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Abstract: Airborne geophysical data (AGD) have great potential to represent soil-forming factors.
Because of that, the objective of this study was to evaluate the importance of AGD in predicting
soil attributes such as aluminum saturation (ASat), base saturation (BS), cation exchange capacity
(CEC), clay, and organic carbon (OC). The AGD predictor variables include total count (µR/h), K
(potassium), eU (uranium equivalent), and eTh (thorium equivalent), ratios between these elements
(eTh/K, eU/K, and eU/eTh), factor F or F-parameter, anomalous potassium (Kd), anomalous uranium
(Ud), anomalous magnetic field (AMF), vertical derivative (GZ), horizontal derivatives (GX and
GY), and mafic index (MI). The approach was based on applying predictive modeling techniques
using (1) digital elevation model (DEM) covariates and Sentinel-2 images with AGD; and (2) DEM
covariates and Sentinel-2 images without the AGD. The study was conducted in Bom Jardim, a
county in Rio de Janeiro-Brazil with an area of 382,430 km2, with a database of 208 soil samples
to a predefined depth (0–30 cm). Non-explanatory covariates for the selected soil attributes were
excluded. Through the selected covariables, the random forest (RF) and support vector machine
(SVM) models were applied with separate samples for training (75%) and validation (25%). The
model’s performance was evaluated through the R-squared (R2), root mean square error (RMSE),
and mean absolute error (MAE), as well as null model values and coefficient of variation (CV%). The
RF algorithm showed better performance with AGD (R2 values ranging from 0.15 to 0.23), as well as
the SVM model (R2 values ranging from 0.08 to 0.23) when compared to RF (R2 values ranging from
0.10 to 0.20) and SVM (R2 values ranging from 0.04 to 0.10) models without AGD. Overall, the results
suggest that AGD can be helpful for soil mapping. Nevertheless, it is crucial to acknowledge that the
accuracy of AGD in predicting soil properties could vary depending on various common factors in
DSM, such as the quality and resolution of the covariates and available soil data. Further research is
needed to determine the optimal approach for using AGD in soil mapping.

Keywords: machine learning; digital soil mapping; gamma-ray spectrometry data; magnetic data;
hillslope areas; parent material

1. Introduction

According to [1], the purpose of digital soil mapping (DSM) is to extend spatial soil in-
formation system functionalities (conventional soil survey expertise and remote/proximal
sensing) by combining with the spatial soil inference systems (predictive models) to in-
crease the understanding of the spatial distribution of soil properties. In other words, the
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objective is to infer new soil data from the one already available for predicting soil classes
and attributes, studying their properties and related environmental variables, and produc-
ing more informative and cost-efficient maps with higher spatial resolution, accuracy, and
uncertainty estimates [1–3].

The DSM depends on adequate environmental variables to represent soil formation
factors [4] as predictors to achieve this purpose. According to [5], relief, organisms, and
climate were the three most frequently used environmental covariates, and the frequency
of other factors, such as parental material, are poorly related in the literature. Knowing
that most of the world’s soils are “mineral soils” and their properties are influenced by
their mineral composition, it is our interest to update the parent material information in
soil science [6]. Parent material can be an essential soil-forming factor where granitic and
basaltic inherited soils occur, for example. As suggested [6], highlighting the differences
between those soils in some important soil properties (e.g., sand contents, clay contents,
water retention, porosity, erodibility, and clay minerals of young soils).

In addressing this issue, gamma-ray spectrometry data have increased as a covariate
in DSM to represent parental material information (e.g., [7–11]). It is possible to make
associations between relief denudation processes and the relative rates of soil formation
and erosion [12,13], as [14] also pointed out in a critical review of gamma-ray spectrometry
as a tool in soil science. Among the geophysical data, gamma-ray spectrometry is a remote
sensing technique used to measure the natural radiation emitted by rocks and soil. This
method measures the concentrations of K (potassium), U (uranium), and Th (thorium) from
their radioactive decay series (40K, 238U, and 232Th) generally through NaI(Tl) detectors
in the portable spectrometer or in airborne surveys [13]. One important characteristic is a
general increase in its concentration with increasing silica content in igneous rocks, mainly
correlated with acid rocks such as granites and gneisses [15]. Another application in soil
science is mapping the distribution of these elements in soil profiles [11,14,16]. Different
soil horizons may have different concentrations of radioactive elements, which can be
mapped to understand the vertical distribution of these elements and how they correlate
with soil properties and soil genesis.

The magnetic method is another example of geophysical data that can be used to
represent parent material. This technique measures the strength and direction of the
magnetic field at the Earth’s surface. Magnetic anomalies (i.e., deviations from the expected
magnetic field) can be mapped and provide information about the magnetic properties of
the rocks and geological structures [17]. Magnetic minerals and their characteristics, such
as grain size, shape, and orientation, control the magnetic survey responses. Magnetic data
are usually related to more basic rocks such as basalts. However, some generalizations may
be made within the same area since rocks from the same site can exhibit increased magnetic
susceptibility with maficity [17].

As well as gamma-ray spectrometry, the magnetic method can be measured in situ or
based on aerial surveys. Studies involving magnetic data and soils are usually in situ [10,18–20].
However, its applicability may be valid due to the possibility of contrasting with gamma-
ray data in the type of parent material highlighted by these methods in DSM. Furthermore,
airborne gamma-ray and magnetic data are freely available by the Geological Survey of
Brazil—CPRM [21], encouraging researchers and scientists to promote advances in several
areas, boosting sectors such as data science, artificial intelligence, and geospatial technology.
The mafic index is an example of a covariable with the potential for digital soil mapping
that integrates both data types. According to [22], that is a helpful technique that can be
used to analyze the influence of lateritic soils on the surface (Fe-rich material).

Therefore, the hypothesis was that AGD could enhance the predictive modeling of
aluminum saturation (ASat), base saturation (BS), cation exchange capacity (CEC), clay,
and organic carbon (OC) in Bom Jardim County, Rio de Janeiro State. To evaluate this
hypothesis, the research aimed to employ predictive modeling techniques and compare the
effectiveness of two different groups of covariates representing the soil-forming factors: the
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first group consisted of covariates derived from DEM and Sentinel-2 images with AGD; the
second group included covariates derived from DEM and Sentinel-2 images without AGD.

