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RESEARCH ARTICLE

Buffel grass pre-dried as a modulator of the fermentation,
nutritional and aerobic stability profile of cactus pear silage
Elizângela Nunes Borges a, Cleyton de Almeida Araújo a,
Beatriz Silva Monteiro b, Antonio Sousa Silva b,
Lívian De Freitas Albuquerque a, Gherman Garcia Leal de Araújo c,
Fleming Sena Campos d, Glayciane Costa Gois a, Renilde Cordeiro de Souza a

and Alessandra Oliveira de Araújo b

aDepartment of Animal Science, Universidade Federal do Vale do São Francisco, Petrolina, Brazil; bInstituto
Federal de Educação, Ciência e Tecnologia Baiano, Senhor do Bonfim, Brazil; cEmpresa Brasileira de Pesquisa
Agropecuária, Petrolina, Brazil; dDepartment of Animal Science, Universidade Federal do Maranhão,
Chapadinha, Brazil

ABSTRACT
This study aimed to evaluate fermentation losses and the
fermentation profile of cactus pear silage with buffel grass pre-
dried. Five levels of inclusion of buffel grass pre-dried in cactus
pear silage (0%; 15%; 25%; 35% and 45% on a dry matter basis)
were evaluated with 6 replications, in a completely randomised
design. After 90 storage days, silos were opened and silages were
analysed. The density, effluent losses, buffering capacity, flieg
index, mineral matter, organic matter, crude protein, total
carbohydrates and total digestible nutrients content were
quadratically influenced (P < 0.05) of the inclusion of buffel grass
pre-dried in cactus pear silage. The inclusion of buffel grass pre-
dried promoted a decreasing on gas losses, maximum pH, final
pH during stability and CO2 production at the three exposure
times, and an increasing on dry matter recovery, temperature, pH,
electrical conductivity, ammonia nitrogen, dry matter, neutral and
acid detergent fibre, and hemicellulose contents in the cactus
pear silages. The inclusion of up to 35% buffel grass pre-dried in
cactus pear silage represents a viable strategy in the process of
nutrient conservation and fermentation quality. In addition to
presenting low carbon production during aerobic stability.
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Introduction

The search for efficient, low-cost alternatives that meet the needs of animals in the semi-
arid region of Brazil has been one of the major obstacles to animal production, since in
this region rainfall varies over the years. The use of preserved forages emerges as a strat-
egy to ensure feeding and stability in different ruminant production systems in periods of
forage shortage (Fluck et al. 2018).

Characteristics in the cactus pear composition favour silage making, such as non-
structural carbohydrates (44% dry matter (DM)) and total digestible nutrients (66%–

© 2023 The Royal Society of New Zealand

CONTACT Glayciane Costa Gois glayciane_gois@yahoo.com.br

NEW ZEALAND JOURNAL OF AGRICULTURAL RESEARCH
https://doi.org/10.1080/00288233.2023.2212173

http://crossmark.crossref.org/dialog/?doi=10.1080/00288233.2023.2212173&domain=pdf&date_stamp=2023-05-12
http://orcid.org/0000-0003-4319-3968
http://orcid.org/0000-0003-3636-2890
http://orcid.org/0000-0002-1763-0741
http://orcid.org/0000-0001-8978-4240
http://orcid.org/0000-0002-5572-0692
http://orcid.org/0000-0001-9605-1096
http://orcid.org/0000-0001-9027-3210
http://orcid.org/0000-0002-4624-1825
http://orcid.org/0000-0002-2655-1199
http://orcid.org/0000-0003-4390-4694
mailto:glayciane_gois@yahoo.com.br
http://www.tandfonline.com


74% DM) (Silva et al. 2022). However, the contents of DM (7%–16% fresh matter (FM)),
neutral detergent fibre (25% DM) and crude protein (4%–7% DM) are found in low
amounts (Cordova-Torres et al. 2022), which can result in excessive fermentation,
leading to nutrient losses and reduced aerobic stability of silages, since excess sugars
will allow yeast proliferation, resulting in alcoholic fermentation (Brito et al. 2020).
Thus, the search for the combination of cactus pear with other tropical forages
adapted to the semiarid region is necessary, aiming at achieving nutritional complemen-
tarity between foods and improving the fermentation of silages (Macêdo et al. 2017).

Buffel grass (Cenchrus ciliaris L.) stands out in arid and semiarid regions due to easy
adaptation to climatic adversities, good forage production and productive capacity, pro-
ducing up to 20 t/ha DM per year even after long dry periods. The chemical composition
of this plant varies according to the regrowth age and environmental characteristics, with
a dry matter content ranging from 19.4% to 31.0% FM, and neutral detergent fibre
ranging from 64.2% to 65.5% DM (Macêdo et al. 2018). Nevertheless, despite very
large cultivated areas, buffel grass is rarely exploited for silage production (Campos
et al. 2017; Macêdo et al. 2018; Silva et al. 2021; Barros e Silva et al. 2022).

