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In this work, we evaluated the You Only Look Once (YOLO) architecture for real-time detection of soybean pests. 
We collected images of the soybean plantation in different days, locations and weather conditions, between the 
phenological stages R1 to R6, which have a high occurrence of insect pests in soybean fields. We employed 
a 5-fold cross-validation paired with four metrics to evaluate the classification performance and three metrics 
to evaluate the detection performance. Experimental results showed that YOLOv3 architecture trained with a 
batch size of 32 leads to higher classification and detection rates compared to batch sizes of 4 and 16. The 
results indicate that the evaluated architecture can support specialists and farmers in monitoring the need for 
pest control action in soybean fields.
1. Introduction

Soybean (Glycine max) is a plant belonging to the Fabaceae family 
used in human food (in the form of soy oil, tofu, soy sauce, soy milk, soy 
protein, soy beans) and animal feed (in the preparation of rations). It is 
a grain with a good nutritional profile and high economic importance 
[1]. In the 2019/2020 harvest, Brazil became the world’s largest pro-
ducer of the grain, surpassing its main competitor, the United States. In 
the 2022/23 harvest, Brazil achieved a production of 154.6 million tons 
in a planted area of approximately 44 million hectares, with an aver-
age productivity of 3,508 kg/ha, breaking historical records for planting 
area, productivity and production [2].

It is estimated that most direct costs in soybean production are con-
centrated in fertilizers (27.82%), pesticides (18.24%), machine opera-
tions (9.10%), seeds (7.35%) and depreciation of machines and equip-
ment (6.76%) [3]. Since pest control represents a large portion of the 
production costs, methods capable of making the process more targeted 
and efficient can result in sizeable cost reductions.

* Corresponding author at: Universidade Federal da Grande Dourados, FACET, Rodovia Dourados-Itahum, Km 12, Dourados, 79825-070, Mato Grosso do Sul, 
Brazil.

Monitoring pests in all stages of soybean development allows for 
a more efficient use of pesticides, since inputs can be directed to the 
right spots and applied in the proper amounts, thus reducing production 
costs and the environmental impact resulting from the excess use of 
chemical control, in addition to contributing to human health and food 
safety [4]. Sampling methods such as beating cloth, sweeping net, visual 
examination of plants and examination of soil samples have been used 
to monitor pests and their damage to crops [5].

Regardless of the method adopted, in order to assess the pest infes-
tation in the crop, it is suggested that the number of insects should be 
recorded at a sufficiently large number of sampling points in order to 
enable the assessment of the level of infestation in each crop area. The 
greater the number of samples taken in an area, the greater the cer-
tainty of a correct pest infestation prediction. In general, at least six 
samplings are recommended for crops of up to 10 ha, eight for crops of 
up to 30 ha and ten for crops of up to 100 ha. For larger areas, dividing 
into 100 ha plots is recommended [5].

As an alternative to manual sampling methods, there is a growing 
motivation for using digital images collected in the field, for the devel-
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opment of computer vision systems aimed at pest detection. In addition, 
high spatial resolution cameras can be embedded in Unmanned Aerial 
Vehicles (UAV) offering a bird’s eye view of the crop. However, most 
studies in the literature are dedicated to pest detection in traps, with 
only a few focusing on direct detection in the crops.

In this work, we evaluate the YOLOv3 [6] architecture applied to 
the detection of insect pests in a real field environment, under differ-
ent lighting conditions, object sizes and backgrounds. The problem of 
identifying the object’s location along with its class is called object 
detection. This can be achieved by training a multi-label classifier to 
determine the location and class of each object (encircled in a rectan-
gle called bounding box). The YOLO is one of the most employed object 
detection models, as it offers accurate results with a relatively low com-
putational burden.

We collected images of the soybean plantation in different days, lo-
cations and weather condition, between the phenological stages R1 to 
R6, which have a high occurrence of insect pests in soybean fields. 
For training and testing the neural network, we used a 5-fold cross-
validation associated with four metrics to evaluate the classification 
results (precision, recall, F-measure and accuracy) and three metrics to 
evaluate the detection results (mean absolute error (MAE), root mean 
square error (RMSE) and coefficient of determination (R2)).

This work is organized as follows. Section 2 presents related work 
and Section 3 describes important details on materials and methods. 
Section 5 shows the experimental results, followed by a discussion. Fi-
nally, Section 6 presents the conclusions and notes for future work.