The AGD candidate predictor variables include total count (µR/h), K (potassium),
eU (uranium equivalent), and eTh (thorium equivalent), ratios between these elements
(eTh/K, eU/K, and eU/eTh), factor F or F-parameter, anomalous potassium (Kd), anoma-
lous uranium (Ud), anomalous magnetic field (AMF), vertical derivative (GZ), horizontal
derivatives (GX and GY), and mafic index (MI). The significance of these covariates was
assessed through the evaluation of two predictive models (RF and SVM), model perfor-
mance criteria (R2, RMSE, and MAE), null model and coefficient of variation (CV%) values,
covariate frequency, and Spearman’s correlations.

2. Materials and Methods
2.1. Study Area and Soil Data

Bom Jardim County is in the Centro Fluminense mesoregion of the State of Rio de
Janeiro, as indicated by the Brazilian Territorial Division from [23] (Figure 1). Situated
between the valleys and escarpments of Serra do Mar, the county comprises an area of
382,430 km2. The climate is subtropical, categorized by Cwa per Köppen’s criteria. The
average rainfall from 1941 to 2020 is 1413.63 mm, with December being the wettest month
and September being the driest [24].

Despite anthropic interventions, mainly through agricultural activities, the original
vegetation of the remaining Atlantic Forest is 51%, constituting secondary forests and
native forests preserved in areas of higher altitude. The remaining 49% of the area pre-
dominantly comprises natural pastures, perennial crops such as coffee, vegetable crops,
and ornamental flowers such as roses and eucalyptus reforestation [25]. The anthropic
interferences associated with the dominant mountainous relief characterize a high potential
vulnerability to the region’s erosion and mass movement events. This potential is reduced
when the terrain is still covered with the original tropical rainforest [26].
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Figure 1. Location map of the Bom Jardim County and soil samples described by [26]. On the left
below, the digital elevation model (DEM) derived from Rio de Janeiro cartographic database (original
scale 1:25,000) [27].

According to the World Reference Base for Soil Resources Classification System [28],
the region has as principal soil classes Cambisols, Ferralsols, Acrisols, and Fluvisols
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(Figure 2a) and soil associations detailed by [25]. Regarding geology, Bom Jardim is
inserted in the Oriental Terrane of the Ribeira Belt. These include plutonic rock intru-
sion and deformation during pre- and late-collisional periods, paragneiss and high-grade
metamorphic metasediments, and non-deformed granitic bodies [29,30] (Figure 2b).
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Figure 2. (a) Soil map adapted from [25], SiBCS: Brazilian Soil Classification System [31], WRB: World
Reference Base for Soil Resources [28]; (b) geological map (original scale 1:400,000) [32].

The legacy soil data were from [25]’s investigation “Soils of the Medium Upper Course
of the Rio Grande, Mountainous Region of the State of Rio de Janeiro,” collected between
2009 and 2011. The study aimed to classify and map different soil types on a 1:100,000 scale
using the Brazilian Soil Classification System criteria and norms adopted by Embrapa [33].
The soil dataset consists of 208 samples, including 74 soil profiles, 44 complementary
soil profiles, and 90 surface-horizon samples. The samples are divided into 97 Ferralsols,
35 Cambisols, 62 Acrisols, three Leptosols, five Fluvisols, five Gleysols, and one Nitisol,
detailed by [25]. The analytical results of aluminum saturation (ASat), base saturation
(BS), cation exchange capacity (CEC), clay, and organic carbon (OC) were selected for the
present study.

Given the wide variety of soil profile thicknesses, the slice-wise aggregation algorithm
of the AQP package developed by [34] was applied. This function aims to interpolate
values for soil properties at predefined depth intervals. The slice-wise function assumes
that soil properties along the profile are continuous, respecting their average values. In the
present work, the topsoil layer corresponding to 0–30 cm was used to compound the input
soil dataset. The procedure was done in R and RStudio software version 4.3.0 [35]. The
basic statistics for these attributes are presented in Table 1.
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Table 1. Statistics of soil attributes used in the prediction.

ASat (%) BS (%) CEC (cmolc kg−1) Clay (g kg−1) OC (g kg−1)

Minimum 0 2 3.39 102 4.8
Maximum 89 100 35.07 556 76.2

Median 20.25 26 9.06 344.5 15.6
Mean 30.20 30.25 9.70 336.80 16.43

Standard
deviation 28.37 20.91 3.70 96.31 7.26

Aluminum saturation = ASat, base saturation = BS, cation exchange capacity = CEC, and organic carbon = OC.

2.2. Covariate Acquisition and Processing

The DEM was generated using vector data containing primary elevation information,
equidistant contour lines at 10 m intervals, hydrography, and boundary of the study area,
all projected in UTM/WGS84 datum (Universal Transverse Mercator/World Geodetic
System 1984), Zone 23 S, EPSG 32723. These data comprise the cartographic base of the
State of Rio de Janeiro, available by the Brazilian Institute of Geography and Statistics, with
an original scale of 1:25,000 [27]. The vector data were interpolated into a regular 20 m grid
by applying the Topo To Raster tool in ArcGIS Desktop software (v. 10.6). Interpolation
errors, such as spurious depressions, were filled. Additionally, the Morphometry and
Hydrology modules of the SAGA-GIS software [36] were used to generate the covariates
derived from DEM. DEM covariates used for prediction and their respective references are
represented in Table 2.

Table 2. DEM covariates used for prediction and their respective references.

Covariate Abbreviation Reference

Digital Elevation Model DEM -
Convergence Index Convergenc [37]

Downslope Distance Gradient Gradient [38]
Slope -

[39]

Aspect -
Profile Curvature ProfileCurv
Plan Curvature PlanCurv

Longitudinal Curvature Longitudin
Maximum Curvature MaximumCurv

Topographic Position Index TPI [40–42]
Slope Height SlopeHeig

[43]
Valley Depth ValleyDep

Normalized Height Normalized
Standardized Height Standardiz
Mid-Slope Position MidSlope

Terrain Ruggedness Index TRI [44]
Topographic Wetness Index TWI

[43]Catchment Area CatchmentA
Catchment Slope CatchmentS

The Sentinel-2 mission’s Multispectral Instrument (MSI) was carried out by two satel-
lites, Sentinel 2A, and 2B, launched in June 2015 and March 2017. The European Space
Agency (ESA) provided these sensor images, including 13 spectral bands ranging from
visible and near-infrared (VNIR) to shortwave infrared (SWIR), to users in Level 1C of
processing, which consists of TOA (top-of-atmosphere) images. The images are geomet-
rically corrected and orthorectified, with 100 km × 100 km dimensions, projected on
UTM/WGS84 [45]. The ESA also provides additional data for the processing of images
from Level 1C to Level 2A, which refers to the application of atmospheric correction, trans-
forming TOA images into BOA (bottom-of-atmosphere). The procedure was performed
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using the Sen2Cor processor. More details about processing can be seen in the user manual
written by [46].