The nutritional value of silage (chemical composition, digestibility and digestion pro-
ducts) is associated with the fermentation pattern of the ensiled material, as well as with
deterioration processes observed during the aerobic phase in the silo (Reis et al. 2008).
Thus, when cactus pear is combined with tropical forages, such as buffel grass, as
silage, a possible nutritional adjustment of this silage will occur, with reduced fermenta-
tion losses and high aerobic stability.

The aim was to evaluate the effects of the inclusion of increasing levels of buffel grass
pre-dried on the fermentation characteristics of cactus pear silage.

Material and methods

Experiment location

The experiment was carried out at the Animal Science Sector I, Federal Institute of Edu-
cation, Science and Technology of Bahia, Campus Senhor do Bonfim, state of Bahia,
Brazil. The climate of the region is semiarid, with maximum and minimum temperature
between 18°C and 32°C, respectively, relative humidity of 66% and annual rainfall of 768
mm.

Silage making

Buffel grass pre-dried levels (0%, 15%, 25%, 35% and 45% on a dry matter basis) were
added to cactus pear silages, following a 5 × 6 factorial arrangement, totalling 30 exper-
imental units. Buffel grass cv. biloela (Cenchrus ciliares L.) was harvested after 122
regrowth days in already established grassland, cut 10 cm above the ground. Cactus
pear (Opuntia fícus indica, cv. Gigante) came from a cactus plantation, with two years
of planting. Harvesting was performed by hand. The pre-drying of Buffel grass was
carried out in the field, where all the material was dehydrated for 7 days, being collected
and stored in a dry place. Cactus pear and buffel grass pre-dried were ground in a
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stationary forage machine (Nogueira Pecus 9004, Saltinho – SP, Brazil), to particles with
an average size of 20 mm.

The material was mixed manually and ensiled in experimental silos (10 cm in diameter
and 70 cm in height, with 0.55 cm³). To eliminate gases during the fermentation process,
Bunsen valves were attached to the top of the silo. At the bottom of the experimental
silos, 1.5 kg sterilised sand, protected with TNT, were deposited, preventing the
ensiled material from coming into contact with the sand, allowing the effluent to drain
(Pereira et al. 2005). Samples of non-ensiled material (original material) were collected
for further laboratory analysis (Table 1).

Density, fermentation losses, fermentation profile and flieg index

Silos were weighed empty after ensiling and weighed again after 90 days of ensiling, upon
opening. A layer of 10 cm of silage at the top e bottom of the silos were discarded. The
ensiled mass density (D), gas losses (GL), effluent losses (EL) and dry matter recovery
(DMR) were determined according to Zanine et al. (2010).

To evaluate the fermentation profile, we measured the temperature (T, in °C), pH
(Detmann et al. 2021), electrical conductivity (EC, dS/m), maximum electrical conduc-
tivity (MEC, dS/m); maximum time to reach maximum electrical conductivity (TEC;
h); and final electrical conductivity (FEC; dS/m) (Jobim et al. 2007) of the ensiled
mass upon silo opening. Buffering capacity (BC) was determined according to the meth-
odology established by Mizubuti et al. (2009) and the ammonia nitrogen content (NH3–
N, in % total N) was determined according to Bolsen et al. (1992).

The Flieg index was calculated using the equation described by Dong et al. (2017), with
interpretation of the points through the following scores: very poor quality silages (scores
<20.0); poor quality silages (scores between 21.0 and 40.0); reasonable quality silages
(scores between 41.0 and 60.0); good quality silages (score between 61.0 and 80.0) and
high quality silages (scores > 81.0).

Chemical composition

The collected samples were pre-dried in a forced ventilation oven at 55°C for 72 h and
ground to 1 mm particles (Wiley mill, Marconi, MA-580, Piracicaba, Brazil) for the
determination of dry matter (DM, method: 967.03), mineral matter (MM, method:

Table 1. Chemical composition of cactus pear and buffel grass pre-dried before ensiling.
Items Cactus pear Buffel grass pre-dried

Dry matter (g.kg NM) 142.97 676.02
Mineral matter (g.kg DM) 93.07 205.51
Organic matter (g.kg DM) 906.93 794.49
Aether extract (g.kg DM) 10.90 11.14
Crude protein (g.kg DM) 7.33 106.2
Neutral detergent fibre (g.kg DM) 94.57 710.56
Acid detergent fibre (g.kg DM) 87.93 415.70
Hemicellulose (g.kg DM) 182.10 295.56
Total carbohydrates (g.kg DM) 888.70 772.73
Non fibre Carbohydrates (g.kg DM) 794.13 62.17

