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A B S T R A C T   

The complexity and practical importance of insect outbreaks have made the problem of predicting outbreaks a 
focus of recent research. We propose the Pattern-Based Prediction (PBP) method for predicting population 
outbreaks. It uses information on previous time series values that precede an outbreak event as predictors of 
future outbreaks, which can be helpful when monitoring pest species. We illustrate the methodology using 
simulated datasets and an aphid time series obtained in wheat crops in Southern Brazil. We obtained an average 
test accuracy of 84.6% in the simulation studies implemented with stochastic models and 95.0% for predicting 
outbreaks using a time series of aphids in wheat crops in Southern Brazil. Our results show the PBP method’s 
feasibility in predicting population outbreaks. We benchmarked our results against established state-of-the-art 
machine learning methods: Support Vector Machines, Deep Neural Networks, Long Short Term Memory and 
Random Forests. The PBP method yielded a competitive performance associated with higher true-positive rates 
in most comparisons while providing interpretability rather than being a black-box method. It is an improvement 
over current state-of-the-art machine learning tools, especially by non-specialists, such as ecologists aiming to use 
a quantitative approach for pest monitoring. We provide the implemented PBP method in Python through the 
pypbp package.   

1. Introduction 

Automated systems for syndromic surveillance have been reported in 
many studies in different contexts, such as public health aiming to 
predict disease outbreaks and also agricultural pests (Bright et al., 2020; 
Buckeridge, 2007; Büntgen et al., 2020; Burkom et al., 2021; Madden 
and Wheelis, 2003). These studies have demonstrated many possibilities 
for predicting outbreaks based on population dynamics, sampling 
methods, outbreak frequency, and threshold analysis. Their results have 
demonstrated potential to help public health actions, based on the 
interpretation of results provided by these algorithms, using different 
data sources containing simulated and observed outbreaks (Buckeridge, 
2007; Chan et al., 2021). 

Historically, the algorithms used to predict outbreaks involved 
classical time series methods, such as ARIMA-type models, seasonal 
models, and partial differential equations, among others (Buckeridge, 

2007). These tools positively impacted public health actions by 
enhancing the possibility of predicting disease outbreaks, but the ap-
plications of these methods are not restricted to this area. In quantitative 
ecology, these applications were expanded so that many authors started 
representing ecological phenomena with mathematical, statistical and 
machine learning methods (Odum et al., 1971; Otto and Day, 2011; 
Ross, 1998). One recent example is the application of supervised ma-
chine learning methods for predicting infestations of pine trees by a 
mountain pine beetle (Ramazi et al., 2021). 

Examples of these applications are the representation of biological 
systems and the interactions between the species, such as predator-prey, 
host-parasitoid and competition models (Badkundri et al., 2019; Odum 
et al., 1971). Among the taxonomic groups used to study these appli-
cations, insects expand the possibility of developing these methods with 
various models inspired by different problems. Examples are the LPA 
(larva-pupa-adult), host-parasitoid and other models related to 
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herbivory (Otto and Day, 2011). These models are commonly used to 
study biological phenomena such as outbreaks. In addition, researchers 
can implement further statistical and mathematical modelling studies 
with insect time series data. 

Insects depend on resource availability, as demonstrated by many 
studies involving time series (Lantschner et al., 2019; Nair, 2001, 2007; 
Santos et al., 2017). The co-evolution between pests and plants re-
inforces this influence. It shows the complexity of this system, including 
biochemical strategies to avoid herbivory and the genetic plasticity of 
pests, enhancing their capability to obtain the necessary resources from 
plants (Nair, 2001, 2007; Wallner, 1987). Pest dynamics are also based 
on physical and biological conditions, such as temperature, humidity, 
precipitation or irrigation, which strongly influence pest density (Nair, 
2001; Odum et al., 1971; Wallner, 1987). Biological factors such as 
mating system, life cycle, number of offspring per generation, mortality, 
and resource availability are also capable of influencing insect pop-
ulations (Godfray and Godfray, 1994; Hall et al., 2017; Nair, 2001; 
Wallner, 1987). In monoculture scenarios, crop phenology is followed 
by the presence of pests reinforcing that resource availability has a 
strong effect on the population dynamics in agroecosystems (Nair, 2001, 
2007; Santos et al., 2017). 

Insect outbreaks have frequently been documented in pest pop-
ulations (Lynch, 2009; Lynch, 2018; Santos et al., 2017). They are 
important biotic disturbances in forests and agroecosystems (Lantschner 
et al., 2019; Nair, 2001; Wallner, 1987), since they may cause economic 
and/or ecological damage. Studies have shown possible explanations for 
outbreaks, such as abundant resources in monocultures, absence of 
predators or parasitoids, genetic factors, and pheromones produced by 
pests (Hall et al., 2017; Tao et al., 2012). Biotic disturbances can be 
intensified by climate change and human activities, which makes it 
essential to study how they influence pest outbreaks (Phophi et al., 
2019; Sharma and Dhillon, 2020; Volney and Fleming, 2000). One 
example of how human activities can affect outbreaks is the occurrence 
of bark beetles in temperate forests. These insects have devastated a 
large area of pine trees in the continental United States (Negron et al., 
2008). 

In Brazil, there are several examples of pest outbreaks in forests and 
crops, as for example Eucalyptus with Thyrinteina arnobia and Stenalcidia 
sp (Geometridae) (Zanuncio et al., 2006); black wattle with Oncideres 
impluviata (Cerambycidae) showing annual outbreaks in the state of Rio 
Grande do Sul (Ono et al., 2014); soybean with Chrysodeixis includes and 
Anticarsia gemmatalis (Lepidoptera: Noctuidae) also exhibiting high 
frequencies (Bueno et al., 2010; Santos et al., 2017). Studies focused on 
the species mentioned above show that outbreaks occur suddenly 
because of different natural effects that can result in increased popula-
tion densities (Lantschner et al., 2019; Nair, 2001, 2007; Santos et al., 
2017). However, the exact reason why an insect species population 
suddenly increases in number is still an open question (Ekholm et al., 
2019). Outbreak occurrence forecasting turns out to be an arduous task 
requiring a large amount of man-hours, extensive field work and 
different types of specialised equipment. Entomologists traditionally 
have been using different interventions to reduce economic damage, 
mainly in agriculture. The most common method traditionally used for 
this task is to define an economic threshold level (Onstad, 1987; Stern 
et al., 1959). 