Cloud-free images were selected at processing Level 1C and collected on
7 December 2021 for this study. The atmospheric correction method described in the
previous paragraph was applied, resulting in 20 m resolution BOA images. Calculations
to generate covariates were performed using mathematical operations between bands in
the QGIS software v. 3.24.1 [47]. The Sentinel-2 covariates used for prediction and their
respective references are represented in Table 3.

Table 3. Sentinel-2 covariates used for prediction and their respective references.

Covariate Abbreviation Reference

Grain Size Index GSI [48,49]
Normalized Difference Vegetation Index NDVI [50]

Alteration -

[51]
Ferric Iron FerricIron

Ferric Oxides FerricOxi
Ferrous silicates (Biotite, chloride, amphibole) FerrousSilic

The airborne geophysical data were obtained by the Geological Survey of Brazil—
CPRM (Rio de Janeiro Project: [21]). This project was carried out during 2011 and 2012 and
covered an area of 32,202 km2, totaling 66,111.40 km of high-resolution geophysical profiles.
The summary of survey characteristics is described in Table 4.

Table 4. Survey characteristics of Rio de Janeiro Aerogeophysical Project (CPRM, 2012).

Flight line direction N-S
Flight line spacing 500 m
Control line direction E-W
Control line spacing 10 km
Measurement intervals (gamma-ray spectrometer) 1.0 s
Measurement intervals (magnetometer) 0.1 s
Flight height average 100 m
Approximate flight speed 270 km/h

All the AGDs (Table 5) were processed using Oasis Montaj software (Educational
software edition v. 9.8) at a spatial resolution of 100 m. First, minimum curvature [52]
interpolation was performed to generate primary gamma-ray variables: total count (µR/h),
K (potassium), eU (uranium equivalent), and eTh (thorium equivalent). The ratios between
elements, Factor F or F-parameter, anomalous potassium (Kd), and anomalous uranium
(Ud) were generated from those variables. The anomalous magnetic field (AMF), which
represents the magnetic susceptibility of the rocks in the area, was generated by performing
magnetic data interpolation using the bidirectional method [53]. The data were then
reduced to the pole [54] according to the parameters calculated for the date of acquisition.
From AMF, its derivatives were generated: analytic signal amplitude (ASA), vertical
derivative (GZ), and horizontal derivatives (GX and GY). The ASA [55] was used with K,
eU, and eTh channels to generate the mafic index, the calculated consistency in the division
between the ASA and the product between the K, eU, and eTh channels [22].

After processing, all geophysical rasters were resampled from 100 m to 20 m of spatial
resolution in the Oasis Montaj software, using the Regrid tool to adapt them to the finer
resolution of the DEM and Sentinel-2 covariates since morphologically complex areas are
affected by the pixel size, preferring finer resolutions as observed by [56].
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Table 5. AGD covariates used for prediction and their respective references.

Covariate Abbreviation Reference

Total count TC
[21,57]Potassium, uranium equivalent, and thorium equivalent Kperc, eU, and eTh

Ratios between elements eTh/K, eU/K, and eU/eTh
Factor F or F-parameter FactorF [58]

Anomalous potassium and anomalous uranium Kd and Ud [59]
Anomalous magnetic field AMF [21]

Vertical derivative and horizontal derivatives GZ, GX and GY [17]
Mafic index MI [22]

2.3. Modeling Strategy

The following steps were applied to predict the selected soil attributes using variables
derived from DEM and Sentinel-2 imagens with AGD and without AGD (Figure 3):

(1) Dataset preparation;
(2) Removal of non-significant covariates with nearZeroVar and findCorrelation

functions [60];
(3) Data splitting in training (75%) and validation (25%) datasets;
(4) Removal of covariates by importance using recursive feature elimination (RFE) [60];
(5) Training of predictive models using the selected covariates;
(6) Model performance evaluation using validation samples;
(7) Computation of frequency of top 10 RFE predictors;
(8) Generation of average maps for each soil property;
(9) Generation of coefficient of variation (CV%) maps;
(10) Interpretation of final results.
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According to [61], there are benefits to eliminating predictors in the pre-processing step:
optimize the computational time required to build the models, remove covariables with
degenerate distributions, and remove one of highly correlated two predictors, which can
measure the same underlying information. Eliminating non-significant covariates should
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not harm the model’s performance and may result in a more concise and understandable
model, helping maximize accuracy.

The elimination of the non-significant covariate process was carried out through
nearZeroVar and findCorrelation functions, both available in the caret package [60] for R
software. NearZeroVar function was applied to eliminate variables with zero or nearly zero
variance that will not contribute to the model’s performance. The findCorrelation function
was used to identify and remove the highly correlated covariates that could jeopardize
the model’s performance. The approach involves computing correlation coefficients for
all possible pairs of covariates. When the correlation coefficient between two covariates
exceeds a user-defined threshold, the correlation coefficients between each covariate and
all other covariates are calculated and summed. The covariate with the highest sum of
correlation coefficients with the other covariates is eliminated [61]. In this study, the
findCorrelation function was applied with Spearman’s correlation method with a critical
value of 95% (as adopted by [10,62]).

Before performing recursive feature elimination (RFE), the samples were randomly
divided into 75% for training and 25% for validation with the function createDataPartition.
The RFE was performed in the training dataset through rfe and rfeControl functions, also
from the caret package. This backward selection procedure evaluates multiple models
by removing covariates in order of importance and is utilized in recent studies such
as [10,62,63]. The initial model contains all predictors. At each step, the less significant
predictors are iteratively eliminated before rebuilding the model. The final subset of
covariates corresponds to the best value of the defined decision metric [61]. In this study,
the RFE was performed through the ancillary functions rfFuncs for the RF model and
caretFuncs for the SVM model, with 10-fold cross-validation using the repeatedcv method
and evaluated by the R-squared accuracy metric. The predictor’s subsets were used
following each approach (with AGD and without AGD) and the result of the previous step.
For modeling with AGD, we used 5 to 34 predictors subsets and for modeling without
AGD, we used 5 to 22 predictors subsets. The ideal set of covariates generated by the RFE
for each algorithm was used in the model training step.

