EFEITO DA CIANAMIDA HIDROGENADA NA BROTAÇÃO DA VIDEIRA CV. ITÁLIA NA REGIÃO SEMI-ÁRIDA DO VALE DO SÃO FRANCISCO

JOÃO ANTONIO SILVA DE ALBUQUERQUE¹ e SELMA MARIA DO NASCIMENTO SOBRAL VIEIRA ¹

RESUMO — A aplicação da cianamida hidrogenada (H_2CN_2), em videira cv. Itália (*Vitis vinifera* L.), um dia após a poda nas concentrações 0, 1, 3, 5 e 7%, proporcionou uma resposta linear na percentagem de gemas brotadas e na produtividade. A dosagem de 7% de H_2CN_2 proporcionou aumento de 125% de gemas brotadas a 70% na produtividade. O H_2CN_2 não afetou a fertilidade por gema brotada nem a composição química das uvas, no que se relaciona aos sólidos solúveis e à acidez total.

Termos para indexação: videira, brotação, regulador de crescimento.

EFFECT OF CYANAMID ON GRAPE BUDDING IN THE SEMI-ARID REGION OF SÃO FRANCISCO VALLEY

ABSTRACT – The application of H_2CN_2 in the concentration of 0, 1, 3, 5 and 7 percent, on grape plants of the Itália cultivar resulted a linear response for the yield and break-bud. The concentration of 7 percent of H_2CN_2 resulted on increased of 125 percent of break-bud and 70 percent on the yield. The fertility of the buds and the chemical composition of the grapes produced were not affected by the action of the H_2CN_2 .

Index terms: grape, bud, growth regulator.

INTRODUÇÃO

Na região do submédio São Francisco do trópico semi-árido, a maioria das cultivares de videira apresenta brotação deficiente e desuniforme quando podadas durante o período de maio a agosto.

Várias pesquisas utilizando processos físicos e/ou químicos foram desenvolvidas nessa região com a cv. Itália (Piróvano 65) para minimizar o problema, alguns com resultados satisfatórios: pincelamento das gemas com calciocianamida (ALBU-QUERQUE et al., 1986) e emorgação (encurvamento) com remoção das escamas das gemas (ALBUQUERQUE & SOBRAL, 1986); outros apresentaram apenas uma eficiência parcial no aumento da brotação das gemas como o uso de thiourea, nitrato de potássio, dinitro-orto-fenol e óleo mineral (ALBUQUERQUE & ALBUQUERQUE, 1984).

Alguns resultados não apresentaram nenhuma resposta satisfatória: desfolhamento da planta em épocas diferentes, uso do ácido succínico-2,2-dimetil-hidrazida (SADH), uso do glifosate (ALBU-QUERQUE & SOBRAL, 1986).

Novos agentes químicos estão sendo testados em outras regiões com resultados bastante eficientes. A cianamida hidrogenada tem sido utilizada para estimular e uniformizar a brotação (SHULMAN et al., 1983, e LIN & WANG, 1985); aumentar a produtividade e antecipar a colheita (LIN et al., 1985, e BRACHO et al., 1984).

Com o intuito de oferecer novas alternativas para os viticultores do Vale do São Francisco, o presente trabalho objetiva determinar a concentração mais efetiva da cianamida hidrogenada $(H_2 \, \text{CN}_2)$ na melhoria da brotação e produtividade da cultivar Itália.

¹ CPATSA/EMBRAPA, C.P. 23, 56300 Petrolina, PE. Bolsista do CNPq.

MATERIAL E MÉTODOS

O experimento foi realizado no Campo Experimental de Mandacaru, CPATSA-EMBRAPA, localizado no município de Juazeiro, BA, com as seguintes coordenadas geográficas: 9°24′ de latitude S, 40°26′ de longitude W e 375 metros de altitude. Segundo HARGREAVES (1974), o clima da região é classificado como muito árido. Os dados climáticos registrados durante a condução do experimento encontram-se na tabela 1.