NM, Natural matter; DM, Dry matter.
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942.05), crude protein (CP, method: 981.10) and aether extract (EE, method: 920.29),
according to the AOAC methodology (2016). Neutral detergent fibre (NDF) and acid
detergent fibre (ADF) contents were quantified according to Van Soest et al. (1991),
with modifications by Senger et al. (2008) using an autoclave with a temperature of
110°C for 40 min. Total carbohydrates (TC) were estimated using the equation of
Sniffen et al. (1992) and non-fibre carbohydrates (NFC), according to Hall (2003). Hemi-
cellulose (HEM) was obtained by the difference between NDF and ADF values and total
digestible nutrients (TDN) were estimated according to Capelle et al. (2001).

Aerobic stability

Aerobic stability (AE, expressed in hours) was evaluated using the methodology adapted
from Kung Júnior (2000). The evaluation of the internal temperature followed intervals
of 1 h, during a period of 96 h (Brito et al. 2020). During the stability test, the pH was
monitored at 6-h intervals until 96 h of exposure to air (Araújo et al. 2020).

The maximum pH recorded after opening the silos (maximum pH); Time to reach
maximum pH (maximum TpH, in hours); Time for the silage pH to show an upward
trend (TEpH, in hours); Maximum temperature after silo opening (MT, in °C); Time
to reach maximum temperature (TMT, in hours); Maximum difference between silage
and ambient temperature (DTS, in °C); Sum of the maximum difference in silage temp-
erature in relation to the environment (∑DT, in °C); and the time for the silage temp-
erature to show an upward trend (STUT, in hours) were analysed according to the
methodology of Jobim et al. (2007).

Carbon dioxide

For the determination of carbon dioxide (CO2), silage was exposed to air in a system
adapted to that described by Ahsbell et al. (1991), for 24, 48 and 96 h. A 5 × 3 factorial
arrangement with 5 repetitions was adopted, totalling 120 experimental units.

The slightly compacted silages were added to the system, whose lower part had 100 mL
20% potassium hydroxide (KOH). To quantify the CO2, 10 mL potassium hydroxide that
was at the bottom of the system was collected and, from this, the pH was measured
(between 12.0 and 14.0) and, following, HCl titration (1n), until the pH was reduced
(around 3). The volume of HCl spent was used for later determination of CO2.
During air exposure, silage samples were collected to determine dry matter, crude
protein and ammonia nitrogen.

Statistical analysis

Data were analysed using the PROC REG of the Statistical Analysis System University
Software (SAS 2015) tested by analysis of variance and regression at the level of 5%
probability for type I error. The significance of the parameters estimated by the
models and the values of the coefficients of determination were used as criteria for
choosing regression models. The following statistical model was used: Y = μ + Tj +
eij, where: μ = overall mean; Tj = effect of the inclusion of cactus pear; eij = residual
error.
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For carbon dioxide, dry matter, crude protein and ammonia nitrogen, the statistical
model was used: Yijk = μ + ai + bj + abij + eijk, in which: Yij = Observed value of the vari-
able; μ = Overall mean; ai = effect of inclusion of buffel grass pre-dried; bj = effect of
exposure time; abij = effect of the interaction between a and b; eijk = Residual error.

The means of each variable were estimated and compared by Tukey’s test with a prob-
ability of 5% for type I error. When there was an isolated effect for the variables opening
time and inclusion levels of buffel grass pre-dried, breakdown and graphics were carried
out using SigmaPlot version 10.0.

Results

The silage density showed a quadratic effect (P < 0.001). The model estimates a
maximum point of 979.33 kg.m3 with the inclusion of 8.68% buffel grass pre-dried
(Table 2). The inclusion of buffel grass pre-dried promoted a decreasing in GL (P =
0.042) with a reduction of 0.81% in GL for every 1% inclusion of buffel grass pre-
dried. There was a quadratic effect (P < 0.001) of the inclusion of buffel grass pre-
dried on the EL, with a maximum point of 106.85 t/NM with the inclusion of 14.68%
buffel grass pre-dried. The inclusion of buffel grass pre-dried promoted an increasing
on DMR (P < 0.001) with an increase of 33.02% for the inclusion of 45% buffel grass
pre-dried (107.95%) when compared to cactus pear silage alone (81.15%) (Table 2).

The fermentation profile of cactus pear silage was altered by the inclusion of buffel
grass pre-dried. There was increasing linear effect (P < 0.001) for T, pH, EC and
ammonia nitrogen with the inclusion of buffel grass pre-dried (Table 3). The inclusion
of 15% promoted an elevation in the pH corresponding to 32.36% compared to the
cactus pear silage alone. The silage BC presented quadratic model adjustment (P <
0.001), the model demonstrates a minimum point of 62.95 E.mgNaOH/100 g DM
with the inclusion of 40.75% buffel grass pre-dried (Table 3).