The training process was performed through train and trainControl functions from
the caret package. The procedure was performed with 10-fold cross-validation using
the repeatedcv method and ten possible values of tuning hyperparameters evaluated
by the R-squared accuracy metric (mtry for RF and sigma and cost for SVM [62]). The
hyperparameters of each algorithm are described in the caret package manual, as cited
by [10]. In the 10-fold cross-validation, also used in the RFE step, the training samples
were partitioned into 10 near-equally sized folds. The models are trained by repeatedly
excluding one of the folds, and the training performance is evaluated by making predictions
on the excluded fold [62,64].

The fitted models were applied to the validation data to assess their accuracy. Their
performance was evaluated using three commonly used metrics in DSM: R-squared (R2),
root Mean square error (RMSE), and mean absolute error (MAE). Additionally, null model
values (NULL RMSE and NULL MAE) were also calculated for comparison purposes.
Utilizing null models can be a practical approach for setting thresholds and assessing the
quality of models because it enables evaluating the tested models against a model with
parameters set to zero (null) [62].

As shown in Figure 3, the RFE, training, validation, and prediction for the entire study
area were repeated 100 times to ensure robustness. So, the final maps for each soil property
were generated by computing the average value of the products of the 100 model runs,
and the frequency of the top 10 RFE predictors. Additionally, the coefficient of variation
(CV% = (standard deviation/mean) × 100)) was calculated through the products of the
100 runs for each soil property following [62,65]’s proposal.

A high CV % indicates a large amount of variability in the data, which can result
in higher uncertainty in the map predictions. Conversely, a low CV % shows relatively
little variability in the data, which can result in lower uncertainty in the map predictions.



Remote Sens. 2023, 15, 3719 9 of 26

In addition, Spearman’s correlation between AGD and soil properties was performed to
assist in discussing their relationships. As the study focuses on the AGD’s importance in
predicting the select soil properties, the results and discussion will be directed toward them.

3. Results
3.1. Covariates Selection

In modeling with AGD data, none of the total 40 covariates were removed by the
nearZeroVar function. The selection by Spearman’s correlation considered six variables
highly correlated with other covariates, which were removed from the input set of the
modeling (eTh, eU/eTh, Kd, Longitudinal Curvature, Alteration, and Gz), resulting in
a final set of 34 covariates. In modeling without AGD data, of the 25 covariates, none
were removed by the nearZeroVar function. The selection by Spearman’s correlation
considered two variables highly correlated with other covariates, which were removed
from the input set of the modeling (Longitudinal Curvature, Alteration), resulting in a
final set of 22 covariates. The subsets of covariates in the RFE procedure varied in size
according to the model and the soil property. The average number of predictors selected by
the models for each property is presented in Figure 4.
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Figure 4. The average number of predictors selected by the models for each soil property throughout
the 100 runs.

In modeling with AGD, considering the 100 runs, the mean number of predictors
selected for the RF model was 25 for ASat, 28 for BS, 20 for CEC, 26 for Clay, and 24 for
OC. The mean number of predictors selected for the SVM model was 27 for ASat, 30 for BS,
14 for CEC, 14 for Clay, and 13 for OC. In modeling without AGD, the mean number of
predictors selected for the RF model was 18 for ASat, 19 for BS, 19 for CEC, 18 for Clay, and
20 for OC. The mean number of predictors selected for the SVM model was 15 for ASat, 20
for BS, 13 for CEC, 14 for Clay, and 8 for OC, indicating a tendency to construct simpler
models, mainly for the SVM model and CEC, Clay, and OC properties.

3.2. Models’ Performance

The worst performances were seen in the modeling of soil attributes, excluding the
AGD for both models (RF and SVM) (Table 6).
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Table 6. Models’ performance with and without AGD for all soil attributes.

With AGD

ASat BS CEC Clay OC

R2 RF 0.20 0.22 0.23 0.15 0.16
SVM 0.19 0.23 0.11 0.11 0.08

RSME
RF 25.66 18.47 3.20 91.08 6.66

SVM 26.78 18.64 3.47 93.23 6.86
NULL 28.32 20.64 3.57 97.11 6.97

MAE
RF 22.32 15.14 2.24 75.05 4.48

SVM 21.97 14.79 2.20 77.57 4.39
NULL 25.85 17.61 2.35 80.26 4.55

Without AGD

ASat BS CEC Clay OC

R2 RF 0.10 0.13 0.20 0.12 0.11
SVM 0.06 0.10 0.07 0.10 0.04

RSME
RF 27.19 19.54 3.27 92.72 6.80

SVM 29.29 20.02 3.53 93.46 6.98
NULL 28.32 20.64 3.57 97.11 6.96

MAE
RF 23.99 16.21 2.29 76.65 4.64

SVM 24.04 16.28 2.23 78.33 4.53
NULL 25.85 17.61 2.35 80.26 4.55

The RF algorithm showed the best performance to predict all soil attributes with AGD
based on R2, except for BS: ASat (R2 = 0.20), CEC (R2 = 0.23), Clay (R2 = 0.15), and OC
(R2 = 0.16). Based on RMSE, the RF algorithm performed best for all soil attributes. On the
other hand, based on MAE, the SVM showed the best performance for ASat (MAE = 21.97),
BS (MAE = 14.79), CEC (MAE = 2.20), and OC (MAE = 4.39).

The reliability of these observed results was confirmed through a comparison with null
values, where all NULL RMSE and NULL MAE values were higher for all soil attributes
in modeling with AGD. Conversely, in modeling without AGD, the SVM model showed
higher RMSE values than NULL RMSE for ASat (RMSE = 29.29, NULL RMSE = 28.32) and
for OC (RMSE = 6.98, NULL RMSE = 6.96). The RF model showed a higher MAE value
than NULL MAE for OC (MAE = 4.64, NULL MAE = 4.55).

Figure 5 shows the performance results of the 100 model runs for each soil property in
a boxplot based on R2.
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Overall, the results exhibit substantial variation. The models with the poorest per-
formance had the slightest deviations, as seen in the SVM model for CEC, Clay, and OC
in modeling with AGD and SVM model for ASat, CEC, and OC in modeling without
AGD. However, after thoroughly examining all 100 runs, it was found that using AGD for
modeling was beneficial. The advantage was evidenced by soil attribute predictions with
AGD showing more R2 values equal to or higher than 0.2, as shown in Table 7, which is
considered satisfactory for machine learning algorithms regarding soil properties [10].

