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ABSTRACT - The objective of this work was to evaluate the 
potential of vegetation indices (VIs), obtained using aerial images 
from an unmanned aerial vehicle (UAV), for assessing water status 
of maize hybrids subjected to different water regimes under the soil 
and climate conditions of Teresina, Piauí, Brazil. Evaluations were 
carried out considering the application of five water regimes (WR) 
based on the crop evapotranspiration (ETc) (40%, 60%, 80%, 100%, 
and 120% of ETc) for three maize hybrids: BRS 3046 (conventional 
triple hybrid), BRS 2022 (conventional double hybrid), Status VIP3 
(transgenic simple hybrid). A randomized block experimental design 
with four replications was used, in a 5×3 split-plot arrangement, 
consisting of WRs in the plots and maize hybrids in the subplots. A 
UAV was used for acquiring multispectral images. Eighteen VIs 
were evaluated and correlated with stomatal conductance (gs), leaf 
relative water content (RWC), and grain yield (GY). The VIs TCARI
-RE and NDVI presented correlation with gs, whereas MNGRD and 
GCI presented correlation with RWC; therefore, they were 
considered promising for assessing the water status of maize plants. 
NDVI and WDRVI presented correlations with GY. Maps of NDVI, 
MNGRV, and WDRVI showed spatial correlation with gs, RWC, 
and GY measurements, respectively, in response to the applied WRs, 
denoting potential for assessing the water status of maize plants 
using aerial images from UAV.  
 
 
Keywords: Drone. Cultivar. Water stress. Vegetation index. Remote 
sensing.  

RESUMO - Objetivou-se avaliar a capacidade de índices de 
vegetação (IV), obtidos de imagens aéreas por aeronave remotamente 
pilotada (ARP), em detectar o estado hídrico de híbridos de milho 
submetidos a diferentes regimes hídricos, nas condições de solo e 
clima de Teresina, Piauí, Brasil. Avaliou-se a aplicação de cinco 
regimes hídricos (RHs) com base na evapotranspiração da cultura 
(ETc) (40%, 60%, 80%, 100% e 120% da ETc) em três híbridos de 
milho:  BRS 3046 (híbrido triplo convencional); BRS 2022 (híbrido 
duplo convencional); e Status VIP3(híbrido simples transgênico). O 
delineamento experimental foi o de blocos ao acaso, parcelas 
subdivididas, sendo as parcelas os RHs e as subparcelas os híbridos, 
com quatro repetições. Utilizou-se uma ARP para a aquisição das 
imagens multiespectrais. Avaliaram-se 18 índices de vegetação, os 
quais foram correlacionados com medidas de condutância estomática 
(gs), conteúdo relativo de água na folha (CRA) e produtividade de 
grãos (PG). Os IVs TCARI-RE e NDVI apresentaram correlação 
com gs e os IVs MNGRD e GCI foram correlacionados com o CRA 
e, portanto, são considerados promissores na detecção do estado 
hídrico do milho. Os IVs NDVI e WDRVI apresentaram correlações 
com a PG. Os mapas de NDVI, MNGRV e WDRVI mostraram 
correlação espacial com as medidas de gs, CRA e PG, 
respectivamente em resposta aos RHs, indicando aplicação potencial 
na detecção do estado hídrico do milho por meio de imagens aéreas 
obtidas por ARPs.  
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INTRODUCTION 
 
Water is one of the limiting factors for maize grain yield 

(BERGAMASCHI; MATZENAUER, 2014). Soil water deficit changes 
physiological responses in plants and can negatively affect growth and yield when 
lasting for a long time (OSAKABE et al., 2014). In the case of maize plants, water 
stress has been associated with decreases in stomatal conductance and 
photosynthesis. 

Traditional methods for monitoring water stress in crops include direct 
measurements of soil water content and direct and indirect measurements of plant 
physiological variables, such as stomatal conductance and leaf water potential 
(IHUOMA; MADRAMOOTOO, 2017). However, these are time-consuming, 
laborious, and costly methods that do not consider the spatial variability of soil 
and crops (LI et al., 2010).  

In this sense, remote sensing techniques using aerial images acquired by 
satellites or drones are recommended as alternatives, providing several advantages 
over traditional methods of monitoring water stress in the field. 

In this context, the use of unmanned aerial vehicles (UAVs) is an 
innovative and potential method for monitoring and quantifying water in different 
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cropping systems compared to traditional water stress 
monitoring methods (HOGAN et al., 2017; HUNT; 
DAUGHTRY, 2018), as it is a fast and non-destructive 
method for managing water stress in plants through 
measurements of spectral reflectance of crop canopies 
(JONES; VAUGHAN, 2010). Moreover, it provides 
information on the spatial and temporal variability of crops 
(ROSSINI et al., 2015; PANIGADA et al., 2014; 
BALLESTER et al., 2019; ZHANG et al., 2021). 

