Maize Resistance to the Lesser Cornstalk Borer and Fall Armyworm In Brazil

P.A. Viana and P.E.O. Guimarães, EMBRAPA/CNPMS, Sete Lagoas-MG, Brazil.

Abstract

Maize, Zea mays, is an important cereal crop in Brazil. It is extensively grown throughout the country for food grain, feed, and fodder purposes. Among many factors, insects pests play a major role in limiting maize yields. The lesser cornstalk borer (LCB) and the fall armyworm (FAW) have been considered the most important field pests, being key pests in many of the areas where the crop is grown. The FAW and the LCB have been reared at EMBRAPA/CNPMS to undertake artificial infestation for large-scale studies, including screening for resistance. Several genetic materials were selected for resistance. Sources of resistance such as CMS 23 and CMS 24 to FAW, CMS 15 and CMS 454 to LCB are being used in breeding for resistance. The resistance mechanisms to FAW were studied on four selected maize genotypes. Larvae reared on CMS 14C required longer to develop to the pupal and adult stages and had reduced larval and pupal weights. The genotype Zapalote Chico had fewer larvae feeding on leaf sections than other genotypes tested. The analysis of a diallel cross indicated that gene action conditioning resistance to the FAW appears to be due to additive and non-additive effects.

Introduction

Maize, Zea mays, is an important cereal crop in Brazil. It is extensively grown throughout the country for food grain, feed, and fodder purposes. The total area under cultivation in the country during 1992-93 was 11.2 million hectares, with a production of 26.8 million tons of grain, an average yield of 2.4 t/ha (Carrieri et al. 1993). In Brazil, among many factors, insect pests play a major role in limiting maize yields. A list of insects attacking maize in Brazil is shown in Table 1. Among the insects attacking maize, the fall armyworm (FAW), Spodoptera frugiperda and the lesser cornstalk borer (LCB), Elasmopalpus lignosellus have been considered the most important field pests, being key pests in many of the areas where maize is grown.

Damage and Economic Importance

The FAW larvae attack maize at all stages, although the most serious damage occurs at the mid-whorl stage (Cruz 1980). According to Carvalho (1970), depending on the stage of the plant when the damage is done, the yield reduction ranges from 15 to 34%.

Table 1. Insects damaging maize in Brazil.

The LCB larva is a semi-subterranean feeder, usually attacking a seedling plant at or just below the soil surface. Larvae bore into the stem and during feeding, produce tunnels upward and downward from the entrance hole. Feeding usually kills the young plant. According to All et al. (1982), when plants are killed and desiccated, LCB larvae move to adjacent plants. Several

Scientific name	Common name	Pest status
Spodoptera frugiperda	Fall armyworm	***
Elasmopalpus lignosellus	Lesser cornstalk borer	***
Sitophilus sp	Weevils	***
Helicoverpa zea	Corn earworm	**
Diabrotica speciosa	Corn rootworm	**
Diatraea saccharalis	Sugarcane borer	N ** LNC Pm
Mocis latipes	utterent Sarap, P. 19	ers *philuity of d
Agrotis ipsilon	Black cutworm	ser doraganetto es
Rhapalosiphum madis	Corn leaf aphid	(soldniwe) (*) no
Deois flavopicta	Leaf hoppers	No. * Stand the
Scaptocoris castanea	404-814 (1.1.1.)	mine it Indian [.
Sitotroga cerealella	Angoumois grain moth	Be*nd N.C. Pag
Several species	Wireworms	ervices and not states
Several species	White grubs	VARIED DOS 1

*** Key pest; ** occasional; * secondary

Summer River and unter Charters in

plants may be killed by one larva in this way. Damage caused by this insect is reported to be from 20 to 50% of the planted area (Sauer 1939; Viana 1991) or even the entire crop (Jacobsen 1928).