2. Related work

In the literature there are several studies comparing image sensors 
and machine learning methods for pests identification in various crops. 
Despite this, few studies address the detection of insect pests in the 
field, using images collected under real conditions. This section presents 
articles published between 2017 and 2023 that address classification 
and detection of pests.

2.1. Methods for image classification

Within the classification task, Li et al. [7] created a framework that 
identifies ten types of pests from different crops. The dataset was col-
lected by downloading a total of 5,629 images from search engines and 
filming outdoors using an Apple 7 Plus smartphone. In the data prepa-
ration phase, GrabCut and Watershed algorithms were implemented to 
remove complex background from images. Among the tested models, 
GoogLeNet yielded the best results. On the other hand, GoogLeNet’s 
training was more computationally intensive than other models.

The deep residual learning method was used in [8] to identify 10 
classes of agricultural pests in images with complex backgrounds. The 
method’s performance was improved after optimizing, by deep residual 
learning, the pre-trained ResNetlOl and ResNet50 models on ImageNet. 
The proposed model achieved 98.67% accuracy, which was signifi-
cantly higher than traditional SVM and CNN. Despite the promising 
results, the deep residual net could have been combined with object de-
tection methods such as Faster R-CNN or R-FCN to track pest targets in 
real time, offering greater practical value of the method in agricultural 
pest control tasks.

Liu et al. [9] designed an intelligent autonomous vehicle to acquire 
images in the natural setting of the farm, and also proposed a Pyralidae 
pest recognition algorithm. Specifically, by employing the color and 
shape characteristics of Pyralidae pests, they proposed a targeting al-
gorithm using Inverse Histogram Mapping and Restricted Spatial Otsu 
methods to target pests. Next, they designed a recognition approach 
based on Hu Moment Invariant. The proposed method achieved an ac-
curacy of 94.3%. However, the average processing time of each frame 
2

was greater than 1 second, delaying the robot’s response to the obser-
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vation results. Pest detection under non-uniform lighting was also not 
effective.

A dataset containing more than 75,000 images from 102 pest species 
was introduced in [10]. Eight shallow and four deep models were 
tested. Experimental results showed low accuracy (<50%) in almost all 
scenarios, indicating that shallow and deep methods still cannot cope 
with a large number of classes with a high degree of data imbalance.

Tetila et al. [4] and Tetila et al. [11] evaluated different models of 
deep learning trained with fine-tuning and transfer learning parameters 
for tasks of classification and counting of insect pests in soybean fields. 
First, an image segmentation step with the SLIC Superpixels method 
was considered to segment the insects in the image. In the classifica-
tion stage, DenseNet-201 yielded the best results, with an accuracy of 
94.89%. In the counting experiment, superpixels were classified using 
the weights of the best-rated CNN, with counting estimates achieving an 
accuracy of 90.86%. The results were not compared with other state-of-
the-art detection methods.

2.2. Object detection methods

A novel cascade pest detection approach called DeepPest, based 
on two-stage moving vision, was proposed in [12] for recognition of 
very small-sized pest species in unbalanced datasets. DeepPest, extracts 
multi-scale contextual information from images as background knowl-
edge in order to build a contextual information network for initial 
classification of images into crop categories. Then, a multiprojection 
pest detection model (MDM) was trained by crop-related pest images. 
Although the dataset contains 17,192 pest images captured in the field 
environment with 76,595 pest annotations, the dataset is limited to 
wheat and rice crops, and no pest images were captured on soybean.

Nam and Hung [13] evaluated three detection and classification 
methods to identify five insect species trapped in a factory environment. 
Using a set of 200 original images of 3,026 insects, the following meth-
ods were compared: (1) Adaptive Threshold combined with VGG-16, 
(2) Single Shot MultiBox Detector (SSD) built on top of VGG16 network 
but replacing fully connected layers, (3) VGG16 with Sliding Window 
approach. In the experiments, SSD produced the best results, achieving 
detection and classification rates of 84% and 86%, respectively. In this 
work, data augmentation was performed by combining the inversion 
and rotation operations on each photo to obtain more training and test-
ing samples. Because the augmentation was applied before the division 
into training and test sets, the results reported are likely biased.

In [14] an improved network architecture based on VGG19 was im-
plemented for detection and classification of 24 insect species collected 
in crop fields such as rice and soybean. The method achieved an accu-
racy of 89.2% in the MPest dataset, being superior to the traditional 
state-of-the-art SSD (85.3%) and Fast R-CNN (79.6%) methods. It is 
worth pointing out that many relevant pest species found in soybean 
were not considered in this study.