Vegetation indices from spectral information can be 
used for a rapid and efficient assessment of crop water status 
and crop yields through remote sensing techniques. Studies 
have shown that vegetation indices from aerial images taken 
by UAVs can be used for estimating leaf water potential and 
mapping water status variability in agricultural crops 
(BAJULA et al., 2012; ZHANG et al., 2021; ANDRADE 
JUNIOR et al., 2021).  

Assessing water stress in crops during the initial stage 
is essential for farmer's decision-making and contributes to 
preventing decreases in crop yields. Remote sensing data 
obtained through cameras attached to UAV assist in a rapid 
and accurate management production of maize crops.  

Therefore, the objective of this work was to evaluate 
the potential of vegetation indices (VI), obtained using aerial 
images from an unmanned aerial vehicle (UAV), for assessing 
water status of maize hybrids subjected to different water 
regimes under the soil and climate conditions of Teresina, 
Piauí, Brazil.  

 
 

MATERIAL AND METHODS 
 
The study was conducted at the experimental area of 

the Brazilian Agricultural Research Corporation (EMBRAPA 
Mid-North) (05°05'S, 42°48'W, and 74.4 m of altitude), in 
Teresina, PI, Brazil, from August to November 2019. The 
climate of region was classified as Aw, with a wet summer 
and a dry winter (MEDEIROS; CAVALCANTI; DUARTE, 
2020). The mean annual air temperature and rainfall depth are 
27.4 °C and 1,325 mm, respectively, with rainfalls 
concentrated from January to May. The mean maximum and 
minimum temperatures and accumulated rainfall depth during 
the experimental period were 29.4 °C, 27.2 °C, and 18.6 mm, 
respectively. The maximum and minimum temperatures, wind 
speed, and global solar radiation at the time of the UAV flight 
(11:00 am to 12:00 pm) were 30.7 °C, 29.3 °C, 2.8 m s-1, and 
406.8 W m-2, respectively (INMET, 2020). 

The soil of the experimental area was classified as a 
Typic Hapludult (Argissolo Vermelho-Amarelo Distrófico 
típico; Santos et al., 2018), whose chemical and physical-
hydrological characteristics are shown in Table 1. The soil 
was prepared in a conventional system, with one plowing and 
two harrowing. Soil fertilizers were applied at sowing, using 
75 kg ha-1 of N, 80 kg ha-1 of P2O5, 35 kg ha-1 of K2O, and 3 
kg ha-1 of Zn. Topdressing was carried out when the plants 
had 6 fully expanded leaves, using 75 kg ha-1 of N and 35 kg 
ha-1 of K2O. The fertilizer sources ere ammonium sulfate (N), 
triple superphosphate (P2O5), potassium chloride (K2O), and 
zinc sulfate (Zn).  

Table 1. Chemical and physical-hydrological characterization of the soil in the experimental area. 

Layer (m) 
OM pH P K Mg Ca Na CEC BS 

g kg-1 H2O mg dm-3 cmolc dm-3 % 

0.0-0.2 12.9 5.78 31.12 0.09 0.35 0.78 0.02 2.94 42.32 

0.2-0.4 11.2 5.95 23.49 0.09 0.42 0.73 0.02 2.89 44.11 

Layer (m) Density (g cm-3) 
Sand Silt Clay Өcc Өpmp 

---------------------------g kg-1--------------------------- (%, volume) 

0.0-0.2 1.70 

1.65 

876.5 

811.5 

37.5 86.0 

136.0 

21.7 5.3 

0.2-0.4 52.5 20.8 6.0 

 1 
Laboratory of Soils at the Brazilian Agricultural Research Corporation (EMBRAPA Mid-North). OM = organic matter; CEC: cation exchange 
capacity; BS = base saturation; Өcc = moisture at field capacity; Өpmp = moisture at the permanent wilting point.  

The experiment was conducted under irrigation, using 
a conventional fixed sprinkler system, with sprinklers spaced 
at 12×12 m. Irrigations were carried out on Mondays, 
Wednesdays, and Fridays, considering the ETc of the period, 
according to the water regime treatments. The applications of 
five water regimes (WR) were evaluated as a function of the 
crop evapotranspiration (ETc) (40%, 60%, 80%, 100%, and 
120% of ETc), using three maize hybrids: BRS 3046 
(conventional triple hybrid), BRS 2022 (conventional double 
hybrid), and Status VIP3 (transgenic simple hybrid). The 
different WRs were applied using different irrigation times. 

The Penman-Monteith method was used for estimating the 
reference evapotranspiration (ETo) and crop coefficients (Kc) 
(ALLEN et al., 1998).  