Techniques for Mass Rearing, Artificial Infestations and Evaluation Procedures

The Maize and Sorghum National Research Center/EMBRAPA at Sete Lagoas, MG, Brazil, has mass reared FAW and LCB since the early 1980s, enabling the Institute to undertake artificial infestation for large-scale studies — including screening for resistance and developing biological, cultural and chemical control tactics for pest management programs.

Fall armyworm

The FAW is reared at EMBRAPA/ CNPMS on a modified black cutworm diet described by Reese et al. (1972) (Table 2). The moths lay eggs on paper napkins, placed into a oviposition cage (62 x 62 cm), which are cut into strips and placed in plastic jelly cups to be incubated at 28° C. After incubation, one small larva is transferred to an individual plastic jelly cup, containing the diet, and then sealed with flexiglas lids. The cups are placed into trays that hold 32 cups and are kept undisturbed until adult emergence. The adults are

Table 2. Ingredients for the FAW diet used at EMBRAPA/CNPMS.

Ingredients		Amount
Pinto beans	aporg ^{see}	333.0 g
Torula yeast		101.4 g
Wheat germ		158.4 g
Ascorbic acid		10.2 g
Methyl p-hidroxy be	nzoate	6.3 g
Sorbic acid		3.3 g
Agar		41.0 g
40% Formalin		8.3 ml
Water		2400.0 ml

transferred daily from cups to oviposition cages and are fed with sugar solution through a cotton wick in a 50 ml plastic jelly cup. Recently, we are testing split cell modules placed into the boxes (29 x 29 x 4 cm), as used at CIMMYT and described by Mihm (1989a), to rear FAW larvae.

Artificial infestation with FAW is done at EMBRAPA/CNPMS at the 4 to 5 fully expanded leaf stage. The technique used is similar to that described in detail by Mihm (1989b). The larval infestation of every plant to be screened is done with 30-40 hatched larvae mixed with maize cob grits, using a "bazooka" to deliver the neonate larvae into the plant whorl. Evaluation for resistance to leaf feeding is made 14 days after infestation using a visual leaf feeding damage scale varying from 0 to 9 as suggested by Davis and Williams (1989). For an initial screening of materials we usually plant one 10 m row where half of each row is protected with insecticide. Two replications are usually planted.

Table 3. Ingredients for the LCB diet used at EMBRAPA/CNPMS.

Ingredients	Amount		
Agar	40 g		
Water	1280 ml		
Pinto bean	420 g		
Water (hot)	1300 ml		
Yeast	128 g		
Wheat germ	200 g		
Mold inhibitor	10 ml		
Ascorbic acid	13 g		
Methyl paraben	8 g		
Sorbic acid	4 g		
40% formalin	8 ml		
55% linolenic acid	10 ml		
Tetracycline	1 capsule		
	(250 mg)		
Vanderzaant's vitamin mixture	5 g		
Mold inhibitor ingredients	dk bare		
Propionic acid	418 ml		
Phosphoric acid (conc.)	42 ml		
Water (dist.)	540 ml		

Lesser cornstalk borer

A modificiation of Burton's (1969) pinto bean diet cited by Chalfant (1975) (Table 3) is used to rear LCB larvae at EMBRAPA/CNPMS. The moths lay eggs singularly on napkins placed on the top and bottom of the oviposition cage (cylinder of 20 cm diam. x 20 cm). Napkins with eggs are placed inside a small plastic bag and kept at 28° C until hatch. Newly hatched larvae are mixed with fine (# 4) vermiculite and poured into plastic jelly cups containing diet. Larvae average 3 to 5 per cup using this method. Preformed trays holding 32 cups, are left undisturbed until adult emergence. The number of adults per oviposition cage is 30 pairs. The adult food (beer) is supplied through 4 medicine droppers inserted in the middle of the oviposition cage. The oviposition cage is maintained at 28° C with a 16 hour photoperiod.

Screening trials to evaluate maize germplasm for LCB resistance are conducted in the greenhouse. Ten maize seeds are planted in 5 L plastic pots. When the seedlings emerge, each pot is infested with 50 eggs. Plants attacked, number larvae alive and weight of larvae are recorded 15 days after infestation.