The main focus of the work of Gutierrez et al. [15] is the selec-
tion of the best approach for detection and identification of harmful 
pests in tomato and pepper crops in greenhouse. A dataset with a large 
number of images of infected tomato plants was created to generate 
and evaluate machine learning (MLP and k-NN) and deep learning (SSD 
and Faster R-CNN) models. Deep learning yielded the highest accuracy 
in distinguishing between Bemisia tabaci and Trialeurodes vaporariorum. 
Results also indicated that the detection and identification of eggs is 
a major challenge. Important evaluation metrics like accuracy and F-
measure, were absent in the report.

To carry out a rapid detection and recognition of ten types of insects 
that affect tea fields in China, Deng et al. [16] created the SIFT-HMAX 
model inspired by the human visual attention mechanism. First, the 
Saliency Using Natural (SUN) statistical model was used to generate 
saliency maps and detect region of interest (ROI) in a pest image. To 
extract the attributes that represent the appearance of the pest, the Hi-

erarchical Model and X (HMAX) model was improved. The proposed 
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Fig. 1. Study area located in (a) South America and Brazil, (b) Mato Grosso do Sul State, municipality of Dourados highlighted and (c) Experimental area used for 
soybean planting.
method achieved a recognition rate of 85.5%, showing an advantage 
over HMAX, Sparse coding and NIMBLE, but being slightly inferior to 
MatConvNet (86.9%).

In [17–19] the authors analyzed insect pests under real field con-
ditions. In the first two works, the authors used an improved deep 
learning strategy to detect whiteflies on soybean leaves and eggplant 
leaves, respectively. In the most recent work, the authors combined 
hyperspectral imaging technology and a meta-learning algorithm to 
establish an A-ResNet model, which was used for non-destructive de-
tection of soybeans consumed by leguminivora glycinivorella matsumura. 
Despite promising results, only one species of insect was investigated in 
each work.

A review characterizing the current state of the art of deep learning 
applied to soybean crops, detailing the main advancements achieved so 
far and, more importantly, providing an in-depth analysis of the main 
challenges and research gaps that still remain were investigated in [20].

3. Materials and methods

3.1. Image acquisition

We sowed soybeans in a 2-hectare experimental area specifically to 
carry out this experiment. Some transgenic soybean cultivars are re-
sistant to certain insect species, so we sow non-genetically modified 
(non-GMO) soybeans in order to obtain the largest number of species 
possible. We do not apply any pesticides to the crops to preserve the in-
sects’ manifestation. The experimental area shown in Fig. 1 is located 
in the UFGD farm in the municipality of Dourados, Mato Grosso do Sul 
State, Brazil, 22°13’57.52”S, 54°59’17.93”W.

We used a Samsung Galaxy S7 smartphone equipped with a 12.2 
megapixel SM-G930F rear camera to collect images of insects present 
in the experimental area. A total of 1,800 images (3024x4032 pixels) 
were collected in different days and under various weather conditions, 
at the times 8 am-10 am and 5 pm-6:30 pm. Soybean plants at the 
reproductive phenological stages R1 to R6 were imaged during the 
2017-2018 season, there was no insect sampling during the vegetative 
stages V1 to V6. During this period, the plants are in the growth phase 
and the soybean planting lines have not yet been closed. Because of this, 
most species only appear in the reproductive phase when the plants are 
larger, offering ideal climatic conditions for their survival (mild tem-
peratures and relatively high humidity). It was found that the exposure 
of pests on top of plants usually occurs at the beginning of the day or 
at the end of the afternoon, reinforcing the recommendation that insect 
sampling should be carried out in the cooler and more humid periods 
of the day, as reported in [5].

The insects were captured by a digital camera 50 cm away from 
3

the target insect with the researcher walking in the soybean field on 
Table 1

Total number of insects noted by species and damage caused 
to soybeans.

Species Damage Quantity

Anticarsia gemmatalis plant leaves 115
Coccinellidae no damage 120
Diabrotica speciosa plant leaves 113
Edessa meditabunda pods and grains 112
Euschistus heros adult pods and grains 836
Euschistus heros nymph pods and grains 802
Gastropoda seedlings 170
Lagria villosa no damage 67
Nezara viridula adult pods and grains 125
Nezara viridula nymph pods and grains 23
Rhammatocerus schistocercoides plant leaves 37
Spodoptera albula pods and grains 238

Total 2.758

different days and weather conditions, which causes variations in light-
ing, occlusion, object overlap and, mainly, similarity of objects with the 
complex background. These variations make it difficult to recognize 
the target insect, adding practical value to the soybean pest detec-
tion method. Then, we annotated each image using Labellmg https://
github .com /tzutalin /labelImg with the support of an entomologist, thus 
building a reference collection for training and testing the system (see 
Fig. 2), called INSECT12C-Dataset and is available in [21]. Table 1
presents the total number of insects annotated by species. The imbal-
anced number of samples reflects the number of occurrences of each 
pest species under real field conditions.