There was a quadratic effect (P < 0.05) on the Flieg index. The equation derivation
demonstrates a minimum point of 57.48 points on the Flieg scale with the inclusion of
15.32% buffel grass pre-dried (Figure 1).

During the stability test, MT had a quadratic effect (P = 0.007) with the inclusion of
buffel grass pre-dried, with a maximum point of 25.88°C with the inclusion of 24.5%
buffel grass pre-dried (Table 4).

There was no effect of the inclusion of buffel grass pre-dried in cactus pear silages to on
the TMT and AE (P > 0.05). The inclusion of buffel grass pre-dried has influenced

Table 2. Density, fermentative losses and dry matter recovery of cactus pear silages associated with
buffel grass pre-dried inclusion levels.

Variables

Buffel grass pre-dried levels (%)

SEM

P-value

0 15 25 35 45 L Q

Dens (kg/m³)a 945.80 1001.61 880.23 752.48 593.11 2.91 <0.001 <0.001
GL (% DM)b 51.60 11.48 10.73 10.12 11.01 13.18 0.042 0.119
EL (kg/t NM)c 69.55 127.72 104.87 9.87 8.57 5.29 <0.001 <0.001
DMR (% DM)d 81.15 78.29 93.76 109.28 107.95 3.25 <0.001 0.181

Dens, Density; GL, Gas losses; EL, Effluent losses; DMR, Dry matter recovery, DM, Dry matter; NM, Natural matter; SEM,
Standard error of the mean; L, Linear; Q, Quadratic; Equations: aŷ = 956.507865 + 5.255198x – 0.302419x², R² = 0.98; bŷ
= 38.437787–0.810199x, R² = 0.60; cŷ = 79.006132 + 3.793538x – 0.129183x², R² = 0.74; dŷ = 76.173880 + 0.746449x,
R² = 0.80.
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quadratically (p < 0.001) for DTS and ∑ DT. The model estimates a maximum point of
27.11°C in∑ DT with the inclusion of 28.43% buffel grass pre-dried (Table 4; Figure 2A).

The maximum pH recorded and the final pH during stability was influenced in a
decreasing linearly (P < 0.001). The time for silage to reach maximum pH was quadrati-
cally influenced (P = 0.001). From the differential equation, there was a time of 98.82 h
with the inclusion of 13.63% buffel grass pre-dried for the silage to reach maximum
pH (Table 4; Figure 2B).

Electrical conductivity during stability had a quadratic effect on maximum EC (P =
0.004); Maximum TEC (P < 0.001) and FEC (P = 0.017). In the Equation derivation, a
maximum point was found for the FEC of 4.78 dS/m with the inclusion of 43.46%
buffel grass pre-dried (Table 4; Figure 2C).

Table 3. Fermentation profile of cactus pear silages associated with buffel grass pre-dried inclusion
levels.

Variables

Buffel grass pre-dried levels (%)

SEM

P-value

0 15 25 35 45 L Q

T (°C)a 25.50 26.33 26.83 27.00 27.33 0.17 <0.001 0.152
pHb 3.80 5.03 4.98 4.52 4.41 0.08 0.001 <0.001
EC (dS.m)c 2.24 2.22 2.32 2.63 3.04 0.07 <0.001 <0.001
BC (E.mgNaOH.100 g DM)d 109.19 98.12 63.69 54.79 69.54 2.33 <0.001 <0.001
NH3–N (g.kg total N)e 3.2 4.2 4.7 4.9 6.9 0.03 <0.001 0.075

T, Temperature; pH, hydrogenion potential; EC, Electrical conductivity; BC, Buffering capacity; N–NH3, Ammonia Nitrogen;
DM, Dry matter; SEM, Standard error of the mean; L, Linear; Q, Quadratic; Equations: aŷ = 25.639344 + 0.040027x, R² =
0.96; bŷ = 3.888023 + 0.088100x – 0.001770x², R² = 0.84; cŷ = 2.078907 + 0.017351x, R² = 0.76; dŷ = 113.958089–
2.502628x + 0.030702x², R² = 0.81; eŷ = 0.418142 + 0.05189x, R² = 0.78.

Figure 1. Flieg index in cactus pear silages associated with buffel grass pre-dried inclusion levels.
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During exposure of silage to oxygen, increasing linear effect (P < 0.001) on the DM
content was observed during 24, 48 and 96 h. The inclusions of 15% and 25% buffel
grass pre-dried reduced the DM content at 48 and 96 h of exposure when compared
to 24 h (Table 5; Figure 3A).