Table 7. Number of times the model reached values R2 ≥ 0.20.

With AGD

ASat BS CEC Clay OC
RF 44 58 44 32 33

SVM 43 63 14 12 3
Without AGD

ASat BS CEC Clay OC
RF 11 21 35 18 21

SVM 3 11 0 11 2

The most noteworthy differences between the models (RF and SVM) when utilizing
AGD versus without AGD were observed in the ASat and BS attributes. The RF model
achieved R2 values of at least 0.20 in 44 instances for ASat and 58 instances for BS, compared
to only 11 for ASat and 21 for BS instances without AGD. Similarly, the SVM model
produced R2 values of at least 0.20 in 43 instances for ASat and 63 instances for BS, in
contrast to just 3 and 11 instances without AGD. For CEC, there was also an improvement
in the results. The RF model with AGD achieved R2 values of at least 0.20 in 44 instances
versus 35 in modeling without AGD. For the SVM model, there were 14 instances with
AGD against zero without AGD. While the models’ performances for Clay and OC did not
attain satisfactory values, using AGD slightly improved their overall performance.

3.3. Map Prediction and Uncertainty

The mean values of CV% maps for modeling with and without AGD are represented
in Table 8 below. The minimum, maximum, and median of CV% maps are attached in
Appendix A, Table A1.

Table 8. The mean values of CV% maps for modeling with and without AGD.

With AGD

ASat BS CEC Clay OC
RF 13.86 9.29 8.30 4.56 9.29

SVM 14.35 8.31 4.73 6.22 5.43
Without AGD

ASat BS CEC Clay OC
RF 14.85 10.95 7.53 4.93 9.07

SVM 22.08 8.41 5.50 4.89 5.50

Comparing the RF values for modeling with and without AGD, the RF results with
AGD reached a lower variability in the data for ASat, BS, and Clay. For SVM, the modeling
with AGD reached a lower variability in the data for ASat, BS, CEC, and OC. Comparing
the RF and the SVM models for modeling with AGD, the SVM showed better results for
BS, CEC, and OC. The final prediction and CV% maps of the RF model are represented in
Figures 6 and 7, and the final prediction and CV% maps of the SVM model are described in
Figures 8 and 9 to analyze the results of modeling with AGD in more detail.
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Figure 6a presents the ASat map, which clearly depicts a central region with high ASat
values ranging from 42.51% to 58.17%. This region is dominated by Ferralsols and Acrisols,
as shown in Figure 2a. It is characterized by the lithological units of the Rio Negro Complex,
Trajano de Moraes, São Fidélis Group (sillimanite–biotite–gneiss), and Nova Friburgo Suite
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(Conselheiro Paulino and Sana granites), as indicated in Figure 2b. Interestingly, this area
exhibits a lower CV% ranging from 5.16% to 10.65%, demonstrating greater reliability in
the data in this region, as illustrated in Figure 7a.

In contrast, the BS map in Figure 6b displays the opposite trend, with the regions with
the highest BS values located in the NW and SE regions ranging from 41.79% to 61.95%.
These areas are the only ones with Cambisols as the dominant soil in this mapping unit
(Figure 2a) and are also characterized by Ferralsols and Acrisols. Geologically, these high
BS values are associated with the Rio Negro Complex, Serra dos Órgãos, Cordeiro, and
São Fidélis (Kinzigite), as indicated in Figure 2b. This area also exhibits a lower CV%
represented by classes ranging from 2.85% to 7.40% and 7.41% to 9.35%, as depicted in
Figure 7b.

Figure 6c displays the CEC map, which seems to have its values influenced by the
topography, with high CEC values (6.60–9.27 cmolc kg−1) matching the outcrop area with
higher altitudes (Figure 1). This region is dominated by Cambisols, Ferralsols, and rock
outcrop, as shown in Figure 2a. It is characterized by the lithological units of the Nova
Friburgo Suite, Rio Negro Complex, Serra dos Órgãos, and Kinzigite, as indicated in
Figure 2b. In this case, the CV% is also higher, ranging from 16.16% to 25.12%, demonstrat-
ing a higher level of uncertainty in the predicted data in this region (Figure 7c).

For Clay (Figure 6d), it is more challenging to observe a pattern. However, relief
also influences its distribution, where low values (221.39–299.28 and 299.29–322.55 g kg−1)
correspond to valleys. The medium and higher values (other classes ranging from 322.56 to
449.69 g kg−1) are distributed in areas with higher altitudes (Figure 1). The CV% map for
Clay concentrates its higher values mainly in the valleys, ranging from 7.04% to 17.65%
(Figure 7d). The OC mean map (Figure 6e) has a distribution similar to that observed in the
CEC mean map (Figure 6c). The higher values (28.93–43.21 g kg−1) match with outcrop
areas. The same occurs for the CV% map, showing higher values, ranging from 22.85% to
35.60%, as illustrated in Figure 7e.

The visual distribution for SVM (Figure 8) is generally similar for all mean maps
compared to the RF model (Figure 6). However, the RF model seems to have the most
defined distribution patterns, with higher contrast between the highest and lowest values,
mainly for ASat, BS, and Clay.

Comparing the two models, a difference worth highlighting is the CV% values. Al-
though the RF model performs better according to the presented metrics (Table 6), the SVM
model’s CV% values for all soil attributes showed a smaller amplitude, except for ASat.
For SVM, the CV% ranges from 4.22% to 24.9% for BS, 2.87% to 9.46% for CEC, 2.80% to
11.85% for Clay, and 2.90% to 10.27% for OC (Figure 9b–e, respectively). For ASat, the RF
model showed a smaller amplitude ranging from 5.16% to 57.07% (Figure 7a), while the
SVM model showed an amplitude ranging from 5.95% to 135.63% (Figure 9a).