3.2. Experimental design

Using Scikit-learn [22], a five-fold cross-validation was adopted. In 
each fold, 60% of the samples were used for training, 20% for validation 
and 20% for testing. We employed four metrics to evaluate classification 
results: accuracy, recall, F-measure, and accuracy; and three metrics to 
evaluate the detection results: mean absolute error (MAE), root mean 
square error (RMSE) and coefficient of determination (R2). We used 
ANOVA hypothesis testing to determine whether there is a significant 
difference in average performance between batch size groups. Batch 
size refers to the number of data samples that are used in a single iter-
ation through a machine learning model during training. We reported 
the p-value found for each metric and the significance level was set at 
5%.

We used the open source implementation of the YOLOv3 architec-
ture that competed in [23]. The following input parameters were used: 
608x800-pixel input size, batch sizes ranging from 4 to 32 samples and 

training with 24,000 iterations. At the same time, we used the SGD op-

https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg
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Fig. 2. Sample images from our dataset, divided into 12 species of soybean pests. The images were collected under real field conditions, which provide various 
4

lighting conditions, object size and positioning, occlusion, complex background variations and developmental stages.
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Table 2

Classification results obtained by YOLO in average percentage in the INSECT12C dataset.

Architecture Batch Precision (%) Recall (%) F-measure (%) Accuracy (%)

4 97.85 ± .0049 51.24 ± .0334 67.21 ± .0288 50.67 ± .0326
YOLO 16 95.47 ± .0171 70.65 ± .0109 81.20 ± .0126 68.36 ± .0178

32 95.15 ± .0060 75.79 ± .0234 84.35 ± .0133 72.96 ± .0200

Table 3

Insect pest detection results in the INSECT12C dataset for YOLO.

Architecture Batch RMSE MAE R2

4 1.25 ± .0788 0.77 ± .0654 0.14 ± .0254
YOLO 16 0.92 ± .0829 0.48 ± .0460 0.47 ± .0440

32 0.83 ± .0606 0.41 ± .0386 0.58 ± .0446
5

Fig. 3. Examples of insect pest detection in YOLO architecture with batch size defined in 32 samples. Boxes are true positives with a detection score ≥ 0.3.
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Fig. 4. Examples of insect pest detection failures in the YOLO architecture with a batch size set to 32 samples. The top row shows examples of false negatives, and 
the bottom row depicts some instances of false positives.

Fig. 5. A bar-graph showing the ground-truth, in blue, and the counts produced by YOLO, in orange.
timizer [24] with a learning rate set of 0.001 and momentum of 0.9. 
We used the data augmentation to supplement the training data by ap-
plying random rotation between -90° and 90° and changing the image 
brightness from -10% to 10%. This procedure aims to reinforce rotation 
and illumination invariance during detection.

In all of our experiments we used Colab, a Google Research ser-
vice that enables writing and running Python codes through a browser, 
6

while providing free GPU resources. However, for our work, we used 
the Google Colab Pro, which provides priority access to more powerful 
GPU resources and high-memory virtual machines.

3.3. Evaluation metrics

We used four metrics to evaluate the classification results (equations 
(1) to (4)). True positives (TP) happen when the insect is detected and 

classified correctly with a score of at least 0.3. False positives (FP) occur 
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Fig. 6. Confusion matrix showing the predicted versus true classifications among species and between a species and the background (last columns and last line).
when a spurious object is identified as an insect. False negatives (FN) 
can be due to an insect being either undetected or misclassifield.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
(1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3)

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗ (𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(4)

Furthermore, we consider three metrics to evaluate the detection 
results:

𝑀𝐴𝐸 = 1
𝑛

𝑛∑
𝑖=1

||𝑦𝑖 − �̂�𝑖
|| (5)

𝑅𝑀𝑆𝐸 =

√√√√1
𝑛

𝑛∑
𝑖=1

(
𝑦𝑖 − �̂�𝑖

)2
(6)

2
∑𝑛

𝑖=1(𝑦𝑖 − �̂�𝑖)2
7

𝑅 = 1 − ∑𝑛

𝑖=1(𝑦𝑖 − �̄�)2
(7)
where 𝑦𝑖 is the observed value, �̂�𝑖 is the estimated (forecast) value, �̄� is 
the average of observations and 𝑛 is the number of observations.

