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Abstract
Traditional change detection approaches have been proven to be difficult in detecting vegetation
changes in the moist tropical regions with multitemporal images. This paper explores the integration
of Landsat Thematic Mapper (TM) and SPOT High Resolution Geometric (HRG) instrument data
for vegetation change detection in the Brazilian Amazon. A principal component analysis was used
to integrate TM and HRG panchromatic data. Vegetation change/non-change was detected with the
image differencing approach based on the TM and HRG fused image and the corresponding TM
image. A rule-based approach was used to classify the TM and HRG multispectral images into
thematic maps with three coarse land-cover classes: forest, non-forest vegetation, and non-vegetation
lands. A hybrid approach combining image differencing and post-classification comparison was used
to detect vegetation change trajectories. This research indicates promising vegetation change
techniques, especially for vegetation gain and loss, even if very limited reference data are available.

Introduction
The Brazilian Amazon has experienced high deforestation rates since the 1970s because of
colonization projects initiated during that decade, associated road construction, and land-use
change (Moran, 1981; Laurance et al., 2004). Over the Amazon basin, different stages of
secondary succession and forest degradation are also part of the land-cover trajectories (Lucas
et al., 2000; Roberts et al., 2002). Successional vegetation, with its rapid growth, may play an
important role in the global carbon budget (Fearnside, 1996; Carreiras et al., 2006) and has
significant ecological functions within the Amazonian ecosystems (Moran et al., 2000). Timely
and accurate vegetation change detection in this region is valuable for reducing the uncertainty
of carbon budgets and understanding the roles of vegetation in ecosystems.

Recently, the monitoring of forest degradation has also attracted increasing interest. Souza et
al. (2003) used a decision tree classifier based on fraction images from the spectral mixture
analysis of SPOT multispectral data to discriminate four forest types: intact forest, degraded
forest, forest regeneration, and logged forest. The fraction images contain biophysical
meanings, that is, they represent areal proportions of each endmember in a pixel. The change
in forest structure reflects the change in the composition of such fractions in a pixel. In another
study, Asner et al. (2004 and 2005) analyzed the impacts of selective logging on forest
degradation with field measurements and spectral mixture analysis, and with the Carnegie
Landsat Analysis System of Landsat ETM + images in moist tropical regions of the Brazilian
Amazon. Normalized difference moisture index (NDMI) and tasseled cap wetness were also
used to detect forest disturbance associated with forest type and harvest intensity (Franklin et
al., 2002; Wilson and Sader, 2002; Jin and Sader, 2005). Because traditional pixel-based
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change detection approaches often generate the “salt-and-pepper” effect in the resultant image,
Desclee et al. (2006) used an object-based approach to detect forest change and provided better
change detection accuracy, but this approach cannot provide the change trajectories. Lambin
(1999) discussed the methodological issues for monitoring forest degradation using remote-
sensing data and indicated that only the use of suitable biophysical variables could lead to
accurate detection of forest degradation. These approaches require the collection of a large
number of sample plots in the field, which is often difficult and time consuming, especially in
the Amazon.

The monitoring of non-forest vegetation change in the moist tropical regions has not attracted
sufficient attention yet. The non-forest vegetation may include different stages of successional
vegetation, agroforestry, pastures, and perennial plantations (e.g., coffee, cocoa). Because of
land-use intensification, the conversion or modification within the non-forest vegetation class
is common. Although detection of loss or gain within the non-forest vegetation category is a
challenge due to the similar spectral features, the small patch sizes, and the limitation of using
high spatial resolution remotely sensed data for large regions, the information about non-forest
vegetation change is important in reducing the uncertainty in carbon estimations.

Many change detection algorithms have been developed (Singh, 1989; Coppin et al., 2004; Lu
et al., 2004a), but most of them, such as image differencing, principal component analysis
(PCA), and ratioing, cannot provide detailed vegetation change trajectory information.
Although the post-classification comparison approach can indicate detailed land-cover change
trajectories, the accuracy of the change detection result greatly depends on the accuracies of
the classified images for both dates. In practice, a detailed vegetation classification with
historically remotely sensed data is a challenge, especially in moist tropical regions due to the
complex biophysical environments and the lack of local reference data that could be used as
training samples during image classification (Foody et al., 1996; Roberts et al., 2002; Lu et
al., 2004b).