The following irrigation managements were used for 
applying the WRs: full irrigation was applied to all treatments 
(vegetative development stage) from sowing until 36 days 
after sowing (DAS); the differentiated WRs were applied 
from 37 DAS to the end of the crop cycle by applying 40%, 
60%, 80%, 100%, and 120% of ETc. Table 2 shows the 
irrigation water depths applied from sowing until the date of 
aerial images capture and the total irrigation for each WR.  
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Soil water content (%, volume) was monitored using 
three PVC access tubes installed at each WR treatment at a 
depth of 0.7 m, arranged between central rows. A capacitance 
probe (FDR; Diviner 2000®, Sentek Pty, Australia) was used. 
Readings were taken daily, both before and approximately 24 
hours after irrigation events. The soil water content in each 
layer (0.10, 0.20, 0.30, and 0.40 m) of each WR treatment was 
calculated based on the mean moisture measured throughout 
the maize cycle. 

A randomized block experimental design with four 
replications was used, in a 5×3 split-plot arrangement, 
consisted of WRs in the plots and maize hybrids in the 
subplots. Sowing was carried out with spacing of 0.5 m 
between rows, using four plants per meter (8 plants per square 
meter). The plot was composed of six rows; the two central 
rows (6 m²) were used for evaluating grain yield. The seeds 
were sown on August 05, 2019. Harvesting was based on the 
physiological maturity of grains for the water regimes and 
occurred on November 12, 2019 (99 DAS).  

Stomatal conductance (gs) and leaf relative water 
content (RWC) were measured on the same day as the aerial 
images were captured; gs was measured using a portable gas 
analyzer (CIRAS-3; PP Systems, Amesbury, USA) in the 
infrared electromagnetic spectrum region. Measurements were 
taken on one plant per subplot when the plants were at the 
culm elongation/pre-flowering stage, focusing on the 
youngest fully expanded leaf. 

Leaf samples were collected for evaluating RWC, 
considering the first fully expanded leaf from the plant's apex. 
RWC was obtained using a sample of approximately 4.9 cm² 
of leaf blade from one plant per subplot. The samples were 
immediately placed in a hermetically closed container with a 
known weight to prevent water loss by transpiration. Fresh 
matter was weighed, and the samples were individually placed 
in Petri dishes with filter paper saturated with distilled water, 
where they remained for 24 hours under these conditions; the 
turgid weight was then determined. The dry weight of the 
samples was obtained after drying the materials in an oven at 
65 °C until constant weight. RWC was calculated using 
Equation 1. 

 

                          
 

RWC(%)=
𝐹𝑊-DW

(TW-DW)
 × 100  %  (1) 

Where RWC is the leaf relative water content, FW is 
the fresh weight of the sample (g), TW is the turgid weight of 
the sample (g), and DW is the dry weight of the sample (g).  

 
Aerial images were taken using an unmanned aerial 

vehicle (UAV), specifically a hexacopter type, (X800; XFly 
Brazil, Bauru, Brazil). A flight was conducted on September 
24, 2019 (50 DAS), between 11:00 am and 12:00 pm. The 
flight plan was developed using the software Pix4D Capture® 
(www.pix4d.com). The flight plan was created to ensure that 
images were taken with 80% lateral and frontal overlaps, 
maintaining the flight altitude at 30 meters above ground 
level, with a ground sample distance of ≈ 1.5 cm.  

Multispectral images were acquired by a multispectral 
sensor (RedEdge; MicaSense, Seattle, USA). The sensor 
captures images in five narrow spectral bands: Blue (B; range: 
465– 485 nm; width: 20 nm), Green (G; range: 550–570 nm; 
width: 20 nm), Red (R; range: 663–673nm; width: 10 nm), 
Red Edge (range: 712–722 nm; width: 10 nm), and Near-
Infrared (NIR) (range: 820–860 nm; width: 40 nm), with 
pixels ranging from 8 cm to 12 cm and resolution of 1280 × 
960 pixels for each band. The images were saved in 16-bit 
TIFF format. 

The obtained images underwent radiometric 
calibration, using a specific calibration target for the camera 
and radiation sensor mounted on top of the UAV. The 
processing to generate an orthomosaic of the aerial images 
was performed using the software OpenDroneMap Web 
version (WebODM) (TOFFANIN, 2019). The software 
configuration enabled the generation of an orthomosaic with 
spatial resolution of 4.6 cm. 

The orthomosaic was subjected to a supervised 
classification process (maximum likelihood method), enabling 
the rasterization of the orthomosaic into two classes (soil and 
leaves); this step allowed for the removal of pixels classified 
as soil from the mosaic, ensuring that vegetation indices were 
estimated only with pixels classified as leaves. This 
processing step was conducted using the Semi-Automatic 
Classification (SCP) plugin in the QGIS v. 2018. 

Sixteen vegetation indices were evaluated through 
estimates from the bands of the multispectral images (R, G, B, 
Red Edge, and NIR). Table 3 provides a description of the 
indices used, including their names, abbreviations, equations, 
and bibliographic references.  