Another difference that can be highlighted is that the highest values in the average
map (Figure 6c,e) correspond to the highest CV% values (Figure 7c,e) for the RF model
for CEC and OC. In contrast, for the SVM model, the highest values in the average map
(Figure 8c,e) correspond to the lower CV% values (Figure 9c,e) for CEC and OC. For Clay,
the highest values in the average map (Figure 6d) correspond to the RF model’s lower
CV% values (Figure 7d). In contrast, for the SVM model, the lower values in the average
map (Figure 8d) correspond to the lower CV% values (Figure 9d) (valleys). The analysis
suggests that while the RF model performs better, the SVM model may be more consistent
in its predictions (lower uncertainty), as indicated by the smaller CV% values in these cases.

3.4. AGD Data Importance

Figure 10 shows the top 10 covariates’ importance frequency to predict ASat, BS, and
CEC with AGD. The top 10 covariates’ importance frequency in predicting Clay and OC
contents are represented in Figure 11.
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Overall, AGD frequently appeared as significant for covariates in all models tested. In
RF modeling for ASat, three of the ten most essential predictors were AGD (Kperc, eU/K,
eTh/K), while in SVM modeling, five of the top ten predictors were AGD (Factor F, eU/K,
eU, eTh, AMF). The terrain attributes were dominant in both RF and SVM modeling for BS,
with two AGDs appearing among the top predictors (Ud and eTh/K, eU/K and eTh/K,
respectively). In contrast, in RF modeling for CEC, five out of the top ten predictors were
AGD (MI, Kperc, GX, FactorF, eU/K), while in SVM modeling, six of the top ten predictors
were AGD (MI, Kperc, GY, GX, FactorF, eU/K).
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In RF modeling for Clay content, three of the 10 most essential predictors were AGD
(Ud, TC, GY), while in SVM modeling, 4 of the top 10 predictors were AGD (Ud, TC, GY,
GX). In RF modeling for OC, 7 out of the top 10 predictors were AGD (Ud, TC, MI, Kperc,
GX, FactorF, eU/K), while in SVM modeling, three of the top 10 predictors were AGD
(Kperc, FactorF, eU/K). For Clay and OC, few covariates reached a frequency of 100. Only
Valley Depth and Catchment Slope for Clay reached a frequency of 100 in both RF and
SVM models, and DEM for OC in both RF and SVM models.

Figure 12 shows Spearman’s correlation matrix between AGD and soil attributes.
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 R2 Results 
  BS CEC Clay OC 

[10] 
RF 0.17 0.14 0.46 0.05 

SVM 0.11 0.29 0.49 0.03 

This study 
RF 0.22 0.23 0.15 0.16 

SVM 0.23 0.11 0.11 0.08 

Figure 12. Spearman’s correlation matrix between AGD and soil attributes. “×” represents not
statistically significant values at the 0.2 significance level.

The AGD covariates eTh/K and eU/K ratios exhibited moderate correlations with
ASat and BS properties, with inverse relationships. The eTh/K correlation was 0.37 with
ASat and −0.34 with BS, while eU/K correlated 0.29 with ASat and −0.22 with BS. Despite
the low values, another predictor that showed a correlation with ASat and BS was eU, with
values of 0.21 and −0.18, respectively. For CEC, Kperc (0.32) exhibited moderate correlation,
while Factor F (0.19) and eU/K (−0.16) showed weak correlations. For Clay, only GY (−0.13)
showed weak correlations. Finally, for OC, Kperc (0.32) exhibited moderate correlation,
while eU/K (−0.18), FactorF (0.25), Ud (−0.18), and MI (−0.15) showed weak correlations.
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4. Discussion
4.1. AGD Importance to Predict Soil Attributes through DSM

From the observed results, the modeling with the AGD obtained better performance in
terms of R2, RMSE, and MAE for both prediction algorithms used for modeling the selected
soil attributes. Ref. [10] performed a similar study by applying different geophysical
sensors combination (measured in situ) for modeling soil properties, and, in general, the
modeling without using geophysical sensors also showed the poorest results. According
to [10], gamma-ray spectrometry and magnetic susceptibility were the best combinations of
geophysical data. The comparison of the results of this study with those obtained by [10] is
represented in Table 9, except for ASat.

Table 9. Comparison of the results of this study with those obtained by [10].

R2 Results

BS CEC Clay OC

[10]
RF 0.17 0.14 0.46 0.05

SVM 0.11 0.29 0.49 0.03

This study RF 0.22 0.23 0.15 0.16
SVM 0.23 0.11 0.11 0.08

The comparison between the studies shows that the results obtained in the present
study were satisfactory. The most significant discrepancy is in the performance of the Clay
models with lower R2 values than those observed by [10]. For BS, the performance of this
study was better for both models: 0.22 versus 0.17 for the RF model and 0.23 versus 0.11
for the SVM model. For CEC, the performance of this study was better for the RF model
(0.23 versus 0.14). For OC, both models also presented a better performance, highlighting
the difference in the values observed for the RF model with values 0.16 in this study in
contrast with 0.05 presented in [10].

Ref. [9] also analyzed the different models to predict topsoil particle-size distribution,
with and without gamma-ray spectrometry, to replace lithology maps. According to the
authors, a significant increase in models’ performance was observed across all particle
sizes when gamma-ray spectrometry was used instead of lithology, permitting the creation
of more pedologically meaningful maps. Another example is presented by [66]. Soil
properties were measured in situ using several sensors to test the performance of the
individual sensors and their combination to enhance soil property predictions (organic
carbon, sum of bases, CEC, clay content, volumetric moisture, and bulk density). In this
case, the X-ray fluorescence spectrometer sensor was superior. However, the gamma-ray
sensor was the second best among individual sensors for predicting all those soil properties
and the best for predicting CEC values.

The better performance of modeling with AGD was also confirmed through a compar-
ison with NULL RMSE and NULL MAE values. In modeling with AGD, all NULL RMSE
and NULL MAE values were higher for all soil attributes. Algorithms that exhibit RMSE
and MAE values exceeding those of the NULL method are inferior and perform less than
the use of mean value for the entire area [10].

Ref. [67] used the same database of the same area but with a different approach
to predict soil properties. In their research, the modeling was performed only once for
each attribute, without AGD, using the cross-validation method to evaluate the models’
performance. The results in terms of R2 were 0.19 for Clay 0–5 cm using ordinary kriging,
0.19 for Clay 5–15 cm using ordinary kriging, and 0.18 for Clay 15–30 cm using regression
kriging. For OC, the results were 0.06 for 0–5 cm using linear regression, 0.07 for 5–15 cm
using linear regression, and 0.11 for 15–30 cm using regression tree.