Nowadays, the possibilities of actions against insect damage in crops 
can be found in the integrated pest management domain, which briefly 
consists of employing biological, physical, chemical and genetic ap-
proaches to reduce the population densities of a pest (Goodell, 2009; 
Stern et al., 1959). The economic threshold concept has been coupled 
with more complete analyses involving control functions given by the 
crop and pest population information (Dun et al., 2009; Mitchell et al., 
2004; Tinsley et al., 2013). When outbreaks are frequently recorded in 
insect populations, the probability that their population size is bigger 
than the economic-injury level increases, causing secondary outbreaks 
(Goodell, 2009). Given that this biological disturbance can occur 

suddenly and pest monitoring can be delayed, this density can be bigger 
than the economic threshold in the subsequent monitoring sample. 

Different approaches have been proposed to address problems of this 
nature. One example is the Alert Zone Procedure (AZP) (Hilker and 
Westerhoff, 2007), which consists of scanning observations preceding 
population outbreak events to obtain profiles associated with these 
outbreaks. This method can extract meaningful information about out-
breaks because previous densities before this event allow for the 
comprehension of ecological patterns. This method can be used as a 
basis to improve pest outbreak forecasting. However, it must be 
improved to deal with real-world problems. The effectiveness of these 
approaches remains an open question that is the focus of this research. 

This paper proposes the Pattern-Based Prediction (PBP) method to 
predict animal outbreak occurrence, which is an extension of the AZP 
based on statistical machine learning. For the purposes of this paper, we 
consider an outbreak to have occurred when the population exceeds a 
given threshold level. We are interested in studying the pattern pre-
ceding such an outbreak; by pattern, we mean a sequence of population 
values in the times leading up to the outbreak occurrence. We will 
introduce more formal definitions in the following section. We begin by 
describing the method and then carry out simulation studies to assess 
the performance of our method under different conditions. Finally, we 
illustrate our proposed method using a dataset obtained from a pest 
management system aimed at monitoring aphids, which are important 
pests for many different cultures – such as wheat, barley, and mustard 
(Kranti et al., 2021) – and discuss the feasibility of applying it to the 
context of pest management. 

2. Methods 

2.1. Generating patterns 

Let xt represent the population size of a particular species at time 
point t, t = 1,…,T. Initially, we set a population size threshold x* such 
that when xt ≥ x* we have a population outbreak at time t. We then 
implement the AZP, as proposed by Hilker and Westerhoff (2007). This 
method consists of scanning observations to identify each outbreak 
event i, i = 1,…,I, that occurred at time point ti, based on the value of x*, 
and collecting the m observations that precede them, forming a vector 
pT

i = {pi1, pi2,…, pim} = {xti − 1, xti − 2,…, xti − m} per event. If ti − m < 1, 
event i is ignored. After that, we group all population dynamics patterns 
that precede these events as the matrix 

P =

⎡

⎢
⎢
⎣

xt1 − 1 xt1 − 2 ⋯ xt1 − m
xt2 − 1 xt2 − 2 ⋯ xt2 − m

⋮ ⋮ ⋱ ⋮
xtI − 1 xtI − 2 ⋯ xtI − m

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

pT
1

pT
2

⋮
pT

I

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (1)  

where I represents the total number of identified patterns. See Fig. 1(a) 
for a plot of all rows of a hypothetical P matrix. Note that time series pre- 
processing may be carried out prior to obtaining the pattern matrix P. 
For instance, in Section 5 we compare the performance of our method 
using the raw time series and a pre-processed series using the Empirical 
Mode Decomposition method (Kim et al., 2012). 

Then, if patterns i and j (i ∕= j) are sufficiently similar, we group them 
in the same cluster. We do this based on the association metric 

d
(
pi,pj

)
=

1
c
(
pi,pj

)
+ 1

, (2)  

where c
(

pi,pj

)
=

∑m
k=1

|pik − pjk|
|pik|+|pjk|

> 0 is the Canberra distance (Androut-

sos et al., 1998; Ehsani and Drabløs, 2020) between two vectors, where 
∣⋅∣ is the Euclidean norm. This distance is appropriate for non-negative 

count data (Androutsos et al., 1998). Note that when c
(

pi, pj

)
→∞, 
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then d
(

pi,pj

)
→0, and as c

(
pi, pj

)
→0, then d

(
pi,pj

)
→1. 

To define the similarity of patterns we set the value d*
cluster, repre-

senting the minimum association metric for considering pi similar to pj. 

This yields the cluster matrices P′
c, c = 1, …, C, that include patterns 

which are similar to one another. To obtain these, we start with pattern 
p1, which represents the first row of the matrix P. We remove p1 from P 
and add it as the first row of P′

1. After that we compute the association 

metric between p1 and all subsequent rows of P. If d
(

p1, pj

)
≥ d*

cluster, we 

add pattern pj as the last row of the cluster matrix P′
1 and delete it from 

P. We repeat this process to obtain the cluster matrices P′
c, c = 1,…,C ≤

I, until there are no more rows left in P (Algorithm 1 in the supple-
mentary material). Note that the order of P is important for the clus-
tering procedure. See Fig. 1(b) for an example where the generated 
patterns were split into C = 3 cluster matrices. The value specified for 
d*

cluster governs the number of clusters generated. As d*
cluster→1, C tends to 

the number of distinct pattern vectors, I, while as d*
cluster→0, C→1 (i.e. all 

patterns belong to the same cluster). 
After obtaining the C cluster matrices 

P ′c =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

xt1 − 1 xt1 − 2 ⋯ xt1 − m

xt2 − 1 xt2 − 2 ⋯ xt2 − m

⋮ ⋮ ⋱ ⋮
xt

l′c
− 1 xt

l′c
− 2 ⋯ xt

l′c
− m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3)  

where l′c is the number of rows of P′
c, we compute the vectors of means 

p′
c, containing the mean of each column for cluster matrix P′

c, to form the 
rows of the matrix 

P ′means =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
l′1

∑l′1

c=1
xtc − 1

1
l′1

∑l′1

c=1
xtc − 2 ⋯

1
l′1

∑l′1

c=1
xtc − m

1
l′2

∑l′2

c=1
xtc − 1

1
l′2

∑l′2

c=1
xtc − 2 ⋯

1
l′2

∑l′2

c=1
xtc − m

⋮ ⋮ ⋱ ⋮

1
l′C

∑l′C

c=1
xtc − 1

1
l′C

∑l′C

c=1
xtc − 2 ⋯

1
l′C

∑l′C

c=1
xtc − m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

p′T
1

p′T
2

⋮
pT

C

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (4) 