Much previous research for change detection is based on images acquired by the same sensor.
However, in moist tropical regions, the frequent cloud conditions often affect the acquisition
of high-quality optical sensor data. Different sensor data provide more chances to acquire
cloud-free images, but using different sensor data often makes it difficult to select a suitable
change detection approach. Most approaches require that the image data be from one sensor
with similar acquisition dates in different detection years so the impacts of vegetation
phenology and different sensor responses can be minimized. Also, the collection of ground
reference data, especially for historical remote-sensing data, in moist tropical regions of the
Amazon is often challenging due to the difficult access to some remote areas. On the other
hand, it is crucial to monitor vegetation change in such regions, as they play a key role in the
global climate balance. Thus, it is important to develop a new approach for vegetation change
detection based on the characteristics of different sensor data and limited reference data, so
detailed vegetation change information can be extracted. In this article, we aim to develop a
hybrid approach for detection of detailed vegetation change trajectories based on the use of
Landsat Thematic Mapper (TM) and SPOT HRG (High Resolution Geometric) instrument
data. Specifically, the integration of TM and HRG data was used for detection of vegetation
change/non-change, and a hybrid approach combining image differencing and traditional post-
classification comparison was then used for the development of more detailed vegetation
change information.

Study Area
The State of Rondônia has experienced high deforestation rates over the last two decades. In
fact, the deforestation rates in Rondônia ranged from 1.14 to 2.62 percent per year between
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1991 and 2000, much higher than the overall deforestation rate (ranging from 0.37 to 0.80
percent per year) in the Brazilian Amazon during the same period (INPE, 2002). Following
the national strategy of regional occupation and development, colonization projects initiated
by the Brazilian government in the 1970s played a major role in this process (Moran, 1981;
Schmink and Wood, 1992). Most colonization projects in the State were designed to settle
landless migrants. The immigrants have transformed the forested landscape into a mosaic of
cultivated crops, pastures, different stages of successional vegetation, urbanized areas, and
forest remnants.

The study area is located at Machadinho d’Oeste in northeastern Rondônia (Figure 1). It is a
newer colonization initiative than areas along the Cuiabá-Porto Velho Highway. The settlement
is adjacent to the borders with the states of Amazonas and Mato Grosso. A well-defined dry
season lasts from June to August. The annual average precipitation is 2,016 mm and the annual
average temperature is 25.5° C (Rondônia, 1998). The terrain is undulating, ranging from 100
to 450 m above sea level. Several soil types, mainly alfisols, oxisols, ultisols, and alluvial soils,
have been identified (Bognola and Soares, 1999). Settlers, rubber tappers, and loggers inhabit
the area, transforming the landscape through their economic activities and use of resources
(Batistella, 2001). Farming systems are mainly household-based, and little depends on larger
group efforts. Rubber tappers have rights over communal forest reserves where they practice
extraction. Loggers play a major role in providing access to remote areas within the settlement
and in starting the occupation process, as they open trails through the forest to reach valuable
species.

Methods
Vegetation change detection is a complex procedure. Figure 2 illustrates the major steps,
including image preprocessing (e.g., image-to-image registration, atmospheric calibration),
image classification, post-classification comparison, data fusion, image differencing, and a
hybrid approach for vegetation change detection.

Image Collection and Preprocessing
Two sensor data, Landsat-5 TM and SPOT-5 HRG images, were used in this research. The
TM image with 30-meter spatial resolution has six bands, covering three visible bands (blue,
green, and red), one near-infrared (NIR) band, and two shortwave infrared (SWIR) bands. The
HRG image has five bands, covering one panchromatic band with 5-meter spatial resolution,
two visible (green and red) bands, one NIR band with 10-meter spatial resolution, and one
SWIR band with 20-meter spatial resolution. The TM image was acquired on 18 June 1998,
with a sun elevation angle of 42°, and the HRG image was acquired on 26 June 2003 with a
sun elevation angle of 51°.

Image registration and atmospheric calibration are two important aspects in the image
preprocessing procedure. The importance of accurate registration of multitemporal images is
obvious because spurious results of change detection would be produced if misregistration
were to occur (Townshend et al., 1992; Dai and Khorram, 1998). An image-to-image
registration between TM and HRG images was performed. The HRG image was used as a
reference image, and the TM image was registered to the HRG image to the Universal
Transverse Mercator coordinate system.