Genetic Sources of Resistance and Breeding Methodologies

In the mid-1980s research was intensified by EMBRAPA/CNPMS, with a large amount of indigenous and exotic germoplasm and elite lines being tested for resistance to FAW and LCB. The screening work identified several sources of resistance to these insect pests (Viana 1992a; 1992b). The materials selected are presented in Tables 4 and 5. During the last 8 years, many maize genotypes were infested and the subsequent leaf damage and percentage of plants alive were evaluated for resistance to FAW and LCB, respectively. Some material that appeared to sustain less damage than others and showed good agronomic traits was selected for breeding for resistance. Sources of resistance such as CMS 23 and CMS 14C to FAW, CMS 15 and CMS 454 to LCB are being used in breeding for resistance. A recurrent selection scheme and mass selection have been used to accumulate desirable genes for resistance to the FAW and LCB, respectively. A summary of the procedures of selection for resistance against these pests at EMBRAPA/CNPMS is presented in Table 6.

Mechanisms and Inheritance of Resistance

The resistance mechanisms to FAW have been studied in the laboratory,

greenhouse and field at EMBRAPA/ CNPMS. Four maize genotypes, CMS 23, CMS 14C, CMS 24 and Zapalote Chico were selected for study in the laboratory and greenhouse. Larvae reared on CMS 14C required longer to develop to the pupal and adult stages. Also, larvae reared on leaf tissue of CMS 14C presented reduced larval and pupal weights.

Both choice and non-choice tests were used to determine if resistant genotypes were less preferred by the larvae for

Table 4. Maize genotypes selected for resistance to FAW at EMBRAPA/CNPMS.

 Table 5. Maize genotypes selected for resistance to LCB at EMBRAPA/CNPMS.

Year	Genotypes	Damage range	Mean ratings	Year	Gend	otypes	g to: Dispice	Dama rang	ige je att	Plants acked (%)
1986/87	CMS 23	gainear	4.0	1986/87	CMS	454	a statisti	io tino a lis.	a chemic	42
	CMS 14C		5.4		CMS	15				42
	CMS 24		5.5		Baier	iv s				50
	Zapalote Chico	4.0 to 7.5	5.5		Zapa	lote Chico		42 to 1	100	50
1987/88	CMS 23		4.9	1987/88	RN 0	1				50
	CMS 24		4.9		BA II	I Tucson		50 to 1	100	50
	Zapalote Chico		4.1	1988/89	BA 6	0				50
	CMS 456		5.0		Guad	leloupe 16				50
	BA 03		5.2		SE 1	0		40 to 1	100	50
	SE 20		5.3	1989/90	CMS	472				30
	CMS 451		5.4		Jaliso	0 274		30 to 1	100	50
	SE 14		5.5	1990/91	Cate	to Colômbia	VII			40
	CMS 467	4.1 to 7.2	5.5		Coha	uila 56				50
1988/89	Amarillo Cristalino		1.1		CMS	15		40 to 1	100	50
	WP 1		1.1	1991/92	PB 1	3 Acc			1-198-	40
	RR 060		1.4		Zapa	lote Chico				42
	MG 05	1.1 to 3.7	1.5		PAG	VI - Moroti				45
1989/90	BR 108 Tuxpeño		5.5		EW 3	3151 V.S.C.		40 to 1	100	54
	Comp. Tuxpeño Veracruzano		5.4	1992/93	AC 8	4				45
	Mata Hambre X Guajira 314		5.5		Cent	ralmex J-VII	P			45
	Nõdzob Torê		4.8		Com	posto Jaíba	IV			45
	Oaxaca 250		5.5		Cate	to Prolífico I	Х			50
	Puerto Rico 5		5.0		Com	posto Cerra	do I			50
	WP 33		5.5		PB 1	1 SW Const		45 to 1	100	50
	Cuba 45		5.5	e al terna	10	8987	an University			
	WP 18		5.4							
	Zapalote Chico	4.8 to 7.0	5.3	101	id inter to	int we Mole	b WAR	s for the		al 2 alds
1990/91	077 R2		2.2	Table 6.	Schen	nes of sele	ection 1	for resista	ance use	ed to FAW
	Guatemala 786		2.5	and LCB	at EN	IBRAPA/C	NPMS.			
	Nõdzob Prê	4 G*	2.5		uitore oit	in Soft	Amou		×	aneioens
	Puerto Rico 13		2.5					Num	ber of	Cycles of
	Composto Arco Iris		2.5			Breeding		prog	enies	selection
	Guatemala 73		2.5	Populatio	n Pest	methods	Year	screened	selected	(1994)
	139 R2	2.2 to 5.5	2.5		=	50.0	156.4			៣ខេត្ត ខេត្តព័
1991/92/93	PB 11		4.4	CMS 14C	FAW	FS-S ₁	87/88	200	20	106 0141008
	WP 16		4.8	CMS 23	FAW	Inbreeding	88/89	200	20	ald-q 1 (dia
	Rep.Dominicana 248		5.2			Synthetics				
	Zapalote Chico		5.3	MIRT blo	FAW	FS-S ₁	91/92	180	35	2
	BA 22		5.5	CMS 15/						
	PA 008	4.4 to 7.0	5.5	CMS 454	LCB	Mass Sel.	90/91	1000	128	3