The matrix P′
means contains the information of all cluster matrices P′

c, 

and is used for the prediction of a future event. Given a new collection of 
observations xnew, with length m, we compute the association metric 
between xnew and each row of P′

means. If any computed association is 
greater or equal to d*

pred, shown in Eq. (5), the threshold for prediction, 
we predict that an event will occur. Finally d*

pred is defined for each row 

of P′
means as a function of l′c, the number of patterns that generated each 

vector of means: 

d*
pred = f

(
l′c
)
= d*

base +

(
1 − d*

base

)

(
l′c
)α , (5)  

where d*
base is the baseline value of the association metric (the smallest it 

is allowed to be) and α is a constant that changes the shape of the 
function f (see Fig. 2). When l′c→∞, we have that d*

pred→d*
base, and as 

l′c→1, also d*
pred→1. This means that for predicting that a new event will 

occur, we would need a larger association between xnew and a particular 
p′

c that was obtained from a small number of patterns. 
To summarise, the PBP method consists of the following steps:  

1. Choose the value of the population size threshold x*;  
2. Set the values of m and d*

cluster;  
3. Generate the pattern matrix P; 
4. Obtain the cluster matrices P′

c (algorithm presented in the supple-
mentary material);  

5. Compute the matrix P′
means from the column means of each cluster 

matrix P′
c;  

6. Set the values of d*
base and α and obtain d*

pred for each row of P′
means;  

7. Given a new collection of observations xnew compute the proposed 
association metric between xnew and each row of P′

means;  
8. If the computed association coefficient is greater than or equal to the 

value of d*
pred associated with that row of P′

means, predict that a new 
event will occur at the next time step; predict that it will not occur, 
otherwise. 

A schematic diagram of this process is represented in Fig. 3. 

2.2. Choosing m, d*
cluster, d

*
base and α via cross-validation 

We propose the use of k-fold cross-validation to choose the values of 
m, d*

cluster and α, such that the accuracy of the method is optimised. Here, 

Fig. 1. a) The representation of patterns pi within the matrix P that precede an outbreak event, using m = 5. b) The respective cluster matrices P’
c obtained using 

d*
cluster = 0.4. These patterns were obtained from time series data simulated from a Ricker map, with r = 3 and K = 1000, x1 = 200 and 1000 observations. The 

population size threshold for the outbreak event was set as x* = 2224 representing the 90% percentile of the data. 

G.R. Palma et al.                                                                                                                                                                                                                               



Ecological Informatics 77 (2023) 102220

4

the k-fold cross validation briefly consists of creating k groups of pat-
terns pi of the pattern matrix P and by removing the first group of pat-
terns from P, obtaining P′

means without using the information of this 
group, and carrying out the method to predict the occurrence of events 

based on the first group. After obtaining the method predictions based 
on this group, we compute.  

• true positives (TP): the number of times the method accurately 
predicted an event;  

• true negatives (TN): the number of times the method accurately 
predicted there was no event;  

• false positives (FP): the number of times the method incorrectly 
predicted an event;  

• and false negatives (FN): the number of times the method incorrectly 
predicted there was no event. 

We use these values to obtain the accuracy, ACC = TP+TN
TP+TN+FP+FN, the 

true positive rate, TPR = TP
TP+FN, and the false positive rate, FPR = FP

TN+FP. 
We repeat this process for each group ending up with k values of these 
metrics. To measure the overall performance, we obtain the average of 
these metrics. Here, we carry out the analysis using k = 5. 

To optimise the predictive power of the method, firstly we fix the 
values of m, d*

cluster and α, and obtain different TPR and FPR values by 
varying d*

base. The TPR and FPR can be plotted against each other to form 
a ROC curve (Hastie et al., 2004). This curve is bounded between 0 and 
1. For a method with good predictive power, we expect the area under 
the curve (AUROC) to be close to 1. Let g

(
m, d*

cluster, α
)

be an objective 
function that returns − AUROC based on the described method. Then, 
we use the Generalized Simulated Annealing method (Mullen, 2014; 
Tsallis, 1988; Tsallis and Stariolo, 1996; Xiang et al., 1997; Xiang et al., 
2013; Xiang and Gong, 2000) to obtain the values of m, d*

cluster and α that 
minimise g. This method speeds up the computation process compared 
to a grid search of the variables. Other methods may be used, such as 
Differential Evolution (see the supplementary materials). 

To construct the ROC curve, we vary d*
base from 0 to 1 using in-

crements of 0.1 and calculate the AUROC using the trapezoid method 
(Liu and Pierce, 1994). Finally, we apply one of two forms to choose 
d*

base: the first is based on selecting a minimum threshold for the true 
positive rate (e.g. 0.8 or 0.9) and the second on selecting a maximum 
threshold for the false positive rate (e.g. 0.1 or 0.2). In summary, the 
method consists of the following steps: 

Fig. 2. The threshold for prediction d*
pred, calculated as a function of l′c for α = 1 (red curve), α = 3 (green curve) and α = 0.25 (blue curve), whilst fixing d*

base = 0.6. 