Table 2. Irrigation water depths (mm) applied to maize hybrids as a function of water regimes, from sowing (S) until the date of aerial images 
capture (September 24, 2019) and until the end of the crop cycle.  

Period DAS 40% ETc 60% ETc 80% ETc 100% ETc 120% ETc 

Aug 05 to Sep 09, 2019 0–36 184.0 184.6 186.4 182.1 179.3 

Sep 10 to Sep 24, 2019* 37–50 37, 2 57.0 74.2 91.6 108.8 

Sep 25 to Nov 12 2019** 51– 99 114.8 165.2 210.7 272.3 330.5 

Total 0–99 336.0 406.8 471.3 546.0 618.6 

 1 
DAS = days after sowing; *The rainfall depth in the period was 5.2 mm; **The rainfall depth in the period was 13.4 mm.  
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The multispectral indices were estimated using the 
QGIS raster calculator (QGIS, 2016). The vegetation indices 
for each subplot were extracted using the QGIS zonal 
statistics plugin (QGIS, 2016); the vector layer representing 
the experimental subplots, which were consisted of four 

central rows (12 m2) containing only areas classified as 
leaves, was used in this process. The zonal statistics plugin 
generated an attribute table (minimum, maximum, and 
standard deviation) for the vegetation indices for each 
experimental subplot. 

Table 3. Description of the evaluated multispectral vegetation indices. 

 1 

Vegetation index Equation Mathematical Reference 

Green chlorophyll index 𝐺𝐶𝐼 =
𝑅𝑛

𝑅𝑔
− 1 Gitelson et al. (2005) 

Modified excess green 𝑀𝐸𝑋𝐺 = 1.262𝑅𝑔 − 0.884𝑅𝑟 − 0.311𝑅𝑏  Burgos-Artizzu et al. (2011) 

Modified normalized green red 

difference 
𝑀𝑁𝐺𝑅𝐷 =

𝑅𝑔
2 − 𝑅𝑟

2

𝑅𝑔
2 + 𝑅𝑟

2 Bendig et al. (2015) 

Normalized difference Red-Edge – 𝑁𝐷𝑅𝐸 =
𝑅𝑛 − 𝑅𝑅𝐸

𝑅𝑛 + 𝑅𝑅𝐸
 

Wang, Azzari and Lobell 

(2019) 

Normalized difference Red-Edge index 𝑁𝐷𝑅𝐸𝐼 =
𝑅𝑅𝐸 − 𝑅𝑔

𝑅𝑅𝐸 + 𝑅𝑔
 Hassan et al. (2018) 

Normalized Difference Vegetation Index 𝑁𝐷𝑉𝐼 =
𝑅𝑛 − 𝑅𝑟

𝑅𝑛 + 𝑅𝑟
 Gitelson et al. (2005) 

Normalized green red difference – 𝑁𝐺𝑅𝐷 =
𝑅𝑔 − 𝑅𝑟

𝑅𝑔 + 𝑅𝑟
 

Hamuda, Glavin and Jones  

(2016) 

Pigment-specific normalized difference 

index 
𝑃𝑆𝑁𝐷 =

𝑅𝑛 − 𝑅𝑏

𝑅𝑛 + 𝑅𝑏
 Blackburn (1998) 

Red-Edge chlorophyll index 𝑅𝐸𝐶𝐼 =
𝑅𝑛

𝑅𝑅𝐸
− 1 Gitelson et al. (2005) 

Red green difference – 𝑅𝐺𝐷 = 𝑅𝑟 − 𝑅𝑔 Sanjerehei (2014) 

Ratio vegetation index RVI 𝑅𝑉𝐼 =
𝑅𝑛

𝑅𝑟
 Tucker (1979) 

Soil Adjusted Vegetation Index 𝑆𝐴𝑉𝐼 =
1.5 𝑅𝑛 − 𝑅𝑟 

 𝑅𝑛 + 𝑅𝑟 + 0.5 
 Zhong, Hu and Zhou (2019) 

Transformed chlorophyll absorption in 

Nir index 
𝑇𝐶𝐴𝑅𝐼 = 3[(𝑅_𝑛 − 𝑅_𝑟 ) − 0.2(𝑅_𝑛 − 𝑅_𝑔 )(𝑅_𝑛/𝑅_𝑟 )] Haboudane et al. (2002) 

TCARI/OSAVI index 𝑇𝐶𝐴𝑅𝐼 − 𝑂𝑆𝐴𝑉𝐼 =
𝑇𝐶𝐴𝑅𝐼

𝑂𝑆𝐴𝑉𝐼
 Haboudane et al. (2002) 