Foi utilizado um parreiral da cv. Itália (Piróvano 65) com sete anos de idade, enxertado sobre a cv. IAC 313 (Tropical); as plantas foram conduzidas num sistema de latada com espaçamento de 4 m entre fileiras e 3 m entre plantas. O sistema de irrigação foi por sulco de infiltração.

O produto utilizado foi a cianamida hidrogenada (H_2CN_2) em forma líquida. As soluções foram preparadas na ocasião da pulverização das videiras.

O delineamento estatístico utilizado foi o de blocos ao acaso com cinco tratamentos e quatro repetições. Os tratamentos foram: 1. Testemunha; 2. H₂CN₂ a 1%; 3. H₂CN₂ a 3%; 4. H₂CN₂ a 5%; 5. H₂CN₂ a 7%.

Foram utilizadas duas plantas por parcela, sendo etiquetadas, em cada planta, seis ramos produtivos com onze gemas perfazendo um total de 132 gemas por parcela.

As soluções de H_2 CN_2 foram aplicadas em toda a planta um dia após a poda, com um pulverizador costal, no período matinal.

A primeira irrigação ocorreu no dia seguinte após a aplicação do produto.

Foi misturado ao produto o óleo mineral Assist na dosagem de 400cc para 100 litros d'água.

A ação dos tratamentos com cianamida hidrogenada foi avaliada em relação às seguintes características: (a) Início de brotação; (b) Percentagem de gemas brotadas; (c) Número de cachos; (d) Produtividade; (e) Percentagem dos sólidos solúveis e acidez total.

RESULTADOS E DISCUSSÃO

Influência da cianamida hidrogenada no período de brotação

As concentrações de cianamida hidrogenada a 1, 3, 5 e 7% anteciparam e concentraram a brotação num período bastante curto de tempo em relação à testemunha; a concentração da cianamida hidrogenada a 7% foi a que apresentou maior uniformidade de brotação (Tabela 2). Esses resultados estão de acordo com os obtidos por SHULMAN et al. (1983) e LIN & WANG (1985).

Influência da cianamida hidrogenada na percentagem de gemas brotadas

As pulverizações com cianamida hidrogenada um dia após a poda nas concentrações 0, 1, 3, 5, e 7% proporcionaram uma resposta de forma linear na percentagem de gemas brotadas. A concentração a 7% foi a que apresentou os melhores resultados, ocasionando uma brotação de 56,25%, ou seja,

Tabela 1. Dados climatológicos registrados no Campo Experimental de Mandacaru no período de março a julho de 1987. CPATSA/EMBRAPA

Mês	Temperatura			Umidade			Precipitação
	Máxima	Mínima	Média	relativa	Insolação	Evaporação	pluviométrica
		— °С ——		%	h/dia	mm/dia	mm
Março	30,5	22,4	26,6	75	5,2	6,9	251,0
Abril	30,4	21,5	25,6	62	7,6	5,4	20,7
Maio	30,7	20,5	25,6	60	7,6	7,5	33,6
Junho	30,0	20,0	24,7	62	6,5	7,7	11,9
Julho	30,0	19,4	24,7	61	7,3	7,0	when .

Tabela 2. Valores percentuais do período de brotação para os tratamentos

			Tratamentos		
Período de brotação			Gemas brotadas		
	Test.	1% H ₂ CN ₂	3% H ₂ CN ₂	5% H ₂ CN ₂	7% H ₂ CN ₂
	***************************************		%		
6 a 18-3	34,0	62,0	71,0	73,0	74,0
19 a 24-3	43,0	33,0	29,0	22,0	26,0
25 a 30-3	23,0	5,0	_	5,0	_

Poda: 5-3-87. Aplicação do produto: 6-3-87. Primeira irrigação: 7-3-87.