The inclusion of buffel grass pre-dried promoted an increasing linear effect (P = 0.002)
on CP content during the 24 h of exposure. There was a quadratic effect (P = 0.001) of the
inclusion of pre-dried on the CP content of the silage exposed for 48 h, the equation
derived a maximum CP point at 106.40 g/kg DM with 40.67% inclusion of buffel grass
pre-dried (Table 5). All levels of inclusion of buffel grass pre-dried increased the CP
content at 96 h of exposure compared to 24 h (Figure 3B).

There was adjustment of the quadratic model of the inclusion of buffel grass pre-
dried on the NH3–N content exposed for 24 h (P = 0.019) and 48 h (P = 0.012) (Table
5). The inclusion of buffel grass pre-dried resulted in an increasing linear effect (P <
0.001) on the content of NH3–N exposed at 96 h. There was a reduction in the NH3–
N content with increasing exposure time of 0% and 15% buffel grass pre-dried
inclusion, reducing at 96 h. The opposite effect was observed with 45% buffel grass
pre-dried inclusion, with an increase in the NH3–N content at 96 h of exposure
(Table 5; Figure 3C).

There was a decreasing linear effect (P < 0.001) on CO2 production with the inclusion
of buffel grass pre-dried in the three exposure times (Table 5). There was an effect of
exposure time (P < 0.001) on CO2 production in silages with 15%, 25% and 35% buffel
grass pre-dried, promoting a gradual increase in 96 h of exposure (Table 5; Figure 3D).

The inclusion of buffel grass pre-dried increased linearly (P < 0.001) the contents of
DM, NDF, ADF and HEM (Table 6). There was adjustment of quadratic model (P <
0.001) on the contents of MM, OM, CP, TC and TDN. The inclusion of buffel grass

Table 4. Aerobic stability of cactus pear silages associated with buffel grass pre-dried inclusion levels.

Variables

Buffel grass pre-dried levels (%)

SEM

P-value

0 15 25 35 45 L Q

Temperature – T
MT (°C)a 24.83 26.16 25.66 25.50 25.66 0.20 0.068 0.007
TMT (h) 1.00 1.16 16.16 1.00 11.83 8.38 0.415 0.846
DST (°C)b 0.30 2.06 1.83 1.96 1.80 0.13 <0.001 <0.001
∑DT (°C)c −82.91 22.10 8.26 20.81 −7.00 6.64 <0.001 <0.001
AE (h) 96.00 86.00 95.66 92.00 96.00 2.53 0.610 0.068

Hydrogenonic Potential – pH
Maximum pHd 7.01 6.38 5.40 5.24 4.77 0.27 <0.001 0.647
Maximum TpH (h)e 92.00 95.00 93.00 82.33 52.00 5.19 <0.001 0.001
Final pHf 6.82 6.37 5.23 5.00 4.42 0.29 <0.001 0.953

Electrical conductivity – EC
MEC (dS/m)g 14.00 18.00 9.00 9.00 10.00 2.48 0.048 0.004
MTEC (h)h 26.00 91.00 91.00 90.00 95.00 5.08 <0.001 <0.001
FEC (dS/m)i 2.20 4.19 4.00 4.57 4.87 0.25 <0.001 0.017

MT, maximum temperature; TMT, Time to reach maximum silage temperature; DST, Maximum difference of silage temp-
erature in relation to the environment;∑DT, Sum of the maximum difference between the silage temperature and the
environment; AE, Aerobic stability; Maximum TpH, Time to reach maximum pH; MEC, Maximum electrical conductivity;
MTEC, Time to reach maximum electrical conductivity; FEC, Final electrical conductivity; SEM, Standard error of the
mean; L, Linear; Q, Quadratic; Equations: aŷ = 24.983250 + 0.066606x – 0.001238x², R² = 0.45; bŷ = 0.407709 +
0.115008x – 0.001920x², R² = 0.89; cŷ =−77.973866 + 7.392574x – 0.130725x², R² = 0.91; dŷ = 6.995191–0.051272x,
R² = 0.96; eŷ = 90.648677 + 1.201341x – 0.044651x², R² = 0.96; fŷ = 6.908989–0.055611x, R² = 0.95; gŷ = 15.332641
+ 0.110846x – 0.000820x², R² = 0.50; hŷ = 29.993081 + 4.241541x – 0.0644866x², R² = 0.91; iŷ = 2.337628 +
0.113067x – 0.001317x², R² = 0.91.
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pre-dried promoted a decreasing linear effect on EE (P = 0.048) and NFC (P < 0.001)
contents (Table 6).

4. Discussion

Silage density is closely influenced by the DM content of the forage plant, particle size
and the compaction process during its production (Krüger et al. 2020), so that the
higher the compaction pressure, the greater the influence on silage fermentation (Tan
and Dalmis 2019). Thus, cactus pear silage containing 45% buffel grass presented an
average density value below the limit considered adequate for a well-compacted silage
(600–800 kg/m³; Tomich et al. 2003). Silages with densities below 600 kg/m3 result in
a larger volume of residual air in the mass, which leads to a longer period of respiration
(release of CO2 and loss of dry matter), greater consumption of soluble carbohydrates,
decrease in the speed of production of organic acids and an increase in the final pH
(McDonald et al. 1991).