Transformed chlorophyll absorption in 

Red-edge index 
𝑇𝐶𝐴𝑅𝐼 − 𝑅𝐸 = 3   𝑅𝑅𝐸 − 𝑅𝑟 − 0.2 𝑅𝑅𝐸 − 𝑅𝑔  

𝑅𝑅𝐸

𝑅𝑟
   Daughtry et al. (2000) 

Wide dynamic range vegetation index 𝑊𝐷𝑅𝑉𝐼 =
 0.12𝑅𝑛 − 𝑅𝑟

 0.12𝑅𝑛 + 𝑅𝑟
 Gitelson (2004) 

Spectral reflectance: Rn: near-infrared (840 nm); Rg: green (560 nm); RRE: red edge (717 nm); Rr: red (668 nm) and Rb: blue (475 nm); R’
n: near-

infrared (soil); R’
r: red (soil).  
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Manual harvesting was carried out on November 12, 
2019 (dry grains), at 99 DAS. All maize ears in an area of       
6 m² of each subplot, in the central rows of the subplots, were 
harvested to determine grain yield. The harvested ears were 
threshed using a thresher machine to obtain the grains. The 
weight of grains from each subplot was measured and 
corrected to a moisture content of 130 g kg-1; the result was 
extrapolated to kg ha-1. 

The data were subjected to statistical analysis, 
according to the following strategy: a) analysis of variance to 
assess the response of physiological parameters (gs and RWC) 
and grain yield (GY) to the sources of variation: water 
regimes (WR), maize hybrids (H), and interaction (WR×H); 
b) Pearson's correlation analysis between gs, RWC, grain 
yield, and vegetation indices, focusing on the pre-selection of 
the most promising vegetation indices (VIs) for assessing the 
water status of maize plants; c) linear regression analysis to 
generate prediction models for gs, RWC, and GY, using the 
promising VIs for assessing the water status of maize plants.  

The t-test was applied for Pearson's correlation 
analysis (r), and the F test was used for analysis of variance of 
the factors WR, H, and WR×H. Promising VIs were those 
with r≥0.8 regarding the parameters gs, RWC, and GY. The 
statistical analyses were conducted using the ExpDes.pt 
package of the R software (FERREIRA; CAVALCANTI; 
NOGUEIRA, 2014). The linear regression models were 
selected considering the coefficient of determination (R2) and 
the standard error of the regression (SER), according to 
Equation 2 and Equation 3, respectively; those with higher R2 

and lower SER were considered the best regression models.  
 

                     
 

Where n is the number of observations,  is the 

parameter estimated by the regression models,  is the mean 

of the parameters estimated by the regression models,  is 

the parameter measured in the field, and  is the mean of the 
physiological parameters measured in the field. 

 
 

RESULTS AND DISCUSSION 
 
The evaluated water regimes (WR) resulted in 

variations in soil water availability to maize plants; soil water 
availability was higher when higher water depths were 
applied. The variability was higher in the 0.0-0.1 and 0.1-0.2 
m soil layers (Figure 1). Regarding the total evaluated soil 
layer (0.0-0.4 m), the means of soil moisture ranged from 
7.1% (WR = 40% of ETc) to 15.4% (WR = 120% of ETc) 
(Figure 1A), resulting in a mean variation in soil water 
availability from 45.0% (WR = 40% of ETc) to 98.1% (WR = 
120% of ETc) (Figure 1B). 

R2=
  Y i-Y m 

2n
i=1

  Yi-Yi 
2

n
i=1

    

 1 
 2 

𝑆𝐸𝑅 =    𝑌𝑖 − 𝑌 𝑖 
2𝑛

𝑖=1

𝑛 − 2
     

(2) 
 
 
 
 

(3) 

𝑌 𝑖  
𝑌 𝑚  

𝑌𝑖  
𝑌𝑖  

  

 1 Figure 1. Soil moisture (A) and soil water available (B) as a function of the water regimes applied from maize sowing until the date of aerial 
image acquisition (September 24, 2019).  

The soil water availability in the 0.0-0.4 soil layer in 
the treatments under WRs of 80% (10.5%), 100% (13.3%), 
and 120% of ETc (15.4%) was maintained at levels higher 
than the critical moisture level (the mean of the 0.0-0.4 soil 
layer was 10.8%), allowing for adequate maize plant 
development and production. However, treatments under WRs 
of 40% (7.1%) and 60% of ETc (8.0%) presented soil water 
availability below the critical moisture level (50%) 
(DOORENBOS; KASSAM, 1994) and above the permanent 

wilting point during the evaluated period, which is a limiting 
factor for maize development and grain yield. 