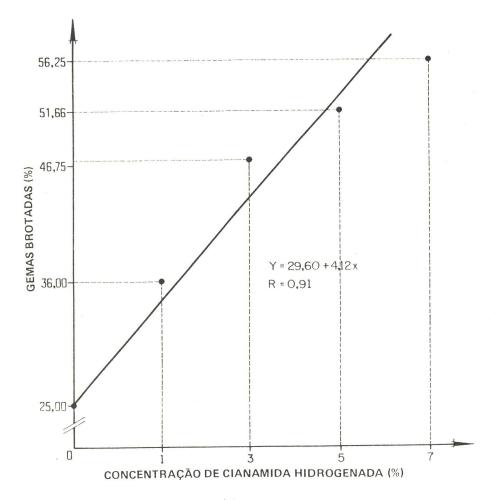


Figura 1. Relação entre concentração de cianamida hidrogenada e percentagem de gemas brotadas, em ramos da videira cv. Itália.

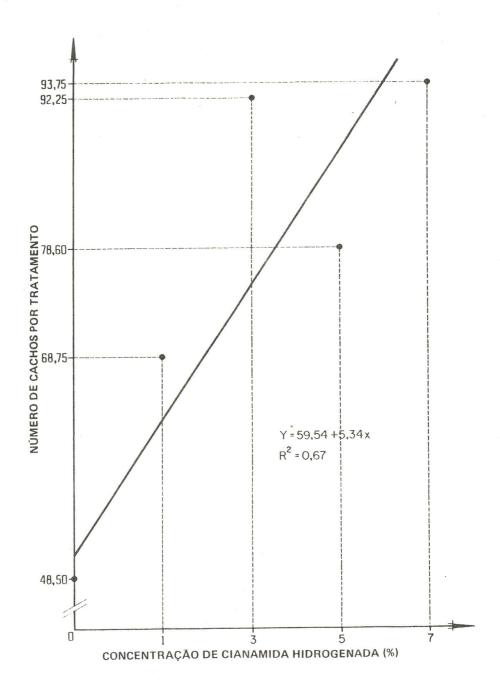


Figura 2. Relação entre concentração de cianamida hidrogenada e número de cachos por tratamento.

uma superioridade de 125% em relação à testemunha (Figura 1). Esses resultados estão de acordo com LIN & WANG (1985), SHULMAN et al. (1983), LIN et al. (1985), e SMIT (1985). As concentrações utilizadas pelos referidos autores variavam de 1 a 5% do produto. Houve um maior número de gemas secundárias brotadas nas concentrações mais elevadas (5 e 7%) da cianamida hidrogenada.

Influência da cianamida hidrogenada com relação ao número de cachos

As diversas concentrações da cianamida hidrogenada ocasionaram uma resposta linear com relação ao número de cachos (Figura 2). A concentração a 7% foi a que apresentou os melhores resultados com um número de cachos em torno de 93% superior à testemunha. As diversas concentrações da cianamida hidrogenada não afetaram a fertilidade das gemas brotadas nesse primeiro ensaio experimental. Esses resultados são semelhantes aos obtidos por BRACHO et al. (1984), LIN et al. (1985), e SMIT (1985).

Efeito da cianamida hidrogenada na produtividade

Os tratamentos com cianamida hidrogenada nas diversas concentrações ocasionaram uma resposta linear na produtividade (Figura 3). A concentração

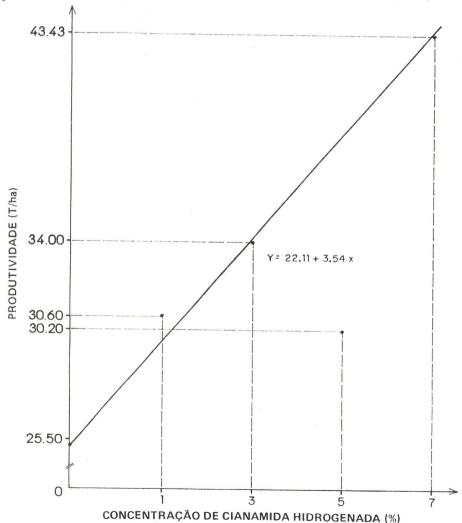


Figura 3. Relação entre concentração de cianamida hidrogenada e produtividade (t/ha) da videira cv. Itália.

de 7% foi a que apresentou os melhores resultados com uma produção 70% superior à testemunha. Esses resultados coincidem com os obtidos por LIN et al. (1985).