4. You only look once (YOLO)

The YOLO detection method evaluated in this work is briefly de-
scribed below. The source code found in https://github .com /qqwweee /
keras -yolo3 was used as basis for our implementation.

YOLO addresses object detection as a problem of direct pixel regres-
sion for bounding box coordinates and class probabilities. The input 
image is divided into 𝑆 × 𝑆 blocks. For each block, YOLO predicts 
bounding boxes using dimension groups as anchor boxes. For each 
bounding box, an objectivity score is estimated using logistic regression, 
which indicates the chance that the bounding box has an object of inter-
est. In addition, class 𝐶 probabilities are estimated for each bounding 
box, indicating the classes it may contain. In our case, each bounding 
box can contain the species of an insect or the background of the crop 
(uninteresting object). Thus, each estimation in YOLO is composed of 
four bounding box parameters (coordinates), an objectivity score, and 
class 𝐶 probabilities. To provide high accuracy, YOLO uses Darknet-53 
as its backbone, requiring fewer operations compared to other architec-

tures.

https://github.com/qqwweee/keras-yolo3
https://github.com/qqwweee/keras-yolo3


E.C. Tetila, F.A.G. da Silveira, A.B. da Costa et al.

Fig. 7. Cropped close-up images of adults (left) and nymphs (right) from the 
species Euschistus heros (top) and Nezara viridula (down).

5. Results and discussion

5.1. Classification assessment

The classification results obtained by YOLO for precision, recall, F-
measure and accuracy are presented in Table 2. The percentage values 
represent the average of the five folds in the test set. The best results 
were obtained with a batch size of 32 according to all metrics except 
precision. More importantly, this batch size resulted in the fewest num-
ber of false negatives, witch is arguably the most damaging type of error 
in this kind of application.

The ANOVA test results indicate that there is a significant difference 
in mean performance between batch size groups at a 5% significance 
level, using precision (p-value=2.46𝑒−04), recall (p-value=7.99𝑒−09), 
F-measure (p-value=2.3𝑒−08) and accuracy (p-value=1.37𝑒−08) as met-
rics.

5.2. Detection of insect pests in soybean

Table 3 shows the detection results. In the experiments, batch size 32 
produced the best results, with MAE and RMSE rates of 0.41 and 0.83, 
respectively. The results show low average error rates in almost all sce-
narios, indicating that the YOLO architecture can handle multispecies 
pest detection, even in imbalanced datasets with inter- and intraclass 
variance. Some examples of insect pest detection in YOLO are shown in 
Fig. 3. Bounding boxes are true positives with a detection score ≥ 0.3.

However, YOLO led to some false negatives (insects not detected or 
detected incorrectly) and false positives (when an object that is not of 
interest is identified as an insect), showing that detections can fail under 
certain field conditions such as non-uniform lighting over insect, insect-
like complex background (e.g. herbivory and leaf lesions), partial insect 
occlusion and, mainly, low representation of species with few samples 
(Fig. 4).

5.3. Discussion

Dewi et al. [25] report a 99.40% accuracy using ResNet to classify 
11 pest species. It is much higher than our best accuracy of 72.96%, 
however, they have used a dataset with very high-definition images of 
insect close-ups and with background information that may be corre-
8

lated with species and make the problem much easier. The background 
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in their dataset was not composed only of soybean crop images. In our 
case, the background is uniform, as all the images were taken from the 
same crop. Besides, the classification results that we present are derived 
from an object detection task, where more than one insect can appear 
in the same image, turning the problem even harder than a simple clas-
sification.

In a recent work that dealt with insect detection in soybean crop, 
as ours, Chamara et al. [26] concluded that insect detection is a tough 
task reporting a mean average precision (mAP) of just 2%, even not try-
ing to detect particular species. As they used a camera that was more 
distant from the crop than ours, the insects were smaller, making the 
problem harder, which reflected in their worse results. Park et al. [27]
collected images from soybean crops using an unmanned ground vehi-
cle (UGV) with GoPro CAM at a distance similar to ours. Applying three 
object detectors based on YOLOv3, MRCNN and Detectron2 they have 
achieved mAPs above 90%. However, while our work aimed at detect-
ing and classifying 10 species, two of them in 2 different stages (nymph 
and adult), giving a total of 12 classes, Park et al. [27] had a simpler, 
one-class problem, to detect the R. pedestris pest.