The nearest-neighbor algorithm was used to resample the TM image into pixel sizes of 10 m
by 10 m, in order to be consistent with HRG data and to make use of the rich spatial information
inherent in the higher spatial resolution of HRG data during the TM and HRG data fusion
procedure. The registration error of 0.1816 pixels (x error: 0.1409, y error: 0.1145) for the TM
image was obtained during image registration. The 5-meter HRG panchromatic image was also

Lu et al. Page 3

Photogramm Eng Remote Sensing. Author manuscript; available in PMC 2009 September 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



resampled to 10-meter spatial resolution. Thus, all HRG and TM data had the same pixel size
of 10 m × 10 m.

Conversion of digital numbers to radiance or surface reflectance is a requirement for
quantitative analyses of multitemporal images. Many methods ranging from simple relative
calibration and dark object subtraction to complex models (e.g., 6S) have been developed for
radiometric and atmospheric normalization or correction (Chavez, 1996; Vermote et al.,
1997; Tokola et al., 1999; Song et al., 2001; Canty et al., 2004). The dark object subtraction
approach is an image-based procedure that corrects for the effects caused by solar zenith angle,
solar radiance, and atmospheric scattering (Chavez, 1996; Lu et al., 2002) and, hence, used in
this paper for the atmospheric calibrations of TM and HRG images:

where Lλ is the apparent at-satellite radiance for spectral band λ, DNλ is the digital number of
spectral band λ, Aλ is the calibration factor for spectral band λ of the SPOT HRG image, Rλ is
the calibrated reflectance, Lλ..haze is path radiance, Esunλ is exo-atmospheric solar irradiance,
D is the distance between the Earth and Sun, and θ is the sun zenith angle. The path radiance
for each band was identified based on the analysis of water bodies and shades in the images.

Image Classification
Much previous research has demonstrated that vegetation classification in the moist tropical
regions is often difficult due to the complex stand structure, abundant tree species, and complex
environmental conditions (Foody et al., 1996; Rignot et al., 1997; Santos et al., 2003; Vieira
et al., 2003; Lu et al., 2004b). However, non-vegetated lands (e.g., bare soils, infrastructure,
and water) have significantly different spectral signatures compared to vegetation types.
Mature forests have different features that can be separated from non-forest vegetation (e.g.,
successional forests, agroforestry, perennial plantations, and pastures). Figure 3 illustrates the
different spectral features of a TM image for distinct land-cover types. Water has very low
reflectance values in NIR and SWIR bands, urban or bare soils have higher reflectance values
than other classes in visible and SWIR bands, and mature forests have lower reflectance values
than non-forest vegetation types in NIR and SWIR bands. The three land-cover classes (forest,
non-forest vegetation, and non-vegetation lands) were classified with a rule-based approach
(Figure 4). The normalized difference vegetation index [i.e., NDVI = (NIR − red)/(NIR + red)]
image calculated from TM or HRG image was also used in image classification. The thresholds
were determined from the sample plots. Approximately 10 to 15 sample plots covering water,
urban, bare soils, mature forest, and non-forest vegetation classes were identified for both dates
of TM and HRG multispectral images. A statistical analysis (minimum, maximum, mean, and
standard deviation) for each class was conducted, and thresholds were determined based on
the comprehensive analysis of multispectral signatures and NDVI images. Figure 5 illustrates
the classified images from TM and HRG multispectral images. Comparison of the classified
images from TM (1998) and HRG (2003) indicated that non-forest vegetation and non-
vegetation (e.g., urban, bare soils) areas increased, consequently forested areas decreased.

In order to use the classified images for change detection with the post-classification
comparison approach, it is important to make sure that the classified images have high
classification accuracies, because the change detection accuracy depends on the accuracy of
both classified images. Hence, a total of 200 sample plots were randomly allocated on the
classified images. The land-cover type for each plot was examined on the HRG and TM color
composites with visual interpretation. Three and five plots were found to be misclassified on
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the HRG and TM images, respectively. Thus, the overall classification accuracies of 98.5
percent and 97.5 percent for HRG and TM images, respectively, were obtained and these
accuracies were satisfactory for the detection of land-cover changes.