The x-axis is represented as 1/l′c to ease visualisation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 3. A schematic representation of the pattern-based method used to predict 
an outbreak based on time series data. 
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1. Fix the values of m, d*
cluster and α;  

2. For different values of d*
base, carry out k-fold cross validation and 

obtain the TPR and FPR for each fold, and compute the AUROC;  
3. Choose m, d*

cluster and α such that the AUROC is the largest;  
4. Choose d*

base based on the minimum TPR or maximum FPR that 
would be allowed in the study, based on the ROC curve with the 
largest area. (Note that the minimum TPR or maximum FPR allowed 
depends highly on the ecological system and objectives of the 
monitoring programme.) 

2.3. Sensitivity analysis 

We carried out a sensitivity analysis using simulated deterministic 
population dynamics, obtained from the Ricker map (Otto and Day, 
2011): 

xt+1 = xtexp
[
r
(

1 −
xt

K

) ]
, (6)  

where xt denotes the population size of an organism at time t and the 
parameters r > 0 and K > 0 describe the intrinsic growth rate and car-
rying capacity of the environment, respectively. We simulated 100 
generations using r = 3, K = 1000 and an initial value of x1 = 200. 

In order to study the influence of different values of m and d*
cluster on C 

(the total number of cluster matrices P′) and the overall accuracy of the 
method, we used the simulated observations from the Ricker map, 
setting x* = 2224 as the threshold for an outbreak event. This value 
corresponds to the 90% percentile of the simulated values from the 
deterministic Ricker map setting the parameter values as described 
above. We then employed the methodology described in the previous 
sections to obtain the matrices P′

means for m varying from 2 to 15 in in-
crements of 1, and d*

cluster varying from 0 to 1 with increments of 0.1. 

2.4. Method validation under stochastic conditions 

To study the accuracy of the proposed method in predicting outbreak 
and extinction risk events under stochastic conditions, we simulated 
from three different approaches. The first included an additive Gaussian 
error εt ∼ Normal

(
0, σ2) in the Ricker map, yielding the recurrence 

equation 

xt+1 = xtexp
[
r
(

1 −
xt

K

) ]
+ εt+1. (7) 

Whenever the addition of the random noise term yielded xt+1 < 0, a 
new random noise value would be drawn from the normal distribution 
until xt+1 > 0, to ensure positive population sizes. 

The second approach utilized a state-space formulation using a 
Poisson distribution with the mean term μ given by the Ricker recur-
rence equation, i.e. 

X1 ∼ Poisson(μ1 = x1) (8)  

Xt+1∣Xt ∼ Poisson
(

μt+1 = Xtexp
[

r
(

1 −
Xt

K

)])

, (9)  

from which all xt values were drawn recursively. Finally, the third 
approach utilizes a state-space formulation based on a negative binomial 
distribution to accommodate overdispersion in the simulation study, i.e. 
Xt+1∣Xt ∼ Negative Binomial(μt+1,ϕ). We estimated r and K based on 
real time series data of aphid counts in Southern Brazil for each model 
formulation, as well as the dispersion parameters σ2 for the Gaussian 
model and ϕ for the negative binomial model. 

Using the parameter estimates in Table 1, we simulated 20 samples 
of size 400 for each model. We also simulated 20 samples of size 400 
using the negative binomial model with ϕ = 3, to introduce a scenario 
with stronger overdispersion. We computed the accuracy, TPR and FPR 
by training the methods with the initial 80% observations and testing 
with 20% of the time series. Moreover, based on the ROC curve with the 
largest AUROC, we chose d*

base using four methods:  

1. ‘TPR_08’: choose the d*
base value associated with the smallest TPR 

value that is equal to or greater than 0.8;  
2. ‘TPR_09’: choose the d*

base value associated with the smallest TPR 
value that is equal to or greater than 0.9;  

3. ‘FPR_01’: choose the d*
base value associated with the largest FPR value 

that is equal to or less than 0.1;  
4. ‘FPR_02’: choose the d*

base value associated with the largest FPR value 
that is equal to or less than 0.2. 

2.5. Analysis of case-study: Aphid data 

To illustrate the predictive performance of our method, we use data 
obtained from an aphid monitoring programme implemented in 
Southern Brazil (State of Rio Grande do Sul, RS). These insects are 
considered as important pest species of many crops. For instance, among 
the aphid species monitored by this programme, the species Rhopalosi-
phum padi and Rhopalosiphum rufiabdominalis are widely considered 
important pest species associated with winter cereals, and are found in 
the Eurasian region with a cosmopolitan distribution (Macfadyen and 
Kriticos, 2012). Sampling was carried out weekly in an area of 5500m2 

in a wheat culture region (Coxilha, RS, 710 m altitude, 28∘11′42.8″ S and 
52∘19′30.6″ W), from 2011 to 2019, totalling 424 observations. The 
temperature and relative humidity data were monitored at the Passo 
Fundo weather station (28∘15′ S, 52∘24′ W, 684 m), located 10 km from 
the experimental area. The field was cultivated under a no-till system. 

The species of aphids were monitored using Moericke traps (yellow 
tray, 45 cm long x 30 cm wide x 4.5 cm high), filled with a solution (2 L) 
consisting of water, 40% formalin (0, 3%) and detergent (0.2%). Each 
tray had three lateral holes (5 mm in diameter) close to the edge, pro-
tected by a thin screen to prevent leaks and loss of solid content during 
rain. Four traps were distributed at the borders of the crop rotation tests. 
The traps were levelled at approximately 20 cm from the floor with 
bricks. The crop rotation area was cultivated with cereals (oat, wheat, 
and triticale), radish and fallow during the Winter and in the Summer 
with soybeans, corn, and Brachiaria sp. Every seven days, the solid 
content of the trays was separated from the solution through the sieve 
and collected. The biological material was preserved in a glass bottle 
with 70% alcohol. Aphids and parasitoids were separated, identified, 
and counted under a stereomicroscope in the laboratory. 

Table 1 
Parameter estimates obtained when fitting the Ricker state-space model to the 
aphid data assuming different distributions for the observation process, namely 
Gaussian, Poisson and negative binomial, as well as the Akaike Information 
Criterion (AIC) for each model fit. Negbin = negative binomial.  