leeding than susceptible genotypes. The results demonstrated that the genotype Zapalote Chico had fewer larvae preferring to feed on leaf sections than other genotypes tested. An additional test was conducted to determine adult oviposition preference using the same genotypes. The genotype CMS 14C was less preferred for oviposition compared with the remaining genotypes.

A tolerance study was conducted in yield trials where performance under both infested and protected split plots was evaluated. The results presented in Table 7 show a few materials indicating some tolerance to FAW leaf feeding damage.

We have conducted only limited investigations into the inheritance of leaf-feeding resistance to the FAW. The analysis of a diallel cross of 10 populations (Table 8) grown under artificial infestation indicated that both general and specific combining ability were significant sources of variation (Guimarães and Viana 1994). Gene action conditioning resistance to FAW appears to be due to additive and nonadditive effects. The mean ratings of FAW damage on the 0 to 9 scale were 2.5 for crosses of resistant populations (Zapalote Chico x CMS 14C) and 4.35 for crosses between susceptible populations (CMS 01 x CMS 02).

Table 7. Maize genotypes showing tolerance to FAW at EMBRAPA/ CNPMS.

	Mean	Grain weight (g)			
Genotypes	rating	Infested	Protected		
Amarelo	is and d	ifferent st	ages in		
Sertão	6.9	2487	2125		
CMS 21	6.6	2313	1962		
Palha Roxa					
Mantena	6.2	2961	2534		
CMS 04	6.1	3474	3174		

Results obtained with 180 S₁ progenies of the MIRT population tested for resistance to the FAW showed a genetic heritability of 53% (superior limit) and 42% (low limit) (Viana and Guimaraes 1994), indicating a good range of genetic variability present in these materials which can be useful to a breeding program for resistance to this pest.

Conclusion

In summary, the plant resistance program to maize pests with emphasis on FAW and LCB at EMBRAPA/ CNPMS has been focussed on the following aspects:

- Locating new and better sources of resistance.
- Properly maintaining the resistant genotypes.
- Determining the mechanisms and inheritance of resistance.
- Developing suitable breeding methodologies for incorporating genetic resistance in agronomically suitable cultivars.

References

- All. J.H., W.A. Gardner, E.F. Suber, and B. Rogers. 1982. Lesser cornstalk borer as a pest of corn and sorghum. In A Review of Information on the Lesser Cornstalk Borer Elasmopalpus lignosellus, 33-42. The University of Georgia. Spec. Publ. N° 17.
- Carrieri. A. de P. et al. 1993. Prognóstico agrícola, 1993/94 algodão, amendoim, arroz, feijão, mandioca, milho, soja. *Informações econômicas*. São Paulo. 23(10): 78-85.