Vegetation Change Detection
The post-classification comparison approach was used to detect the changes between forest,
non-forest vegetation, and non-vegetation lands (see Table 1). However, because of the
difficulty in classifying specific vegetation classes with remotely sensed data, the post-
classification comparison approach cannot provide sufficient detailed vegetation change
information, such as vegetation growth or degradation. Non-forest vegetation is a complex
category, which may include the changes within and/or between successional vegetation,
agroforestry, perennial plantations, and pastures. Such changes are difficult to detect, especially
between successional vegetation stages and agroforestry because of the difficulty in separating
them. Therefore, these changes were detected based on the image differencing approach.

Traditional change detection approaches require that the multitemporal images have the same
spectral and spatial resolutions. Because of the different sensor data used in this research, the
traditional approaches such as image differencing are not suitable for change/non-change
detection. Hence, a data fusion based approach was used for vegetation change/non-change
detection, based on the TM multispectral (1998) and HRG panchromatic (2003) images.

The steps used for change detection based on the PCA data fusion approach are summarized
as follows:

1. Register the TM image to the same coordinate system as the HRG panchromatic image
and resample both the TM multi-spectral and the HRG panchromatic images to the
same pixel size of 10 m × 10 m;

2. Transform the TM six bands into six principal components (PCs) using the PCA
approach;

3. Normalize the HRG panchromatic image to the PC1 image from the 1998 TM
multispectral image through a regression analysis of sample plots of pseudo-invariant
objects (e.g., intact forest, cultivated pastures, bare soils);

4. Replace PC1 with normalized HRG panchromatic image and create a new data file;

5. Conduct the inverse PCA approach to transform the new data file into a new six-band
image, which incorporates the information from the HRG panchromatic image and
meanwhile preserves the multispectral features in the TM image;

6. Conduct image differencing between the bands of integrated image and corresponding
TM bands: Diffi = Bfi − Btmi, where Bfi is the band i from the data fused image, and
Btmi is the TM band i. TM band 5 was used because previous research indicated that
this band provided the best change detection result in this study area (Lu et al.,
2005).

7. Identify thresholds to develop the change/non-change image on the difference image
based on pseudo-invariant objects. The histogram of unchanged pixels in a study area
is normally distributed. In this study, the statistical analysis (minimum, maximum,
mean, and standard deviation) of selected sample data of unchanged objects was
conducted, and the thresholds were determined, based on the comprehensive analysis
of statistical parameters (Lu et al., 2005). The selection of thresholds [−t, t] is a critical
step for detection of change/non-change information. The following rules were used
to determine vegetation change status: gain, loss, or non-change.
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• When the pixel value in the difference image was within the thresholds [−t,
t], this pixel was assigned 0 as non-change;

• When the pixel value in the difference image was greater than t, this pixel
was assigned −1 as vegetation loss. Three possible changes in vegetation
loss included forest to non-forest vegetation (NFV) or non-vegetation lands
(NVL); NFV to NVL; and NFV to less mature NFV.

• When the pixel value in the difference image was less than −t, this pixel was
assigned 1 as vegetation gain. Two possible changes in vegetation gain
included bare soils to NFV (i.e., successional vegetation, agroforestry,
perennial plantations, or pasture) and less mature vegetation cover (i.e.,
pasture, young agroforestry systems, or initial successional vegetation) to
more mature agroforestry or successional vegetation.

The post-classification comparison approach provided the information about vegetation
conversion, and the image differencing approach provided the vegetation gain or loss
information. Thus, a hybrid approach, which is a combination of both approaches, can provide
vegetation change detection information with details. For example, if a pixel was detected as
unchanged forest based on the post-classification comparison approach, and the same pixel
was detected as vegetation loss based on the image differencing approach, this pixel was
assigned as forest degradation. Table 2 summarizes the potential vegetation change trajectories
based on the analysis of vegetation conversion image and change/non-change detection image.
Forest can be changed to non-forest vegetation or non-vegetation land due to complete
deforestation. Forest can also be disturbed due to selective logging, or less dense forest can
grow to denser forest due to natural growth. Non-forest vegetation can be disturbed to less
mature vegetation or converted to non-vegetation lands. Non-vegetation lands can also be
regenerated to non-forest vegetation.