Parameter Model  

Gaussian Poisson Negbin 

r 0.15 0.28 0.57 
K 224 310 370 
σ2 21,866 − −

ϕ − − 1.2 
AIC 5,226 34,913 4,296  
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Monitoring is one of the bases for Integrated Pest Management 
(IPM). For aphids, their importance stands out mainly due to the ability 
of these insects to transmit viruses (Barley Yellow Dwarf Virus) to 
economically important crops, such as wheat, oats, barley and rye. The 
criterion to find a threshold (x*) was the total number of aphids observed 
in the four traps. Usually, 10% of plants infested by aphids results in an 
economic threshold (Bell et al., 2015). This percentage corresponds to 
50 insects per trap, totalling 200 aphids, which is the threshold value 
used here to define an outbreak. 

We selected 40%, 50%, 60% and 70% of the initial observations of 
the time series for training and the complement as test sets to obtain the 
accuracy, true-positive rates and false-positive rates. We compared the 
performance of the PBP method with Random Forests (RF), Support 
Vector Machines (SVM), Deep Neural Networks (DNNs) and Long Short 
Term Memory (LSTM) algorithms. To obtain the algorithm performance 
using these competing methodologies, we created the matrix P with m =

1, 4 and 7. Another matrix that did not contain outbreaks was generated 
with the same m observations before a threshold lower than the popu-
lation size x* = 200 that defines an outbreak of aphids in the study area. 

For RF, we used 2 splitting predictors per tree (for m = 4 and 7), and 
a total of 1000 trees. For SVM, we used the linear kernel. For DNN, after 
experimenting with different architectures, we used 17 hidden layers 
with 11, 12, 13, 14, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, and 3 neurons 
each, all using the rectified linear unit (ReLU) activation function; for 
the output layer we used the sigmoid activation function. We used the 
LSTM method by adding a long short term memory block on the DNN’s 
architecture previously described. The implementation of the classifi-
cation methods was carried out in Python using the libraries TensorFlow 
and Scikit-learn (Van Rossum and Drake Jr, 1995). Finally, we obtained 
the accuracy, true positive rate and false positive rate using the afore-
mentioned training-test splits of the time series. 

The PBP method is implemented through the pypbp package, which 
may be directly downloaded from the Python Package Index server or 
accessed through https://pypbp-documentation.readthe 

docs.io. 

3. Results 

3.1. Sensitivity analysis 

We found that d*
cluster is proportional to the number of cluster matrices 

(C) created by the proposed method (see Fig. 4(a)). However, as d*
cluster 

reaches values higher than 0.45, the parameter m did not influence the 
accuracy of our methods. It indicates that fixed values of m could be used 
when we use such values of d*

cluster (Fig. 4(b)). These findings highlight 

the importance of using optimisation procedures to choose the appro-
priate value of d*

cluster for each study. 

3.2. Method validation under stochastic conditions 

The accuracy of our method for predicting population outbreaks 
obtained from the stochastic simulation scenarios using the raw time 
series data and pre-processing the data using Empirical Mode Decom-
position (EMD) considering all models were, respectively, on average 
73.8% with a standard deviation of 23.4% and 73.2% with a standard 
deviation of 24.1% (see Fig. 5). The average FPR obtained was 25.3% 
with a standard deviation of 29.0% and 25.1% with a standard deviation 
of 28.7%. Finally, the average TPR were 53.2% with a standard devia-
tion of 40.9% and 55.6% with a standard deviation of 41.9%. Therefore, 
we found that there are no differences in performance when pre- 
processing the data using EMD. 

Also, considering the influence of the model, we found that the rank 
of models in which our method produced higher performance is, 
respectively, starting with the best one, the negative binomial (ϕ = 1.2), 
Gaussian, negative binomial (ϕ = 3) and Poisson stochastic models. On 
average, we obtain an accuracy of 84.6% with a standard deviation of 
20.5%, a false positive rate of 14.9% with a standard deviation of 24.2% 
and a true positive rate of 59.6% with a standard deviation of 42.0% for 
the negative binomial (ϕ = 1.2) model. Considering the Gaussian 
model, we obtained an accuracy of 75.2% with a standard deviation of 
18.0%, a false positive rate of 22.9% with a standard deviation of 22.2% 
and a true positive rate of 55.5% with a standard deviation of 37.3%. 
This finding makes our method a promising prediction tool since we got 
good results even when using stochastic approaches to simulate the data. 

3.3. Analysis of case-study: Aphid data 

To predict the threshold representing an outbreak for the aphid 
population dynamics (Fig. 6), we select x* = 200 considering the num-
ber of species collected in the four traps of the monitoring system, which 
was related to the 10% of plants infected by aphids resulting in the 
economic threshold. Applying PBP using different training data ob-
tained from percentages of the initial observations of the time series of 
aphids, the accuracy values were higher than 70% regardless of the 
percentage of training using the original aphid time series. 

Table 2 shows that the PBP method is competitive with state-of-the- 
art machine learning methods, such as the commonly used Random 
Forest (RF) algorithm. The criterion of a false positive rate of at most 0.2 
provides an accuracy of 91.0%, a false positive rate of 8% and a true 
positive rate of 75%. Only DNN could obtain similar values of true 
positive rate for this case study. Moreover, our method using the criteria 

Fig. 4. The effect of m and d*
cluster on (a) C (i.e. number of cluster-matrices P′

c), and on (b) the accuracy of the proposed method. These results were obtained from time 
series data simulated from a Ricker map, with r = 3 and K = 1000, with x1 = 200. The population size threshold for the outbreak event was set as x* = 2224 
representing the 90% percentile of the data. 
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Fig. 6. The time series represents the total aphids collected within the four traps on the monitoring system on time. The red line represents the threshold x* = 200, 
the green line is the original time series, and the black line is the result of the empirical mode decomposition method. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Accuracy simulation results, TPR (True Positive Rate) and FPR (False Positive Rate) using the raw simulated time series and pre-processed series using 
Empirical Mode Decomposition (EMD). In both scenarios four methods were used to choose d*

base: based on a maximum FPR (0.1 and 0.2) or a minimum TPR (0.8 
and 0.9). 
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based on the true positive rate values of a minimum of 0.8 and 0.9 could 
obtain higher values of 96%. On the other hand, the method got an 
accuracy of 71% and a false positive rate of 32% in both cases. It in-
dicates the flexibility of our approach because users can allow for a 
trade-off between false positives and false negatives. In practice, a false 
positive would result in using pest control techniques unnecessarily, 
while a false negative could result in failing to control the pest, which 
may cause economic damage due to an outbreak occurring. 