Above 90% accuracy results have also been reported by Farah 
et al. [28], but again, their datasets represent a simpler problem of 
2-class classification and not object detection. They aimed to classify 
images taken from a greater distance than ours, using information such 
as the holes in soybean leaves left by caterpillars, in the classes healthy 
or infested. They have experimented with caterpillars and Diabrotica 
speciosa. None of the recent works addresses the problem using such a 
large number of species and so, their better results, cannot be directly 
compared to ours.

The bar-graph in Fig. 5 shows the ground-truth and automatic 
counting per classes. For most of the cases the proposed approach 
overcounted the number of insects, but in the case of Anticarsia gem-

matalis, Lagria villosa, Nezara viridula nymph and Rhammatocerus schis-

tocercoides, we have no error or a small undercounting. Proportionally, 
the worst case happened with Rhammatocerus schistocercoides, with an 
overcounting of approximately 46% and the best case, with an ex-
act counting, was with Lagria villosa. Another three classes, Coccinell-

idae, Euschistus heros nymph and Spodoptera albula, with a proportional 
counting error above 20%, seem to present greater challenges for auto-
matic counting.

In order to further investigate the disproportion of counting errors 
among species, Fig. 6 shows a confusion matrix that includes a new 
class representing the background. The numbers in the last line indi-
cate that an insect has been completely missing and those in the last 
column indicate that an insect has been detected where there were 
none. The diagonal indicates the correct classifications and the num-
bers out of the diagonal, excepting the last line and column, indicate 
a miss-classification: insect detected but with a wrong species or stage 
(adult or nymph) attribution. It is clear from the matrix that distinguish-
ing between an adult and a nymph Euschistus heros is a hard task, with 
many confusions in this block. Interestingly, the same does not happen 
with Nezara viridula, with just one case of confusion between its adult 
and nymph stages.

Fig. 7 shows close-up cropped images from an adult (left) and a 
nymph (right) of a Euschistus heros sample, in the first row, and an adult 
and a nymph image of a Nezara viridula, in the second row. In the case 
of Euschistus heros, the difference in color, from adult to nymph, seems 
to be an important feature. However, for the Nezara viridula, several 
shape features differ as well. We argue that the network, due to the 
prevailing green background, ended up favoring shape features over 
color to distinguish among different species which may lead to more 
errors with Euschistus heros than Nezara viridula when trying to choose 
between adult or nymph.

Fig. 8 shows a normalized version of the confusion matrix where 
each line adds up to 100%. In this way, the unbalanced nature of the 
problem is diminished and we can see, for instance, that Nezara viridula
nymph has just 30% of correct classifications and the Spodoptera albula
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Fig. 8. Normalized confusion matrix showing the predicted versus true classifications using a proportion between correct classifications and the number of samples 
per class (each row adds up to 100%).
has the highest classification score of 77.9%. But most of the confusion 
errors are still concentrated in the Euschistus heros classes, indicating 
that unbalancing may be a crucial factor, as these are the most frequent 
classes in our dataset. Better training balancing techniques should be 
tested in the future.

6. Conclusion

In this paper we evaluated the performance of the YOLO architec-
ture for real-time detection of insect pests in soybeans. We also created 
a new dataset called INSECT12C-Dataset, composed of 2,758 annotated 
insects from 12 species and made it available for academic research. 
INSECT12C-Dataset can serve as a baseline for real-time detection of in-
sect pests by species in soybeans. Experimental results showed that the 
YOLO architecture trained with batch size 32 leads to higher classifica-
tion and detection accuracy compared to batch sizes 4 and 16. However, 
the method failed under conditions such as areas with complex light-
ing conditions, herbivory and leaf lesions, partial insect occlusion and 
low representation of species with few samples. The proportion of true 
positives with respect to the total predicted positives achieved did not 
present major distortions, indicating that YOLO allows tracking of pest 
targets in real time, offering greater practical value for pest control 
9

tasks.
As part of future work, we intend to evaluate new state-of-the-art 
object detection architectures paired with higher resolution cameras 
embedded in the UAV. We also intend to employ the oversampling 
technique to supplement the training data of underrepresented classes, 
adjusting the proportion of samples between the different classes. Fi-
nally, we plan to implement the models into an end-to-end system, in 
the form of pesticide application maps.
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