Results and Discussion
The vegetation change information can be effectively extracted from the PCA data fused
images which were generated for both dates. Figure 6 provides a comparison of images before
and after data fusion. The numbers in Figure 6a show mature forest on TM band 5 image
acquired in 1998, but the forest was cleared by 2003, as shown on the HRG panchromatic
image of Figure 6b. After data fusion using the PCA approach, the deforested areas were
highlighted with the appearance of different gray levels in the fused band 5 image, compared
with unchanged mature forest in dark gray (Figure 6c). In the difference image based on the
fused band 5 and the original TM band 5 (i.e., the difference between Figure 6c and 6a), the
deforested area was highlighted with bright gray or white, obviously different from unchanged
areas (Figure 6d). Based on the thresholds identified from the pseudo-invariant objects (e.g.,
unchanged mature forest, bare soil, pastures) on the difference image, a final vegetation change/
non-change image was developed (Figure 7). The white areas in Figure 7 indicate vegetation
loss due to deforestation or degradation, the black areas indicate vegetation gain due to
regeneration or vegetation growth, and the gray areas indicate unchanged land covers. One
unusual thing in the fused image (Figure 6c) and the change detection image (Figure 7) is that
the river and some urban areas are highlighted. The error in water was caused by the significant
differences of reflectance values between the HRG panchromatic image and the PC1 from TM
multispectral data. The HRG panchromatic band covers the visible and near-infrared
wavelengths. Water has higher reflectance than vegetations in the HRG panchromatic band
(Figure 6b), while in near-infrared and shortwave infrared wavelengths (e.g., in the HRG SWIR
band and in TM bands 4, 5, and 7) water has very low reflectance compared with vegetation
or other non-vegetation lands (Figure 6a). The PC1 is a linear combination of six TM bands
(e.g., PC1 = 0.104b1 + 0.203b2 + 0.232b3 + 0.687b4 + 0.588b5 + 0.274b7), in which most of
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the information is from NIR and SWIR bands (TM bands 4 and 5). In both bands, water has
very low reflectance compared with visible bands. Hence, water has lower values than other
land covers in PC1. When PC1 was replaced with the HRG panchromatic image in the data
fusion approach, water information was thus enhanced in the fused image (Figure 6c).

Amazonian small urban areas are complex environments, so mixed pixels are very common.
Also, different sun elevation angles when the TM and HRG data were acquired influenced the
shadows and the composition of reflectance from different components. Considering the
different spatial resolutions between TM and HRG panchromatic data (30 m versus 5 m), the
influences of different sun elevation angles, and image registration errors, it is reasonable to
expect some unusual appearances within the urban regions in the difference image. Because
water and urban/bare soils were classified as a non-vegetation category in both images, the
unusually enhanced information in the data fused image and change detection image was not
affected in the final vegetation change detection results.

Compared with traditional change detection approaches, the hybrid approach can provide more
detailed information about vegetation change trajectories, as illustrated in Figure 8. The post-
classification comparison approach provides vegetation conversion information, including
forest conversion, and non-forest vegetation conversion (see Figure 8a), while the hybrid
approach provides such change information as forest degradation and non-forest vegetation
loss or gain (see Figure 8b). Figure 8 indicates that the conversion from forest to non-forest
vegetation or from non-forest vegetation to non-vegetation land accounts for most of the
deforestation areas. Although no quantitative accuracy assessment for the change detection
result was conducted due to the lack of reference data, visually comparing the change detection
image with the color composite of both dates of SWIR images (i.e., assigned TM band 5 and
HRG band 4 as red and green) indicated that this result is satisfactory, and the hybrid approach
is promising for vegetation change detection with different sensor data.

Two categories of change detection techniques can be roughly grouped. One is used to detect
binary change/non-change information, using such approaches as image differencing, image
ratioing, vegetation index differencing, and PCA; the other approach is to detect detailed “from-
to” change trajectory, using such approaches as the post-classification comparison (Lu et al.,
2004a). The simple change/non-change information is not sufficient for most applications,
however, detailed “from-to” change detection based on classification approaches require that
both images were accurately classified. In practice, the complex landscapes and environmental
conditions of the Amazon basin often result in poor land-cover classification accuracies,
especially for classification of vegetation types. On the other hand, collecting a large number
of field data is, in particular, costly and sometimes impractical in that region. Therefore,
applications of historical remote-sensing data for land-cover classifications are often difficult
because of lack of ground truth data that can be used as training samples. This problem often
induces difficulty in detecting land-cover “from-to” change. Therefore, it is necessary to
develop a method that does not require use of training sample data for the detailed land-cover
classifications with the historical remote-sensing data. The hybrid approach described in this
article meets this requirement and proved successful in vegetation change detection in this
study. This approach has some advantages over traditional change detection approaches, as no
training samples are required for detailed vegetation classification, detailed vegetation change
trajectories can be developed, and no strict requirements for radiometric and atmospheric
calibrations are required.