Carvalho. R.P.L. 1970. Danos. flutuação da população. controle e comportamento de *Spodoptera frugiperda* (J.C. Smith) e susceptibilidade de diferentes genótipos de milho em condições de campo. Tese de Doutoramento. ESALQ. São Paulo. Brasil.

Chalfant. R.B. 1975. A simplified technique of rearing the Lesser cornstalk borer (Lepidoptera:Phycitidae). *Journal Georgia Entomological Society*. 10: 33-37.

Table 8. Diallel cross of 10 population tested for resistance to FAW at EMBRAPA/CNPMS. 1990/91/92.

Constin Material	Mean	cca1	CCA 2
	rating	SCA	GLA
Zapalote Chico	3.2	mine n	-0.56
Z. Chico x CMS 01	3.1	-0.06	
Z. Chico x CMS 02	3.3	0.27	
Z. Chico x CMS 05	2.4	-0.53	
Z. Chico x CMS 06	3.2	0.19	
Z. Chico x CMS 11	2.7	-0.30	Meth
Z. Chico x CMS 14C	2.1	-0.90	
Z. Chico x CMS 15	2.1	-0.82	
Z. Chico x CMS 23	3.2	0.37	
Z. Chico x CMS 28	3.4	0.22	Eshu
CMS 01	4.2	b aonité	0.19
CMS 01 x CMS 02	4.3	0.57	
CMS 01 x CMS 05	3.4	-0.33	
CMS 01 x CMS 06	3.5	-0.21	
CMS 01 x CMS 11	3.9	0.15	
CMS 01 X CMS 14C	3.7	-0.10	
CMS 01 x CMS 15	3.6	-0.11	
CMS 01 x CMS 23	3.1	-0.52	
CMS 01 x CMS 28	3.9	0.02	0.57
CMS 02	3.5	0.40	0.57
CMS 02 x CMS 05	3.7	0.16	
CMS 02 X CMS 06	3.4	-0.23	
CMS 02 X CMS 11	3.7	0.03	
CMS 02 X CMS 14C	3.4	-0.21	
CIVIS U2 X CIVIS 15	3.7	0.12	
	3.2	-0.24	
CIVIS UZ X CIVIS 28	3.0	-0.19	0.01
	0.4	0.12	0.01
	3.4	-0.13	
	4.0	0.30	
CMC OF X CMC 15	3.1	-0.40	
CMC OF Y CMC 02	3.9	0.42	
	3.7	0.20	
	4.1	0.41	0.04
CMS 06 v CMS 11	3.7	0.50	0.04
	3.1	-0.50	
CMS 06 x CMS 15	37	0.14	
CMS 06 x CMS 23	4.0	0.53	
CMS 06 x CMS 28	3.8	0.02	
CMS 11	3.9	0.02	0.08
CMS 11 x CMS 14C	3.6	-0.04	0.00
CMS 11 x CMS 15	4.0	0.40	
CMS 11 x CMS 23	3.6	0.14	
CMS 11 x CMS 28	3.1	-0.67	
CMS 14C	4.0	0.01	0.08
CMS 14 x CMS 15	36	0.00	0100
CMS 14 x CMS 23	3.7	0.24	
CMS 14 x CMS 28	4.6	0.84	
CMS 15	3.6		-0.01
CMS 15 x CMS 23	3.3	0.13	
CMS 15 x CMS 28	3.4	-0.28	
CMS 23	3.0		-0.01
CMS 23 x CMS 28	3.5	-0.09	
CMS 28		3.8	0.21
Avg.	3.5		
LSD (0.050)	0.9		
Dp (G _i - G _i)			0.13
Dp (S _{ii} - Skl)		0.43	

¹ SCA Specific combining ability.