Reduction in gas losses with the inclusion of buffel grass pre-dried can be justified
by increasing DM content in the silage, reducing water activity inside the silo. This

Figure 2. Dynamics of temperature A, pH B and electrical conductivity C in cactus pear silages associ-
ated with buffel grass pre-dried inclusion levels during oxygen exposure.
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Table 5. Dynamics of dry matter, crude protein, carbon dioxide and ammonia nitrogen in cactus pear
silages associated with buffel grass pre-dried inclusion levels during oxygen exposure.

Variables

Buffel grass pre-dried levels (%)

SEM

P-value

0 15 25 35 45 L Q BHxT

Dry Matter (g/kg NM)
24 ha 150.35 249.53 298.48 376.12 515.54 27.47 <0.001 0.203 0.022
48 hb 134.40 177.96 232.36 347.88 459.36 16.81 <0.001 <0.001
96 hc 144.74 194.00 247.84 372.31 448.68 15.04 <0.001 0.001
SEM 11.72 11.41 14.76 19.95 13.11 – – –
P-value 0.610 0.020 0.043 0.070 0.158 – – –

Crude Protein (g/kg DM)
24 hd 47.30 59.26 64.03 64.09 67.57 4.39 0.002 0.273 <0.001
48 he 49.17 68.14 108.05 108.19 102.38 494 <0.001 0.001
96 h 105.45 101.42 94.18 99.86 101.69 10.19 0.749 0.555
SEM 10.91 9.87 10.17 8.71 10.42 – – –
P-value <0.001 <0.001 0.024 0.030 0.014 – – –

Ammonia Nitrogen (g/kg total N)
24 hf 4.1 6.9 4.7 3.5 4.5 0.04 0.142 0.019 <0.001
48 hg 3.2 6.4 4.0 3.1 4.1 0.04 0.480 0.012
96 hh 1.8 4.0 4.6 3.9 5.8 0.03 <0.001 0.282
SEM 0.06 0.05 0.025 0.091 0.015 – – –
P-value <0.001 <0.001 0.401 0.120 <0.001 – – –

Carbon dioxide (g/kg DM)
24 hi 399.97 178.94 140.23 135.08 111.66 5.02 <0.001 <0.001 <0.001
48 hj 404.31 205.70 232.46 150.10 120.61 10.61 <0.001 <0.001
96 hk 365.51 253.55 248.81 196.59 170.34 17.39 <0.001 0.152
SEM 14.51 10.54 9.28 6.87 16.74 – – –
P-value 0.151 <0.001 <0.001 <0.001 0.054 – – –

DM, Dry matter; NM, natural matter; SEM, Standard error of the mean; L, Linear; Q, Quadratic; BH, buffel grass pre-dried; T,
exposure time; BH x T, Interaction effect between buffel grass pre-dried levels and exposure time; a, b = means followed
by distinct letters differ statistically by tukey test at 5% probability level for type I error. Equations: aŷ = 132.937567 +
7.711282x, R² = 0.96; bŷ = 95.742110 + 7.277301x, R² = 0.92; cŷ = 113.401041 + 7.004909x, R² = 0.93; dŷ = 50.237006
+ 0.425794x, R² = 0.88; eŷ = 45.198225 + 3.019699x – 0.037167x², R² = 0.88; fŷ = 0.0468718 + 0.007711x – 0.000212x²,
R² = 0.22; gŷ = 0.384419 + 0.009210x – 0.000224x², R² = 0.18; hŷ = 0.225886 + 0.007510x, R² = 0.80; iŷ = 335.581303–
5.933421x, R² = 0.76; jŷ = 363.068602–5.851130x, R² = 0.85; kŷ = 346.621915–4.152350x, R² = 0.93.

Table 6. Chemical composition of cactus pear silages associated with buffel grass pre-dried inclusion
levels.