The analysis of variance indicated significant changes 
in the parameters stomatal conductance (gs), leaf relative 
water content (RWC), and grain yield (GY) in response to 
WR applications. The effect of maize hybrid (H) and the 
interaction between WR and H was significant (p<0.001) only 
for GY (Table 4).  
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The increase in soil water availability as a function of 
WR application increased gs (Figure 2A), mainly for the 
treatments under the extreme WRs (40% and 120% of ETc), 
which resulted in gs of 204.2 mmol m-2 s-1 and 298.5                 
mmol m-2 s-1, respectively. The maize plants under WRs of 
60%, 80%, and 100% of ETc presented no significant 

differences in gs. Similarly, Rossini et al. (2015), Zhang et al. 
(2021), and Andrade Junior et al. (2021) found decreased gs 
in maize plants under soil water deficit. Stomatal closure is 
among the first responses of plants to water deficit as a 
strategy to avoid water loss to the atmosphere (ROSSINI et 
al., 2015).  

Table 4. Analysis of variance for stomatal conductance (gs), leaf relative water content (RWC), and grain yield (GY) in response to the evaluat-
ed water regimes and maize hybrids.  

CV = coefficient of variation; DF = degrees of freedom; Significance levels by the F test: *** = p<0.001; ** = p<0.01; * = p<0.05; and ns = not 
significant.  

Figure 2. Stomatal conductance (gs), leaf relative water content (RWC), and grain yield (GY) of three maize hybrids in response to the 
application of five different water regimes. Teresina, PI, 2019. Means followed by the same letter are not significantly different from each other 
by the Tukey's test at 5% probability level. Lowercase letters (WR) and uppercase letters (hybrids).  

Source of Variation DF gs RWC GY 

Water regime (WR) 4 14995* 490.940*** 93362560*** 

Block 3 5371 80.110 3813255 

Error a 12 3309 40.720 495152 

Hybrid (H) 2 2211ns 107.850ns 7644094*** 

RH×H 8 7003ns 28.410ns 6402201*** 

Error b 30 4873 41.640 787322 

Total 59 
   

CV WR (%) 
 

22.97 8.50 15.23 

CV H (%) 
 

27.87 8.60 19.21 

 1 

  

 

 1 
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RWC varied under conditions of high soil water 
availability, ranging from 79.0% (120% of ETc) to 81.5% 
(100% of ETc), whereas it decreased to 64.7% in the 
treatment under 40% of ETc (Figure 2B). However, maize 
plants subjected to treatments under 60%, 80%, 100%, and 
120% of ETc presented no significant difference in RWC. 
Decreased RWC in maize plants under soil water restriction 
conditions was also found by Rossini et al. (2015). 

RWC can directly affect the actual growth and 
development status of crops, which makes it the best 
parameter for assessing the water conservation status of 
leaves. According to Xingyang et al. (2020), changes in RWC 
are easily observed and can indicate the degree of plant stress 
to some extent, as the leaf is the most important organ for 
assimilation and transpiration in plants, making it the most 
sensitive to water stress.  

Regarding GY, higher means were found under high 
soil water availability conditions (100% and 120% of ETc) 
compared to those found in treatments under 40%, 60%, and 
80% of ETc; therefore, GY was lower under soil water deficit 
conditions (Figure 2C). The highest GY mean in the treatment 
under 120% of ETc was found for the maize hybrid VIP3 
(10,898.3 kg ha-1), differing from the hybrids BRS 3046 and 
BRS 2022, which were statistically similar and presented the 
lowest GY (7,653.8 and 6,214.5 kg ha-1, respectively). VIP3 

also had the highest GY under water deficit conditions (40% 
and 60% of ETc), differing statistically from the other 
hybrids.  

The soil water availability level directly affects maize 
grain yield. Elmetwalli and Tyler (2020) reported that water 
stress significantly reduced GY. They found the highest GY 
(8.4 and 9.4 Mg ha-1) with application of a water depth 
corresponding to 125% ETc replacement in the 2015 and 
2016 crop seasons, respectively. Considering the present 
study, the WR with 120% ETc replacement corresponded to a 
total of 618.6 mm (Table 2).  

All evaluated vegetation indices, except RGD, showed 
a significant effect (0.05≤p≤0.001) of the applied WRs (Table 
5). This result denotes that the most significant vegetation 
indices by the F test have the potential for assessing the water 
status of maize plants. However, the promising vegetation 
indices selected were those that showed the best levels of 
correlation with the gs, RWC, and GY measurements obtained 
in the field. Regarding the evaluated maize hybrids, a 
significant effect was found for the vegetation indices GCI, 
MEXG, MNGRD, NDRE, NGRD, TCARI, TCARI-OSAVI, 
TCARI-RE, and WDRVI (0.01≤p≤0.001). However, the 
interaction effect between WR and H was found only for the 
index MEXG (p≤0.05).  

Table 5. F test for vegetation indices (VI) in response to water regimes (WR), maize hybrids (H), and interaction between WR and H (WR×H).  