4. Discussion 

We proposed the Pattern-based Prediction (PBP) method and ana-
lysed its sensitivity and performance based on simulation studies and 
real data. We applied the method to a time series of aphids in wheat 
crops in Southern Brazil. The creation of cluster matrices and subsequent 
sensitivity analysis carried out here is inspired by and builds on the 
studies conducted by Hilker and Westerhoff (2007). By using the AZP as 
a basis to create P′

c, we enhance the information which can be extracted 
from the population dynamics of any species of interest. This process can 
extract the different population states using the dynamics obtained from 
monitoring programmes. Also, by grouping these states into different 
cluster matrices, we can observe the frequency of each pattern type 
occurring before the outbreak. The process of clustering will help us to 
perform the outbreak classification based on the different pattern types 
contained in P′

c. These results reflect the accuracy of 100% obtained for 
some parameter regions in our sensitivity study. The results improved 
dramatically when we fully optimised our choice for the parameter 
values, even when subject to stochastic effects. 

With respect to interpretability, when using RF, it is possible to 
obtain variable importance. However in this case, this will tell us which 
previous steps were most important when predicting outbreaks, not 
necessarily how they relate to its occurrence. When using LSTM and 
DNN, which are commonly referred to as ‘black-box’ methods (Liang 
et al., 2021), it is even more challenging to find explainable frameworks 
that allow us to study the relationship between the predictors and the 
outbreaks. However, each hyperparameter in the PBP framework pro-
vides a clear interpretation, and we are able to create visual represen-
tations of the patterns that occurred before the outbreak (the P′

means 

matrix). For instance, Fig. 7 displays the three patterns in P′
means ob-

tained from employing PBP using the optimised hyperparameter values 
for the aphid data using 50% of the time series for training. 

In addition, the number of patterns encountered in each cluster 
matrix presents the importance of each clustered pattern for predicting 
animal outbreaks. The parameter α shows how relevant each group of 
patterns is for predicting an outbreak. Also, we can assess the impor-
tance of clustering the pattern matrix by looking at the estimate of 
d*

cluster. Larger values typically indicate fewer recognised patterns in 
P′

means. The m hyperparameter shows the number of previous observa-
tions required to provide a classification based on our method, so it 
provides a clear interpretation for ecologists and farmers in terms of how 
far in the past to watch for when identifying patterns. The d*

base hyper-
parameter informs the minimum degree of similarity that is required to 
classify an outbreak, based on previously observed patterns. Therefore, 
not only is the PBP method competitive when compared to state-of-the- 
art machine learning methods, it is also interpretable, and brings 
descriptive advantages combined with its predictive power. 

The introduction of the PBP method provides a venue for further 
exploration of the technique by including covariates for improving the 
occurrence of outbreaks. In future works, we will explore other statis-
tical learning methods that can be used to improve the methodology in a 
scenario with climactic covariates. For example, methods such as 
convergent cross mapping, PCMCI, empirical dynamic modelling, or 
other machine learning models could be useful and help take nonlinear 
interactions into account Pianosi et al. (2016); Runge et al. (2019). Also, 
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this study will serve as a basis for developing future animal monitoring 
programs enhanced with outbreak detection based on the PBP method. 
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Paulo (proc. no. 19/14805-7 and no. 20/06147-7), Agência USP de 
Inovação and Science Foundation Ireland under Grant 18/CRT/6049. 
The opinions, findings and conclusions or recommendations expressed 
in this material are those of the authors and do not necessarily reflect the 
views of the funding agencies. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ecoinf.2023.102220. 

References 

Androutsos, D., Plataniotiss, K., Venetsanopoulos, A.N., 1998. Distance measures for 
color image retrieval. In: Proceedings 1998 International Conference on Image 
Processing. ICIP98 (Cat. No. 98CB36269), vol. 2. IEEE, pp. 770–774. 

Badkundri, R., Valbuena, V., Pinnamareddy, S., Cantrell, B., Standeven, J., 2019. 
Forecasting the 2017-2018 Yemen cholera outbreak with machine learning. arXiv 
preprint arXiv:1902.06739.  

Bell, J.R., Alderson, L., Izera, D., Kruger, T., Parker, S., Pickup, J., Shortall, C.R., 
Taylor, M.S., Verrier, P., Harrington, R., 2015. Long-term phenological trends, 
species accumulation rates, aphid traits and climate: five decades of change in 
migrating aphids. J. Anim. Ecol. 84 (1), 21–34. 

Bright, B.C., Hudak, A.T., Meddens, A.J., Egan, J.M., Jorgensen, C.L., 2020. Mapping 
multiple insect outbreaks across large regions annually using landsat time series 
data. Remote Sens. 12 (10), 1655. 

Buckeridge, D., 2007. Outbreak detection through automated surveillance: a review of 
the determinants of detection. J. Biomed. Inform. 40, 370–379. 

Bueno, R.C., de Freitas Bueno, A., Moscardi, F., Parra, J.R., Hoffmann-Campo, C., 2010. 
Lepidopteran larva consumption of soybean foliage: basis for developing multiple- 
species economic thresholds for pest management decisions. Pest Manag. Sci. 67, 
170–174. 