Although the average accuracy of the model’s performance to predict Clay content
has a lower R2 value in this study (0.15 for RF and 0.11 for SVM in modeling with AGD),
the number of times the models reached values R2 ≥ 0.20 was 32 for RF and 12 for SVM in
Clay modeling, as shown in Table 7. For OC, the result presented by [67] (R2 = 0.11) is a
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lower value than observed for the RF model in this study (0.16). Additionally, the number
of times the models reached R2 ≥ 0.20 was 33 for RF and three for SVM in OC modeling.

In this case, another point that can be analyzed is that generalized harmonization at a
depth of 0–30 in the present study seems not to have affected the performance of the models.
Since the different depth-interval results (0–5, 5–15, and 15–30) shown by [67] for Clay and
OC contents did not show a significant performance increase, and considering that the
results of the present study were obtained through 100 models and that the validation was
made from a set of unknown samples, it can be said that the results are more reliable and
showed better performance than those presented by [67] to predict soil properties in the
same study area.

4.2. Soil Properties and AGD Relationships

The results show that AGD combined with terrain and Sentinel-2 covariates played an
essential role in predicting soil properties in the study area. AGDs were commonly observed as
essential predictors for ASat, BS, CEC, Clay, and OC for both models (Figures 10 and 11). How-
ever, some covariates stand out considering Spearman’s correlation analyses (Figure 12).
The ratios eTh/K and eU/K are examples, exhibiting positive correlations with ASat (0.37
and 0.29, respectively) and negative with BS (−0.34 and −0.22, respectively).

Interpreting the ratios between the elements’ concentrations helps characterize dif-
ferent lithotypes and highlights zones of radioelement enrichment and alteration [17].
Assuming that K is more mobile and tends to be leached from the weathering profile in
tropical and subtropical climates, while eTh and eU are generally retained in the weathering
profile and associated with clays, oxides, and resistant minerals, it is possible to establish
relationships between weathering and erosion rates [15]. These relationships also agree
with the observed results, where less-weathered soils have relatively higher values of BS
(low values of these ratios). In contrast, more evolved soils are depleted in bases and are
more acidic, and consequently have higher values of ASat (high values of these ratios).
Therefore, the radioactive response largely depends on the evolutionary history of the
landscape [15].

The “Map Prediction and Uncertainty” analysis supports this hypothesis. The central
region, which has high ASat values, mainly comprises Ferralsols and Acrisols. On the other
hand, the highest BS values in the NW and SE regions correspond to the locations where
Cambisol prevails. The eU correlations with ASat (0.21) and BS (−0.18) follow the same
pattern. Ref. [11] also demonstrated a negative correlation between BS and gamma-ray
uranium. In Appendix A, Figure A1, attached to this paper, the airborne gamma-ray
spectrometry maps of eTh/K and eU/K also support this idea. The areas with the highest
values correspond to the high values observed in the average map for ASat (Figure 6a),
and the lower values correspond to the high values observed in the average map for BS
(Figure 6b), as well as the CV% maps demonstrating lower values and greater reliability
in the data in these regions (Figure 7a,b). This relationship is essential as it can be a good
indicator of soil fertility since ASat and BS are used for this purpose [68].

GY highlights anomalies perpendicular to its direction (in the x direction). It highlights
superficial magnetic anomalies (Figure A2 in Appendix A), helping map geological contacts
and shallow features, such as lineament distribution [17]. Since lineament distribution
influences groundwater flow [69,70], the tested hypothesis was to find a correlation between
the drainage system and valley regions. In this sense, the GY correlated with Clay content
(−0.13), where areas with low GY values present Clay deposits. According to [71], clay
values, among other soil properties, are significantly related to landscape position and tend
to decrease downslope.

The negative correlation with GY corroborates with the hypothesis. However, the weak
correlation value and the lack of significant correlation with other AGDs did not conform to
what was expected. Furthermore, Clay content demonstrated an inverse relationship with
GX (Figure A3 in Appendix A), suggesting that Clay values would change according to
the directions of the applied filters, which does not make sense from a pedological point of
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view—demonstrating that these covariates may not be reliable for predicting soil properties.
Despite the low performance observed in the present study, the use of AGD data to predict
Clay contents showed satisfactory results, as reported by [9–11,18].

Factor F (or F-parameter) is a valuable tool for maximizing and distinguishing areas
characterized by potassium enrichment resulting from hydrothermal alterations [58]. This
covariate showed a positive correlation with CEC (0.19), suggesting that high potassium
values are related to high CEC values, confirmed by the positive correlations with Kperc
(0.32) and negative with eU/K (−0.16). These results agree with [11], showing a positive
correlation between CEC and gamma-ray potassium (0.42). However, the CV% maps do not
support the idea. Although the CV% maps for the SVM model demonstrate good reliability
for the areas corresponding to the highest CEC values (Figures 9c and 8c, respectively), the
RF model does not follow the same pattern (Figures 7c and 6c, respectively), demonstrating
duality in the results and, consequently, low reliability.

In Appendix A, Figure A1, the Kperc and Factor F maps mainly match with higher
elevation areas, as shown in Figure 1. The areas of occurrence of Conselheiro Paulino and
Sana granites, for example, highlight high potassium values as they represent undeformed
granites resistant to weathering [29,32]. So, in this case, the high potassium values are
related to the parent material, not the soil potassium content, explaining why BS did not
correlate well with Kperc and factor F. Furthermore, knowing that CEC is the sum of bases
plus H+ and Al+ [68], it makes sense that CEC is related to potassium concentrations, but
since it is also associated with aluminum, it may have confused the models.

The Kperc covariate showed a positive correlation with OC (0.32) as well factor
F (0.25). According to a study conducted by [72], it was discovered that radiometric
potassium plays a crucial role in predicting soil carbon in Northern Ireland. Nevertheless,
the relationship is inversed in [72]’s case, with a correlation value of −0.51. Soils with high
organic carbon content significantly diminish gamma rays’ intensity, as confirmed by the
negative correlation with radiometric thorium (−0.36) and radiometric uranium (−0.29).

According to [73], soil carbon has a high spatial variation, mainly where the land cover
was altered for different purposes in tropical areas. To obtain an accurate picture of the
carbon content in tropical regions, gathering data from a wide range of locations to account
for this variation is essential. Ref. [11] found the same pattern observed in the present
study, showing a positive correlation between OC and radiometric potassium (0.17) in a
study area in southeastern Brazil and climate classified as Cwa. The difference between
the results can be explained mainly by the climatic conditions. In contrast, in the case of
subtropical and tropical climates, the positive correlation values between OC and K could
be related to topsoil erosion.

