variability for almost all

Genotypes’ ranking according to their genotypic values in M1 and M4. The values are averaged across environments.

traits of agronomic and nutritional interest, which facilitates
the breeding actions. Among the yield components, 100-grain
weight is one of the most important traits for selecting supe-
rior genotypes for grain yield (Ajayi & Gbadamosi, 2020;
Ezin et al., 2021; Marinho et al., 2021).

The breeder needs genetic variability in a breeding program
to practice selection of superior genotypes. We identified that
the genotypic effect was significant only in the first year of
trials. In year two, the non-controllable effects at these loca-
tions may have been intense. Without a significant genetic
variance, it is impossible to differentiate the genotypes’
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performance (Simion et al., 2018; Gerrano et al., 2019). In
cowpea, edaphoclimatic variables such as minimum temper-
ature, solar radiation, rainfall, wind speed, length of crop
growth cycle, and altitude can affect the performance of geno-
types in different environments (Oliveira et al., 2020). Bear
in mind that 100-grain weight is a quantitative trait, so it is
expected that the greatest variation in this trait is due to the
environmental effects (Mekonnen et al., 2022).

GEI also plays an important role in 100-grain weight
expression (Caro et al., 2017). The significance of GEI
indicates a differential genotypic performance across envi-
ronments. When this effect is crossover, selection and
recommendation of new cultivars with broad stability are dif-
ficult, due to the differential response of genotypes to different
environments (Kang, 1997; Enyew et al., 2021). Furthermore,
MET may exhibit high levels of heterogeneity of variances
and covariances (Gouveia et al., 2020). When this heterogene-
ity is not considered, it can cause inflation or deflation of
Type I statistical error rates for genotype comparisons. This
fluctuation depends on some factors, such as the level of het-
erogeneity and assumptions about the effects of environments
(whether fixed or random) (Hu et al., 2013).

The M4 model had the best fit according to AIC. In this
model, the residual and genetic covariance matrices were
structured using the block diagonal (IDH) and CSH variance
structures. In the CSH structure, the magnitude of the covari-
ances is based on the product of genetic standard deviations
multiplied by a single correlation coefficient. Thus, corre-
lation over environments is constant, but covariances differ
depending on the differences in standard deviations (Milliken
& Johnson, 2001). One may interpret the magnitude of GEI
from the genetic correlation coefficient across environments.
Note that this model is more parsimonious than the unstruc-
tured model (M5), the most complete and parameterized,
which did not converge in our study.

ANOVA-based analyses assumes that all observations have
a common error, that is, there is residual homoscedastic-
ity. However, MET may not fulfill this assumption, since
each trial is subjected to a different environmental condi-
tion, according to the location and year. Bear in mind that
each location has its own dynamics of edaphoclimatic condi-
tions, water availability, and incidence of pests and diseases.
Furthermore, these conditions may change drastically on an
yearly basis in tropical environments, such as the ones in
this study. Thus, as expected, this was the tendency herein
since the model with IDH had the best fit. The IDH covari-
ance structure assumes that there are important differences
between non-controllable effects (Isik et al., 2017). Rocha
et al. (2019) and Melo et al. (2020) obtained similar results
for common bean (Phaseolus vulgaris L.). Therefore, in MET
context, modeling genetic and non-genetic covariances struc-
ture can enable greater reliability for the statistical models
(Smith et al., 2005, 2015).

In M1, one cannot observe the population behavior in each
environment, for neither genetic nor residual effects. The CS
structure in M1 divides the genetic effects into the geno-
typic variance and the GEI variance, lowering the heritability
and the selective accuracy. On the other hand, the structure
employed in M4 allows the particularization of the popula-
tion performance in each environment. As the CSH structures
do not have the GEI variance, heritabilities and selective
accuracies are considerably higher. From this, Spearman’s
correlation (0.75) revealed differences in the ranking of geno-
types, culminating in a 1.18% difference between the expected
genetic gains of M1 and M4.

In this study, we validate the necessity of modeling the
covariance matrix structure of a linear mixed model’s random
effects. Although the CSH for genetic effects and IDH for the
residual effects were the most appropriate for the 100-grain
weight trait, one cannot take this fact as truth for all cases. In
other words, the best covariance structure will differ accord-
ing to the peculiarities of each data set, such as the number
of evaluated genotypes, the number of environments, and the
evaluated trait. Thus, the breeder must do the testing for all
cases.
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