Fig. 7. Outbreak patterns obtained from the proposed method using the aphid time series. Each of the red lines represents a row of the P′
means matrix. The intervals 

are the 25% and 75% percentiles of the patterns that generated each vector of means. The black line represents an observed series (xnew), for which the association 
metric d is calculated between each of the three identified patterns. If d > d*

pred, then the PBP method would classify xnew as preceding an outbreak event. The 
calculated d*

pred values for the three patterns were 0.37, 0.61 and 0.42, whereas the association metrics between xnew and each pattern were 0.20, 0.26 and 0.15, 
respectively. Therefore, xnew would be classified as not preceding an outbreak. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

G.R. Palma et al.                                                                                                                                                                                                                               

https://pypbp-documentation.readthedocs.io
https://pypbp-documentation.readthedocs.io
https://doi.org/10.1016/j.ecoinf.2023.102220
https://doi.org/10.1016/j.ecoinf.2023.102220
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0005
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0005
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0005
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0010
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0010
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0010
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0015
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0015
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0015
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0015
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0020
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0020
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0020
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0025
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0025
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0030
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0030
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0030
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0030


Ecological Informatics 77 (2023) 102220

10

Büntgen, U., Liebhold, A., Nievergelt, D., Wermelinger, B., Roques, A., Reinig, F., 
Krusic, P.J., Piermattei, A., Egli, S., Cherubini, P., et al., 2020. Return of the moth: 
rethinking the effect of climate on insect outbreaks. Oecologia 192 (2), 543–552. 

Burkom, H., Loschen, W., Wojcik, R., Holtry, R., Punjabi, M., Siwek, M., Lewis, S., et al., 
2021. Electronic surveillance system for the early notification of community-based 
epidemics (essence): overview, components, and public health applications. JMIR 
Public Health Surveill. 7 (6), e26303. 

Chan, T.-C., Tang, J.-H., Hsieh, C.-Y., Chen, K.J., Yu, T.-H., Tsai, Y.-T., 2021. 
Approaching precision public health by automated syndromic surveillance in 
communities. PLoS One 16 (8), e0254479. 

Dun, Z., Mitchell, P., Agosti, M., 2009. Estimating diabrotica virgifera virgifera damage 
functions with field trial data: applying an unbalanced nested error component 
model. J. Appl. Entomol. 134, 409–419. 

Ehsani, R., Drabløs, F., 2020. Robust distance measures for K NN classification of cancer 
data. Cancer Informat. 19, 1176935120965542.  

Ekholm, A., Tack, A., Pulkkinen, P., Roslin, T., 2019. Host plant phenology, insect 
outbreaks and herbivore communities – the importance of timing. J. Anim. Ecol. 89, 
824–841. 

Godfray, H.C.J., Godfray, H., 1994. Parasitoids: Behavioral and Evolutionary Ecology, 
vol. 67. Princeton University Press. 

Goodell, P., 2009. Fifty years of the integrated control concept: the role of landscape 
ecology in ipm in San Joaquin valley cotton. Pest Manag. Sci. 65, 1293–1297. 

Hall, A., Johnson, S., Cook, J., Riegler, M., 2017. High nymphal host density and 
mortality negatively impact parasitoid complex during an insect herbivore outbreak. 
Insect Science 26. 

Hastie, T., Tibshirani, R., Friedman, J., Franklin, J., 2004. The elements of statistical 
learning: data mining, inference, and prediction. Math. Intell. 27, 83–85. 

Hilker, F., Westerhoff, F., 2007. Preventing extinction and outbreaks in chaotic 
populations. Am. Nat. 170, 232–241. 

Kim, D., Kim, K.O., Oh, H.-S., 2012. Extending the scope of empirical mode 
decomposition by smoothing. EURASIP J. Adv. Sign. Proc. 2012 (1), 1–17. 

Kranti, W., Nivedita, G., Shindikar, M., 2021. Understanding the plant aphid interaction: 
a review. Europ. J. Biol. Biotechnol. 2 (6), 1–6. 

Lantschner, V., Aukema, B., Corley, J., 2019. Droughts drive outbreak dynamics of an 
invasive forest insect on an exotic host. For. Ecol. Manag. 433, 762–770. 

Liang, Y., Li, S., Yan, C., Li, M., Jiang, C., 2021. Explaining the black-box model: a survey 
of local interpretation methods for deep neural networks. Neurocomputing 419, 
168–182. 

Liu, Q., Pierce, D.A., 1994. A note on gauss—Hermite quadrature. Biometrika 81 (3), 
624–629. 

Lynch, 2009. Spruce aphid, elatobium abietinum (walker): Life history and damage to 
engelmann spruce in the pinaleno mountains, arizona. In: The Last Refuge of the Mt. 
Graham Red Squirrel: Ecology of Endangerment. 

Lynch, A., 2018. Socioecological impacts of multiple forest insect outbreaks in the 
pinaleño spruce–fir forest, arizona. J. For. 117. 

Macfadyen, S., Kriticos, D., 2012. Modelling the geographical range of a species with 
variable life-history. Publ. Library Sci. One 7. 

Madden, L., Wheelis, M., 2003. The threat of plant pathogens as weapons against u.s. 
crops. Annu. Rev. Phytopathol. 41, 155–176. 

Mitchell, P., Gray, M., Steffey, K., 2004. A composed-error model for estimating pest- 
damage functions and the impact of the western corn rootworm soybean variant in 
Illinois. Am. J. Agric. Econ. 86, 332–344. 

Mullen, K.M., 2014. Continuous global optimization in r. J. Stat. Softw. 60 (1), 1–45. 
Nair, K., 2001. Pest outbreaks in tropical forest plantations: is there a greater risk for 

exotic tree species? Center Intern. For. Res. 1–82. 
Nair, K., 2007. Tropical forest insect pests. Ecology, impact, and management. In: 

Tropical Forest Insect Pests: Ecology, Impact, and Management, pp. 1–404. 
Negron, J., Bentz, B., Fettig, C., Gillette, N., Hansen, E., Hayes, J., Kelsey, R., 

Lundquist, J., Lynch, A., Progar, R., Seybold, S., 2008. Us forest service bark beetle 

research in the western United States: looking toward the future. J. For. 106, 
325–331. 

Odum, E.P., Barrett, G.W., et al., 1971. Fundamentals of Ecology, vol. 3. Saunders, 
Philadelphia.  

Ono, M.A., Ferreira, E.N.L., Godoy, W.A.C., 2014. Black wattle insect pest currently in 
Brazil. Glo Adv. Res. J. Agric. Sci. 3 (12), 409–414. 