However, as observed for CEC, the CV% maps for OC demonstrated duality in the
data. Although the CV% maps for the SVM model show good reliability for the areas
corresponding to the highest OC values (Figures 9e and 8e, respectively), the RF model did
not follow the same pattern (Figures 7e and 6e, respectively). So, further studies are needed
to understand the relationship between the distribution of radioelements and organic
carbon contents.

According to [10,11,18], gamma-ray and magnetic susceptibility can be associated
with soil attributes. However, there is still a gap in understanding the optimal covariates
and their potential combinations to investigate further soil weathering, pedogenesis, and
their relationship with soil attributes, especially when using airborne geophysical data,
where appropriate scale can be an issue.

4.3. Precautions and Challenges

Based on the discussed results, some considerations should be made. First, data
availability and quality are essential for more reliable modeling. Regrettably, the current
soil databases lack the necessary comprehensiveness and precision to support the utilization
of soil information [1]. Digital soil modeling relies on accurate and comprehensive soil
data. However, available soil data are generally insufficient or of varying quality, making it
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challenging to build reliable models based on a representative input soil dataset. Improving
data collection methods, standardizing data formats, and enhancing data-sharing practices
are crucial for better results [5]. For example, in this study, although the analysis of the
models and some possible relationships with soil properties suggest that AGD can be a
helpful tool for soil mapping, more reliable results could be achieved if the sample density
were representative. Of the 208 samples, 97 are Ferralsols, 35 are Cambisols, and 62 Acrisols,
lacking representation for classes such as Leptosols (3), Fluvisols (5), Gleysols (5), and one
Nitisol which were also reported in the study area.

The number of samples also affects the model’s validation and evaluation. Although
the proportion for training (75%) and validation (25%) is suitable for DSM, only 156 samples
were used for training and 52 for validation. Appropriate-scale sampling and sampling
design are other issues. Appendix A shows the correlation table of the studied properties
and all the proposed covariates (Figure A3). The observed correlations were well below
expectations, mainly for terrain covariates widely used in soil mapping [5]. This problem
may be related to the density of samples collected, as shown in the SE of the map (Figure 1).
According to [74], the statistical parameters are sensitive to the number and the locations of
the soil observations. In this sense, sample distribution according to scale and number of
samples is essential to ensure the accuracy and reliability of the models.

Spatial and temporal variability are also a challenge since soils exhibit considerable
variability, and most DSM studies typically concentrate on predicting soil properties for a
specific period [5]. Topography, land use, climate, and geological processes are examples of
factors that influence soil properties, and capturing this variability accurately in digital soil
models is challenging. Bom Jardim County is a good example of an area that undergoes
variations mainly through anthropic interferences associated with agricultural activities
and the dominant mountainous relief [25], which may explain the low significance of the
Sentinel 2 MSI-based indices since the soil collection was carried out between the years
2009 and 2011, and the sentinel images were from 2021.

DSM often faces several challenges since soil observations are scarce and costly. How-
ever, achieving satisfactory results with AGD is still possible, as reported by [7–9,75–77].
After extensive research over the past years, DSM has made significant progress in produc-
ing soil maps, a credible alternative to fulfill the increasing worldwide demand for spatial
soil information [2].

5. Conclusions

The RF algorithm showed the best performance in terms of data usage with AGD
to predict all the selected soil attributes (ASat, BS, CEC, Clay, and OC). The SVM model
also performed better regarding data usage with AGD than without AGD. Moreover, the
comparison with null values revealed that using AGD for modeling was beneficial in terms
of improving the accuracy of soil attribute predictions. The models with AGD showed
more R2 values equal to or higher than 0.2, which is considered satisfactory for machine
learning algorithms to predict soil attributes that present a wide spatial variability. The
most significant improvements were observed in the ASat and BS attributes.

In summary, using AGD for modeling showed its benefits in improving the accuracy
of soil attribute predictions. Although the models’ performances for CEC, Clay, and OC
contents did not attain satisfactory values, using AGD led to a slightly improved overall
performance. The AGD covariate with the best correlations with soil properties was eTh/K,
showing that the ratio between the element’s concentrations can be a helpful tool for
highlighting zones of weathering and an indicator of soil fertility. Spearman’s correlation
showed associations mainly with the gamma-ray spectrometry data, while the magnetic
data did not show satisfactory results. Magnetic data may provide good results combined
with gamma-ray spectrometry data in areas where chemical contrasts between lithological
units are evident.

Overall, the results suggest that AGD can be a helpful tool for soil mapping, partic-
ularly in areas where traditional soil survey methods are impractical or cost-prohibitive.
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However, it is important to note that the effectiveness of AGD in predicting soil properties
may depend on several factors, including the quality and resolution of the covariates,
number and representativeness of the soil samples, appropriate scale sampling and design,
land cover spatial and temporal variability, and the statistical models used for analysis.
Further research is needed to better understand the factors that rule models’ performance
variability and to determine the optimal approach for using AGD for soil mapping.
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Appendix A

Table A1. Basic statistics of CV% maps for modeling with and without AGD.

With AGD

ASat BS CEC Clay OC
minimum 5.16 2.85 2.90 2.00 2.41

mean 13.86 9.29 8.30 4.56 9.29
median 12.86 9.85 6.38 4.43 6.40RF

maximum 57.07 29.16 25.12 17.65 35.60
minimum 5.95 4.23 2.87 2.80 2.90

mean 14.35 8.31 4.73 6.22 5.43
median 11.84 8.23 4.57 6.09 5.34SVM

maximum 135.63 24.91 9.46 11.85 10.27
Without AGD

ASat BS CEC Clay OC
minimum 5.79 2.31 2.64 2.20 2.31

mean 14.85 10.95 7.53 4.93 9.07
median 13.80 10.30 5.33 4.78 5.99RF

maximum 56.24 28.15 24.91 17.28 33.23
minimum 10.13 5.61 2.47 2.68 3.04

mean 22.08 8.41 5.50 4.89 5.50
median 20.08 8.21 5.41 4.80 5.43SVM

maximum 103.84 18.41 10.85 8.25 9.56

https://geosgb.cprm.gov.br/
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