Efeito da cianamida hidrogenada nas características químicas das uvas

A cianamida hidrogenada não alterou de forma significativa as características químicas das uvas: sólidos solúveis e acidez total, conforme pode ser observado na tabela 3.

Tabela 3. Valores médios das características químicas das uvas

Tratamentos	Sólidos solúveis (^O Brix)	Acidez total (mgH Ta/l)	
	%		
1.0% H ₂ CN ₂	16,0	5,8	
2. 1% H ₂ CN ₂	16,9	5,9	
3.3% H ₂ CN ₂	17,2	6,2	
4.7% H ₂ CN ₂	17,1	6,4	
5. 5% H ₂ CN ₂	17,1	6,5	

CONCLUSÕES

Os resultados do primeiro experimento aqui apresentados indicam que a aplicação da cianamida hidrogenada em videiras de cultivar Itália, um dia após a poda, mostrou uma resposta linear no aumento da percentagem de gemas brotadas e, conseqüentemente, aumento na produtividade. No entanto, faz-se necessário testar concentrações mais elevadas da cianamida hidrogenada.

As concentrações do produto testado não afetaram a fertilidade das gemas brotadas, e nem influiram de forma significativa nas características químicas das uvas.

REFERÊNCIAS

- ALBUQUERQUE, J.A.S.; ALBUQUERQUE, T.C.S. & SOBRAL, S.M.N. Efeito da calciocianamida na brotação da videira (Vitis vinifera L.), na região do Submédio São Francisco. In: CONG. BRAS. FRUTICULTURA, 8., Brasília, 1986. Anais. Brasília, Soc. Bras. Fruticultura, 1986. p.479-83.
- ALBUQUERQUE, J.A.S. & ALBUQUERQUE, T.C.S. Uso de produtos químicos na quebra de dormência de gemas da videira na região do Submédio São Francisco. In: CONGR. BRAS. FRUTICULTURA, 7., Florianópolis, 1983. Anais. Florianópolis, Soc. Bras. Fruticultura, 1984. p.1188-99.
- ALBUQUERQUE, J.A.S. & SOBRAL, S.M.N. Produtos químicos e práticas culturais na quebra de dormência da videira. Petrolina, EMBRAPA/CPATSA, 1986. 30p. (EMBRAPA/CPATSA, Boletim de Pesquisa, 32)
- BRACHO, E.; JOHNSON, J.O.; WICKS, A.S. & LIDER, L. Effects of cyanamide, ethephon and endothal on bud break in Thompson Seedless. Presented at 35th annual of ASEV and accepted for publication, 1984.
- HARGREAVES, G.H. Climatic zoning for agricultural production in Northeast Brazil. Logan, Utah State University, 1974. 6p.
- LIN, C.H.; LIN, J.H.; CHANG, L.R. & LIN, H.S. The regulation of Golden Muscat Grape production season in Taiwan. Am. J. Enol. Vitic., 36(2):114-7, 1985.
- LIN, C.H. & WANG, T.Y. Enhancement of bud sprouting in grape single bud cuttings by cyanamid. Am. J. Enol. Vitic., 36(1):15-7, 1985.
- SHULMAN, Y.; NIR, G.; FANBERSTEIN, L. & LAVEE, S. The effect of cyanamid on the release from dormancy of grapevine buds. Scientia Horticulturae, 19: 97-104, 1983.
- SMIT, C.J. Advancing and improving bud break in vines. Deciduos Frut Grower, August, 1985.