Conclusions
Traditional change detection approaches often require that the multitemporal images come
from the same sensor data acquired during similar seasons, but in the moist tropical regions of

Lu et al. Page 7

Photogramm Eng Remote Sensing. Author manuscript; available in PMC 2009 September 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the Amazon, acquisition of high-quality multitemporal images is often difficult, resulting in
the difficulty in selection of suitable change detection approaches. The hybrid approach
developed in this paper can be used for analyzing different sensor images for vegetation change
detection. The PCA data fusion approach can effectively extract the vegetation change
information, and the combination of image differencing and post-classification comparison
can indicate the vegetation change trajectories. This approach is especially valuable when same
sensor data and reference data are not available.
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Figure 1.
Location of the study area: Machadinho d’Oeste in northeastern Rondônia State, Brazil.
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Figure 2.
Strategy for vegetation change detection based on Landsat TM and SPOT HRG data. (Note:
MS: multispectral image, PAN: SPOT panchromatic image, and PCA: principal component
analysis)
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Figure 3.
Comparison of reflectance features (percentage) along TM wavelengths among major land-
cover types.
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Figure 4.
A rule-based approach for land-cover classification. (Note: NIR represents near-infrared, and
SWIR1 represents the shortwave infrared band, i.e., band 5 in TM data or band 4 in HRG data;
NDVI represents the normalized difference vegetation index; and t1 through t6 represent the
thresholds developed from sample plots.)
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Figure 5.
Image classification results using a rule-based approach: (a) Landsat TM image in 1998, and
(b) SPOT HRG image in 2003.
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Figure 6.
A comparison of change detection results: (a) TM band 5 image in 1998, (b) SPOT
panchromatic image in 2003, (c) band 5 image after data fusion, and (d) difference image
between fused band 5 and original TM band 5.

Lu et al. Page 15

Photogramm Eng Remote Sensing. Author manuscript; available in PMC 2009 September 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
Vegetation change/non-change detection image with majority rules on the image difference
between data fused image and corresponding TM image.
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Figure 8.
Change detection image based on TM and HRG data: (a) post-classification comparison
approach, and (b) the hybrid approach). (Note: NFV is non-forest vegetation, and NVL is non-
vegetation land) A color version of this figure is available at the ASPRS website:
www.asprs.org.
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Table 1
The Change Matrix Based on a Post-classification Comparison Approach

Forest Non-forest Vegetation Non-vegetation Land

Forest Unchanged forest Forest to non- forest vegetation Forest to non- vegetation land

Non-forest vegetation Unchanged non- forest vegetation Non-forest vegetation to non-
vegetation land

Non- vegetation land Bare soil to non- forest vegetation Unchanged non- vegetation land

Notes: Forest means mature forest; non-forest vegetation includes different stages of successional vegetation, agroforestry, perennial agriculture (e.g.,
coffee, rubber, or cacao plantation), and pastures; non-vegetation land includes urban or residential areas, roads, water, and bare soil
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Table 2
Definition of Vegetation Change Trajectories

Change Trajectory Definition

Forest degradation From mature dense forest in prior date to disturbed forest in late date

Forest improvement From less dense forest in prior date to denser forest in late date

Non-forest vegetation loss From more mature vegetation in prior date to less mature vegetation in late date

Non-forest vegetation gain From less mature vegetation in prior date to more mature vegetation in late date

Forest to non-forest vegetation From mature forest in prior date to non-forest vegetation types, such as pasture, perennial
plantations, successional vegetation, in late date

Forest to non-vegetation lands From mature forest in prior date to non-vegetation land, such as bare soil, infrastructure, or water
in late date

Non-forest vegetation to non-vegetation
lands

From non-forest vegetation, such as successional vegetation, agroforestry, or pasture, in prior date
to non-vegetation land such as bare soil, infrastructure, or water in late date

Non-vegetation land to non-forest
vegetation

From bare soil in prior date to non-forest vegetation, such as successionalvegetation, agroforestry,
or pasture, in late date
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