VI WR H WR×H VI WR H WR×H 

GCI * ** ns RECI *** ns ns 

MEXG * *** * RVI *** ns ns 

MNGRD * ** ns SAVI *** ns ns 

NDRE *** *** ns TCARI *** *** ns 

NRDEI * ns ns TCARI-OSAVI *** *** ns 

NDVI ** ns ns RGD ns ns ns 

NGRD * *** ns TCARI-RE ** *** ns 

PSND *** ns ns WDRVI *** ** ns 

 1 
Significance levels by the F test: *** = p<0.001; ** = p<0.01; * = p<0.05; and ns = not significant.  

Stomatal conductance (gs) showed significant 
correlations with several vegetation indices, among which 
those resulting in correlations r≥0.8 were considered 
promising for assessing water status of maize plants 
(BALLESTER et al., 2019; ELMETWALLI; TYLER, 2020). 
Therefore, the indices NDVI (r=0.946; p<0.01), TCARI-RE 
(r=-0.928; p<0.01), WDRVI (r=0.919; p<0.01), and PSND 
(r=0.908; p<0.01) (Table 6) stood out. Studies have indicated 
that vegetation indices using spectral bands with wave lengths 
in the NIR region are more suitable for assessing the water 
status of crops under water stress conditions (ELSAYED; 
RISCHBECK; SCHMIDHALTER, 2015). In the present 
study, the indices that met this condition established by 
Elsayed, Rischbeck, and Schmidhalter (2015) were NDVI, 
PSND, and WDRVI. Additionally, TCARI-RE which uses 
spectral bands in the visible region (RGB) also was suitable 

for assessing the water status of maize crops in the present 
study.  

RWC showed significant correlation with several of 
the evaluated vegetation indices, among which GCI (r=-0.920; 
p<0.01), MNGRD (r=0.925; p<0.01), and NGRD (r=0.916; 
p<0.01) were considered promising for assessing RWC in 
maize leaves (BALLESTER et al., 2019; ELMETWALLI; 
TYLER, 2020), mainly the latter two indices, which use 
spectral bands in the RGB region.  

GY showed significant correlations with most of the 
evaluated vegetation indices, with coefficients of correlation 
varying from 0.894 to 0.949 (Table 6). Evaluating correlations 
between crop vegetation indices and yield is important, as it is 
possible to predict crop yield in a simple, rapid, inexpensive, 
and non-destructive way when correlations are found 
(HOYOS‐VILLEGAS; FRITSCHI, 2013).  
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The indices MEXG, NDREI, and RGD were not 
correlated with any of the field-measured parameters; the 
coefficients of correlation ranged from -0.214 to 0.949. 

Exclusively, the correlations between vegetation indices and 
gs, RWC, and GY that presented the highest R² values are 
shown in Figure 3 for clarity purposes. 

Table 6. Pearson's correlation between vegetation indices (VI) and stomatal conductance (gs), leaf relative water content (RWC), and grain 
yield (GY) of maize hybrids.  

VI gs RWC GY  VI gs RWC GY 

GCI -0.860** -0.920** -0.62ns  RDVI 0.722ns 0.563ns 0.911** 

MEXG -0.479ns -0.214ns -0.737ns  RVI 0.882** 0.740ns 0.949** 

MNGRD 0.872** 0.925** 0.635ns  SAVI 0.720ns 0.557ns 0.909** 

NDRE 0.796ns 0.603ns 0.923**  TCARI -0.798ns -0.627ns -0.927** 

NDREI 0.169ns 0.394ns 0.487ns  TCARI-OSAVI -0.816** -0.653ns -0.934** 

NDVI 0.946** 0.875** 0.928**  TCARI-RE -0.928** -0.861** -0.939** 

NGRD 0.877ns 0.916** 0.640ns  RGD -0.026ns -0.254ns 0.288ns 

PSND 0.908** 0.803 ns 0.920**  WDRVI 0.919** 0.813** 0.948** 

 1 
Significance levels by the t test: ** = p<0.01; * = p<0.05; ns = not significant.  

  

  

  
 1 

Figure 3. Linear regression models for stomatal conductance (gs) (A, B), leaf relative water content (RWC) (C, D), and grain yield (GY) (E, F) 
of maize hybrids based on the most promising vegetation indices. Significance levels by the t test: ns = not significant; * = p<0.05; ** = p<0.01; 
and *** = p<0.001.  
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NDVI and TCARI-RE provided the best estimates of 
gs, with R² ranging from 0.8527 (p<0.05) to 0.8967 (p<0.05) 
and standard error of the regression (SER) ranging from 
13.113 mmol m-2 s-1 to 15.655 mmol m-2 s-1 (Figures 3A 
and 3B). This low error denotes that the use of NDVI and 
TCARI-RE is suitable for assessing water stress. Zhang et al. 
(2021) evaluated responses of maize plants to water stress by 
changes in canopy structure (leaf area) and chlorophyll 
content based on VI from multispectral images obtained by 
UAV. They found a significantly positive correlation between 
NDVI and gs, with r values of 0.61 and 0.64 (p<0.001), 
respectively; however, no significant correlation was found 
between TCARI-RE and gs. 