² GCA General combining ability.

Cruz. I. 1980. Impact of fall armyworm, Spodoptera frugiperda (Smith and Abbot. 1797). on grain yield in field corn. M.Sc. Thesis. Purdue University. W. Lafayette. IN.

- Davis. F.W., and W.P. Williams. 1989. Methods used to screen corn for and to determine mechanisms of resistance to the Southwestern corn borer and fall armyworm. In *Toward Insect Resistant Corn for the Third World: Proceedings of the International Symposium on Methodologies for Developing Host Plant Resistance to Corn Insects*, 101-108. Mexico D.F.: CIMMYT.
- Guimarães. P.E.O., and P.A. Viana. 1994. Estudo da herança da resistência de genótipos de milho ao ataque da lagarta-do-cartucho. *Spodoptera frugiperda. Rel. Tec. Anual EMBRAPA/ CNPMS.* Sete Lagoas. MG. Brasil. 201-202.
- Jacobsen. W.C. 1928. Report for 1927 of the Bureau of Plant Quarantine and Pest Control. Mon. Bull. California Dept. Agric. 16: 633-677.

- Mihm. J.A. 1989a. Mass rearing stem borers, fall armyworms, and corn earworms at CIMMYT. In Toward Insect Resistant Corn for th⁻ Third World: Proceedings of the International Symposium on Methodologies for Developing Host Plant Resistance to Corn Insects, 5-21. Mexico D.F.: CIMMYT.
- Mihm. J.A. 1989b. Evaluating corn for resistance to tropical stem borer, armyworms, and earworms. In Toward Insect Resistant Corn for the Third World: Proceedings of the International Symposium on Methodologies for Developing Host Plant Resistance to Corn Insects, 109-121. Mexico D.F.: CIMMYT.
- Reese. J.C. et al. 1972. A method for rearing black cutworms. *Journal of Economic Entomology* 65: 11047-1050.
- Sauer. H.F.G. 1939. Notas sobre Elasmopalpus lignosellus Zeller (Lep.: Pyr). seria praga dos cereais no Estado de São Paulo. Arq. Inst. Biol. 10: 199-206.

- Viana. P.A. 1991. Estimativa de perdas causadas pela lagarta-elasmo. *Elasmopalpus lignosellus.* em milho. *Rel. Tec. Anual EMBRAPA/CNPMS.* 1985-1987. Sete Lagoas. MG. Brasil. 85.
- Viana. P.A. 1992a. Identificação de fontes de resistência de milho ao ataque da lagarta-do-cartucho. Spodoptera frugiperda. Rel. Tec. Anual EMBRAPA/ CNPMS. 1988-1991. Sete Lagoas. MG. Brasil. 93-94
- Viana. P.A. 1992b. Identificação de fontes de resistência de milho ao ataque da lagarta elasmo. *Elasmopalpus lignosellus*. Rel. Tec. Anual EMBRAPA/CNPMS 1988-1991. Sete Lagoas. MG. Brasil. 93.
- Viana. P.A,. and P.E.O. Guimarães. 1994. Melhoramento da população - MIRT de milho para resistência a lagarta do cartucho Spodoptera frugiperda. In Congresso Nacional de Milho e Sorgo. 20, 139. Goiânia. GO. Brasil. Resumos.

inhéfitance of resistance. Levidoping suitable brieding méciadologics for incorporating seried: réfisiance in acronomically -alfable cultivan

(4) J.J., W. A. Gardner, F. F. Suber, and E. Rogers. 1982. Lesser compatible hores at a pestor copie and wrighting. In A A Autors of Information on the Lesser of Secondaria Equipser of Secondaria Equipser (2010). The University of Secondaria Spectral IV. 17.

2313 1982 Jamma Of Fearing the Design of Thatak outries.
 1. (Lypidoptera) hydroid with Jammi
 296 (2334) Gamyin Entorsubgrant Security. No. 33