Variables (g.kg DM) Buffel grass pre-dried levels (%) SEM P value

0 15 25 35 45 L Q

DM*a 128.89 214.33 297.00 372.05 431.37 10.43 <0.001 0.661
MMb 105.16 189.69 159.19 145.49 129.24 3.68 0.071 <0.001
OMc 894.83 810.30 840.80 854.50 870.75 3.68 0.071 <0.001
EE 20.14 14.11 15.57 14.80 15.35 1.51 0.048 0.060
CPd 52.25 81.18 92.91 82.77 73.67 3.14 <0.001 <0.001
NDFe 200.42 592.34 600.82 607.95 630.56 8.32 <0.001 <0.001
ADFf 153.98 419.61 420.45 419.94 401.94 9.14 <0.001 <0.001
HEMg 46.53 172.98 180.36 184.67 233.62 10.85 <0.001 0.001
TCh 822.40 714.99 732.40 756.92 781.72 5.67 0.002 <0.001
NFCi 621.97 122.65 131.58 148.96 151.15 9.69 <0.001 <0.001
TDNj 947.28 766.66 766.08 766.43 778.68 6.21 <0.001 <0.001

DM, Dry matter; MM, Mineral matter; OM, Organic matter; EE, Aether extract; CP, Crude protein; NDF, Neutral detergent
fibre; ADF, Acid detergent fibre; TC, Total carbohydrates; NFC, Non-fibrous carbohydrates; HEM, Hemicellulose; TDN,
Total digestible nutrients; *in g.kg natural matter; SEM, Standard error of the mean; L, Linear; Q, Quadratic; Equations:
aŷ = 122.973779 + 6.906580x, R² = 0.99; bŷ = 112.742230 + 5.173651x – 0.111159x², R² = 0.73; cŷ = 887.257770–
5.173651x + 0.111159x², R² = 0.73; dŷ = 52.253774 + 2.781654x – 0.051794x², R² = 0.97; eŷ = 322.051970 +
8.515425x, R² = 0.66; fŷ = 244.993279 + 4.924855x, R² = 0.53; gŷ = 76.210126 + 3.642764x, R² = 0.83; hŷ =
909.289423–120.31469x + 19.39567x², R² = 0.75; iŷ = 509.86442–91.533971x, R² = 0.44; jŷ = 938.214409–12.650231x
+ 0.207832x², R² = 0.94.
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resulted in a good fermentation pattern of the silage, which possibly reduced the
development of yeasts that during fermentation consume soluble carbohydrates
and produce ethanol, carbon dioxide, water and ATP, generating losses due to fer-
mentation process, thus occurring an increase in the silage DMR (Araújo et al.
2022).

The increase in DMR with the inclusion of buffel grass pre-dried is also related to the
low production of gases and effluents during fermentation of the ensiled mass. The DM
content present in forages directly influence the GL and EL of silages, where DM content
between 28% and 40% are considered ideal for ensiling the material. DM contents below
28% make the environment favourable to effluent losses and the proliferation of undesir-
able microorganisms. On the other hand, DM contents greater than 40% cause problems
in compaction, leading air to enter the mass, causing qualitative and quantitative damage
to the ensiled material (Jobim et al. 2007).

The increase in silage temperature is also influenced by the DM content of the
material, and this increase reflects the exothermic reactions occurring in the ensiled
material in the presence of O2, due to respiration and multiplication of microorganisms
that are harmful to the quality of the silages (Araújo et al. 2020). As the DM content
increases, the greater the upward trend of temperature, due to the need to produce

Figure 3. Dynamics of dry matter A, crude protein B, ammonia nitrogen C carbon dioxide D in cactus
pear silages associated with buffel grass pre-dried inclusion levels during oxygen exposure.
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less heat to raise the temperature of silages with higher water contents in the composition
(McDonald et al. 1991; Wilkinson and Davies 2012).

The highest pH was identified in the silage with 15% buffel grass pre-dried (5.03),
showing an increase of 32.10% in relation to the control. The resistance to pH drop
that some silages present may be related to the low DM content and the high
buffering capacity of the forage plant. This promotes the stabilisation of the silage at a
high pH value, also resulting in the loss of protein content (Ribeiro et al. 2017). Thus,
the faster the pH is reduced to values below 4, the greater the preservation of the
protein and carbohydrate content of the silage (Özyurt et al. 2016).

With the increase in EC according to the increase in the levels of buffel grass pre-dried
in silage composition, it is assumed that, due to the higher content of mineral matter of
the buffel grass pre-dried (Table 1), there is a high concentration of dissociated ions in its
composition, due to the ability of buffel grass to accumulate more Na+ while the concen-
trations of K+ and Ca2+ decreased in environments with water deficit (Ghafar et al. 2021)
reaching concentrations of Mg, P, Cl and Fe of 0.9%; 0.46%; 1.37% and 0.84%, respect-
ively (Kumar et al. 2019) which directly affects EC. Castro et al. (2006) observed a signifi-
cant increase in EC when wilting was promoted to raise the DM content from 2% to 65%
in silages of Tifton (Cynodon dactylon spp.). The reduction in the moisture content
increases the dry matter content, providing a higher concentration of nutrients, includ-
ing the mineral matter of the silages (Campos et al. 2021).