The indices MNGRD and GCI provided the best 
estimates of RWC, with R² of 0.855 (p<0.05) and SER of 
2.81% (Figures 3C and 3D). These vegetation indices 
presented sensitivity to RWC in terms of higher R² and lower 
SER. Increases in soil water availability promoted increases in 
RWC, which increased NDVI values. Contrastingly, 
treatments with higher water availability (100% and 120% of 
ETc) resulted in decreased GCI values while the parameter 
RWC increased. Therefore, the indices MNGRD (RGB) and 
GCI (NIR) presented correlations with the applied water 

regimes and, consequently, with RWC. 
NDVI and WDRVI provided the best estimates of GY, 

with R² of 0.98 (p<0.001) and SER ranging from 394.75 to 
400.97 kg ha-1 (Figures 3E and 3F). A positive linear increase 
in GY was found as the NDVI and WDRVI values increased. 
Therefore, soil water availability was determinant for 
increasing maize grain yield, with adequate water availability 
to plants grown under the best water conditions (100% and 
120% of ETc). 

Considering that the indices NDVI, MNGRD, and 
WDRVI showed the best correlations with gs, RWC, and GY 
measured in the field, spatial variability maps of gs, RWC, 
and GY were developed only for these indices. Thus, the 
spatial variability of gs, RWC, and GY, generated with the 
indices that performed best in estimating these parameters in 
response to WRs (40%, 80%, and 120% of ETc), is shown in 
Figure 4. These indices allowed for mapping and 
differentiating maize plants under intense water stress from 
those without water stress, showing significant differences in 
gs, RWC, and GY means. The other tested vegetation indices 
presented lower efficiency in assessing and separating maize 
plants based on their level of water stress.  

40% of ETc 80% of ETc 120% of ETc 

   

   

   

 1 
Figure 4. Maps of stomatal conductance (gs), leaf relative water content (RWC), and grain yield (GY) based on the vegetation indices with 
better statistical performance.  
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The gs maps highlights maize plants with more intense 
water stress through a lighter color on their canopy (Figure 4). 
Additionally, it was possible to identify plants with 
intermediate hue, denoting a moderate water stress. The gs 
maps for the WRs of 40% and 80% of ETc showed areas with 
a higher predominance of zones with gs below the range of 
145.1 to 217.6 mmol m-2 s-1, whereas the map for 120% of 
ETc showed areas with a higher predominance of gs above the 
range of 217.6 to 290.2 mmol m-2 s-1 (Figure 4), indicating 
lower spatial variability of gs. 

According to the maps, RWC was mainly concentrated 
in the range of 40% to 60% under 40% of ETc. The maps for 
80% and 120% of ETc showed areas with a higher 
predominance of RWC above the range of 60% to 80%, 
indicating almost no water stress in these treatments. RWC is 
the best parameter to assess water status in leaves. 

Changes in RWC are easily observed and can indicate 
the degree of water deficit in plants to some extent. Thus, 
RWC has an important function in assessing water stress in 
crops, mainly in remote sensing for water stress monitoring 
(ULLAH et al., 2012; ZHAO et al., 2016). Decreases in RWC 
can lead to increases in leaf temperature, which can cause 
stomatal closure and decreases in the net photosynthetic rate 
(XINGYANG et al., 2020). The comparison of gs (NDVI) and 
RWC (MNGRD) maps clearly showed that zones with the 
lowest gs and RWC are concentrated in the same parts of the 
experimental area, indicating the potential of these vegetation 
indices for detecting the water status of maize plants, mainly 
MNGRD, which uses spectral bands in the RGB region. 

Regarding the spatial variability maps for GY, the 
means were distributed mainly in the range of 2,171.1 to 
4,344.2 kg ha-1 under 40% of ETc, whereas the map for 80% 
of ETc showed areas with a higher predominance of GY in 
the range of 4,344.2 to 6,516.3 kg ha-1. Regarding the map for 
120% of ETc, the GY means concentrated mainly in the range 
of 8,688.4 to 10,860.5 kg ha-1. 

 
 

CONCLUSIONS 
 
Increases in soil water availability promotes increases 

in stomatal conductance, leaf relative water content, and grain 
yield for maize plants. 

The vegetation indices NDVI, TCARI-RE, MNGRD, 
and GCI are promising for assessing water status of maize 
plants, whereas NDVI and WDRVI are promising for 
estimating maize grain yield. 

The maps generated using the indices NDVI, 
MNGRD, and WDRVI showed a significant spatial 
correlation with stomatal conductance, leaf relative water 
content, and grain yield, respectively, in response to the 
applied water regimes. These vegetation indices can be 
applied to aerial images from unmanned aerial vehicle for 
assessing water status of maize plants under field conditions. 
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