Onstad, D.W., 1987. Calculation of economic-injury levels and economic thresholds for 
Pest management. J. Econ. Entomol. 80 (2), 297–303. 

Otto, S.P., Day, T., 2011. A biologist’s guide to mathematical modeling in ecology and 
evolution. In: A Biologist’s Guide to Mathematical Modeling in Ecology and 
Evolution. Princeton University Press. 

Phophi, M., Mafongoya, P., Lottering, S., 2019. Perceptions of climate change and drivers 
of insect pest outbreaks in vegetable crops in Limpopo province of South Africa. 
Climate 8. 

Pianosi, F., Beven, K., Freer, J., Hall, J.W., Rougier, J., Stephenson, D.B., Wagener, T., 
2016. Sensitivity analysis of environmental models: a systematic review with 
practical workflow. Environ. Model. Softw. 79, 214–232. 

Ramazi, P., Kunegel-Lion, M., Greiner, R., Lewis, M.A., 2021. Predicting insect outbreaks 
using machine learning: a mountain pine beetle case study. Ecol. Evol. 11 (19), 
13014–13028. 

Ross, S.M., 1998. A First Course in Probability, fifth edition. Prentice Hall, Upper Saddle 
River, N.J.  

Runge, J., Nowack, P., Kretschmer, M., Flaxman, S., Sejdinovic, D., 2019. Detecting and 
quantifying causal associations in large nonlinear time series datasets. Sci. Adv. 5 
(11), eaau4996. 

Santos, S., Specht, A., Carneiro, E., Paula-Moraes, S., Casagrande, M., 2017. Interseasonal 
variation of chrysodeixis includens (walker, [1858]) (lepidoptera: Noctuidae) 
populations in the brazilian savanna. In: Revista Brasileira de Entomologia, 61. 

Sharma, H.C., Dhillon, M.K., 2020. Climate change effects on arthropod diversity and its 
implications for pest management and sustainable crop production. Agroclimatol. 
Linking Agric. Clim. 60, 595–619. 

Stern, V., Smith, R., van den Bosch, R., Hagen, K., et al., 1959. The integration of 
chemical and biological control of the spotted alfalfa aphid: the integrated control 
concept. Hilgardia 29 (2), 81–101. 

Tao, J., Chen, M., Zong, S., Luo, Y.-Q., 2012. Genetic structure in the seabuckthorn 
carpenter moth (holcocerus hippophaecolus) in China: the role of outbreak events, 
geographical and host factors. PLoS One 7, e30544. 

Tinsley, N., Estes, R., Gray, M., 2013. Validation of a nested error component model to 
estimate damage caused by corn rootworm larvae. J. Appl. Entomol. 137. 

Tsallis, C., 1988. Possible generalization of boltzmann-gibbs statistics. J. Stat. Phys. 52 
(1), 479–487. 

Tsallis, C., Stariolo, D.A., 1996. Generalized simulated annealing. Phys. A: Stat. Mech. 
Appl. 233 (1–2), 395–406. 

Van Rossum, G., Drake Jr., F.L., 1995. Python reference manual. Centrum voor Wiskunde 
en Informatica Amsterdam. 

Volney, W., Fleming, R., 2000. Climate change and impacts of boreal forest insects. 
Agric. Ecosyst. Environ. 82, 283–294. 

Wallner, W., 1987. Factors affecting insect population dynamics: differences between 
outbreak and non-outbreak species. Annu. Rev. Entomol. 32, 317–340. 

Xiang, Y., Gong, X., 2000. Efficiency of generalized simulated annealing. Phys. Rev. E 62 
(3), 4473. 

Xiang, Y., Sun, D., Fan, W., Gong, X., 1997. Generalized simulated annealing algorithm 
and its application to the Thomson model. Phys. Lett. A 233 (3), 216–220. 

Xiang, Y., Gubian, S., Suomela, B., Hoeng, J., 2013. Generalized simulated annealing for 
global optimization: the gensa package. R J. 5 (1), 13. 

Zanuncio, T., Zanuncio, J., Freitas, F., Pratissoli, D., Sediyama, C., Maffia, V., 2006. Main 
lepidopteran pest species from an eucalyptus plantation in Minas Gerais, Brazil. Rev. 
Biol. Trop. 54, 553–560. 

G.R. Palma et al.                                                                                                                                                                                                                               

http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0035
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0035
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0035
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0040
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0040
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0040
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0040
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0045
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0045
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0045
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0050
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0050
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0050
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0055
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0055
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0060
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0060
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0060
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0065
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0065
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0070
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0070
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0075
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0075
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0075
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0080
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0080
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0085
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0085
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0090
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0090
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0095
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0095
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0100
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0100
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0105
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0105
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0105
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0110
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0110
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0115
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0115
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0115
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0120
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0120
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0125
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0125
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0130
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0130
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0135
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0135
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0135
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0140
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0145
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0145
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0150
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0150
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0155
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0155
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0155
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0155
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0160
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0160
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0165
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0165
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0170
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0170
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0175
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0175
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0175
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0180
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0180
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0180
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0185
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0185
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0185
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0190
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0190
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0190
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0195
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0195
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0200
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0200
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0200
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0205
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0205
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0205
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0210
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0210
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0210
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0215
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0215
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0215
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0220
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0220
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0220
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0225
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0225
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0230
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0230
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0235
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0235
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0240
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0240
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0245
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0245
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0250
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0250
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0255
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0255
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0260
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0260
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0265
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0265
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0270
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0270
http://refhub.elsevier.com/S1574-9541(23)00249-2/rf0270

	Pattern-based prediction of population outbreaks
	1 Introduction
	2 Methods
	2.1 Generating patterns
	2.2 Choosing m, dcluster∗, dbase∗ and α via cross-validation
	2.3 Sensitivity analysis
	2.4 Method validation under stochastic conditions
	2.5 Analysis of case-study: Aphid data

	3 Results
	3.1 Sensitivity analysis
	3.2 Method validation under stochastic conditions
	3.3 Analysis of case-study: Aphid data

	4 Discussion
	Ethical approval
	Authors’ contributions
	Funding
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A Supplementary data
	References