The low NH3–N content found in the evaluated silages is desirable and can be
classified as excellent, as the NH3–N values found were lower than 10% (McDonald
et al. 1991). The low NH3–N content is desirable in silage because its content is antagon-
istic to pH decline, and evidences the beneficial effect on the destination and use of mass
nitrogen, resulting from the proteolytic metabolism of clostridium (Kung et al. 2018).

Forage BC can be influenced by soluble carbohydrate, nitrogen and mineral contents.
Nogueira et al. (2019) points out that the high fermentation capacity of cactus pear is
related to the low DM content and the high levels of soluble carbohydrates, combined
with an intermediate buffering capacity of the cactus pear. The reduction in BC is attrib-
uted to the dilution of some mineral elements of cactus pear, such as Ca and K, which are
present at high concentrations Ca = 40.0–80 g/kg DM and K = 24.22–39.18 g/kg DM
(Silva et al. 2022), resulting in high BC. When comparing the silage of cactus pear
alone to the silage of cactus pear with buffel grass pre-dried, all silages are superior to
those of Pacheco et al. (2014), with 41.69 mg/100 g DM for grass silage without hay
addition at 52.45 mg/100 g DM for silage with 40% gliricidia hay. In this sense, Melo
et al. (2022) examined the addition of cactus pear to arboreal cotton silage, and reported
a growing linear effect on the BC, up to 75 mg/100 g DM, an effect attributed to the
metabolism related to carbon dioxide activity in cactus pear, due to the crassulacean
acid metabolism (CAM).

The aerobic deterioration process is associated with the presence of fungi, such as
yeasts, which use lactic acid as a substrate and deteriorate the silage (Moon 1983).
Thus, silages containing lower carbon levels and lower pH values during long periods
of exposure to O2 are considered stable silages (Weinberg et al. 2011).

The increase in CO2 flux associated with the rise in temperature demonstrates the
beginning of the deterioration phase. In silages with higher moisture content, much of
the CO2 present is dissolved (Shan et al. 2021), an effect that explains the amount of
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CO2 in silages with lower DM content in this study. This effect demonstrates that the
increase in DM in silages promotes an increase in osmotic pressure, which reduces the
activity of microorganisms that are harmful to the quality of the silage (McDonald
et al. 1991). However, lower DM values result in higher H2O activity, requiring the
silage to have a high heating rate to exceed the ambient temperature. In this sense,
aerobic stability is determined as the time for raising the silage temperature (post-fer-
mentation) by 2°C above ambient temperature (Driehuis andWikselaar 2000), character-
ised by the resistance of the silage to deterioration after silo opening (Jobim et al. 2007).
This increase in temperature that occurs after silo opening reflects the exothermic reac-
tions in the ensiled mass in the presence of oxygen, such as respiration and multiplication
of microorganisms harmful to the quality of the silage (Araújo et al. 2020).

In general, undesirable microorganisms are sensitive to pH below 5, but are sensitive
to water availability in the medium, and are usually inactive in silages with more than
28% DM, so that, in silages with DM lower than 15%, the values of pH below 4 may
not fully inhibit their growth (McDonald et al. 1991), particularly clostridia and entero-
bacteria. Increased EC demonstrates the loss of intracellular content, being soluble sub-
stances like pectin (Krüger et al. 2020), indicating that with increasing exposure of silage
to aerobic environment and increasing inclusion of buffel grass pre-dried, there was a
greater loss of intracellular content of the silages.

The CP content of the silages was favoured with the inclusion of buffel grass pre-dried,
resulting in CP values above the minimum necessary (7% DM) to ensure an adequate
rumen fermentation (Amorim et al. 2020). Differing from our findings, Macêdo et al.
(2018) added buffel grass to cactus pear silage, and observed a reduction in the CP
content of silages with increasing levels of buffel grass (18.1%–12.3% DM). Nevertheless,
these authors used fresh buffel grass. Thus, the pre-drying of Buffel grass contributed to
the increase in the content of this nutrient.

Silages of cactus pear alone presented lower content of the fibre fraction in relation to
silages containing buffel grass pre-dried in their composition. On the other hand, the
contents of TC, NFC and TDN were higher in these silages, but reduced with the pres-
ence of buffel grass pre-dried in silage composition. In this sense, it is notorious that the
nutritional composition of a silage will depend on the concentrations of forage plant
nutrients that will be used in the ensiling process. In this context, Gusha et al. (2013)
expresses the need to study the inclusion of forage hay to increase the content of DM,
CP and NDF in diets, as cactus pear contains rapidly digestible carbohydrates. Thus,
by including buffel grass in cactus pear silage, Macêdo et al. (2018) observed a reduction
in the degradability of the silage DM.

The inclusion of up to 35% buffel grass pre-dried in cactus pear silage represents a
viable strategy in the process of nutrient conservation and fermentation quality. In
addition to presenting low carbon production during aerobic stability.
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