Perspectivas para a Produção do Etanol Lignocelulósico

SIMPÓSIO ESTADUAL DE AGROENERGIA

Gildo Almeida da Silva

gildo@cnpuv.embrapa.br

Microbiologia Aplicada Centro Nacional de Pesquisa de Uva e Vinho/BG/RS

O Lecholo occamente maduro, mas nunca o trajeto

"We'll also fund additional research

in cutting-edges methods of producing ethanol,

not just from corn (bE=1,29:1), but from

wood chips and stalks or switchgrass"

"We'll also fund additional research

in cutting-edges methods of producing ethanol,

not just from corn (bE=1,29:1), but from

wood chips and stalks or switchgrass"

President

George W. Bush, 2006

"We'll also fund additional research

in cutting-edges methods of producing ethanol,

not just from corn (bE=1,29:1), but from

wood chips and stalks or switchgrass"

President
George
W.
Bush, 2006

Países europeus com o tamanho de um Estado brasileiro esboçam interesse no programa de etanol a partir de lignocelulose como um todo?

"We'll also fund additional research

in cutting-edges methods of producing ethanol,

not just from corn (bE=1,29:1), but from

wood chips and stalks or switchgrass"

President

George W. Bush, 2006

- Países europeus com o tamanho de um Estado brasileiro esboçam interesse no programa de etanol a partir de lignocelulose como um todo?
- Não

"We'll also fund additional research

in cutting-edges methods of producing ethanol,

not just from sugarcane (bE=1:3,24), but from

wood chips and stalks or switchgrass"

"We'll also fund additional research in cutting-edges methods of producing ethanol, not just from sugarcane (bE=1:3,24), but from wood chips and stalks or switchgrass"

Sinal

```
verde
do
governo brasileiro
```

"We'll also fund additional research
in cutting-edges methods of producing ethanol,
not just from sugarcane (bE=1:3,24), but from
wood chips and stalks or switchgrass"

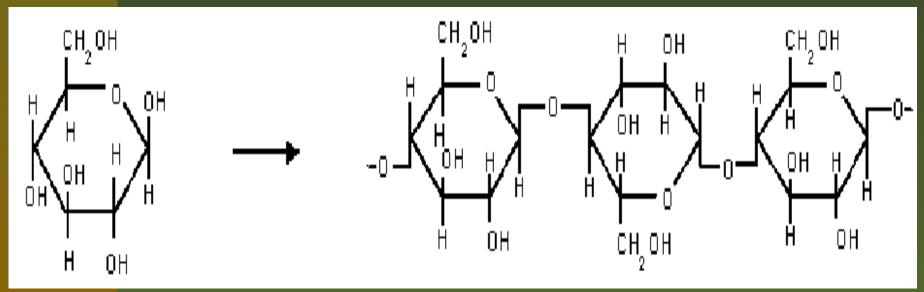
Sinal
verde
do
governo brasileiro

Países europeus com o tamanho de um Estado brasileiro esboçam interesse sobre alguma parte do programa de etanol a partir de lignocelulose?

"We'll also fund additional research in cutting-edges methods of producing ethanol, not just from sugarcane (bE=1:3,24), but from wood chips and stalks or switchgrass"

Sinal

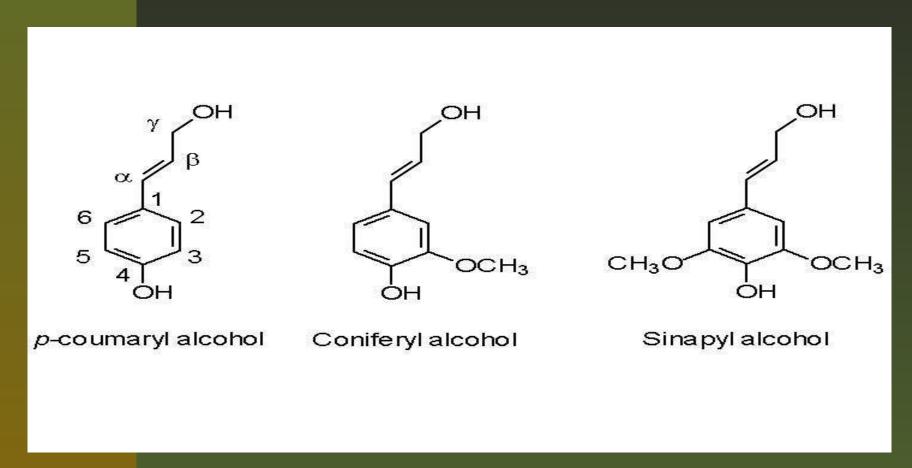
verde


do

governo brasile<u>iro</u>

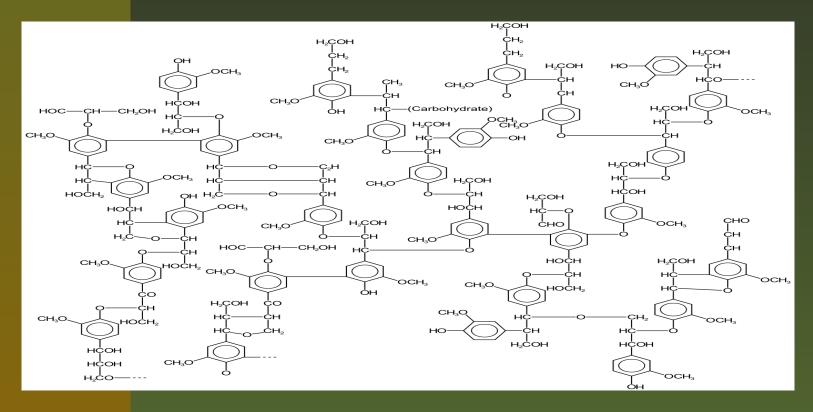
Países europeus com o tamanho de um Estado brasileiro esboçam interesse sobre alguma parte do programa de etanol a partir de lignocelulose?

Celulose - Polímero de glicose formado por ligações β-1,4 glicosídica. A fórmula empírica é (C₆H₁₀O₅)n, com um n mínimo de 200, normalmente com 300 a 700, podendo passar 7000. Nem sempre é a fração da lignocelulose mais abundante (fibra de milho=15%, palha de trigo=30% e coastal bermuda grass=25%)

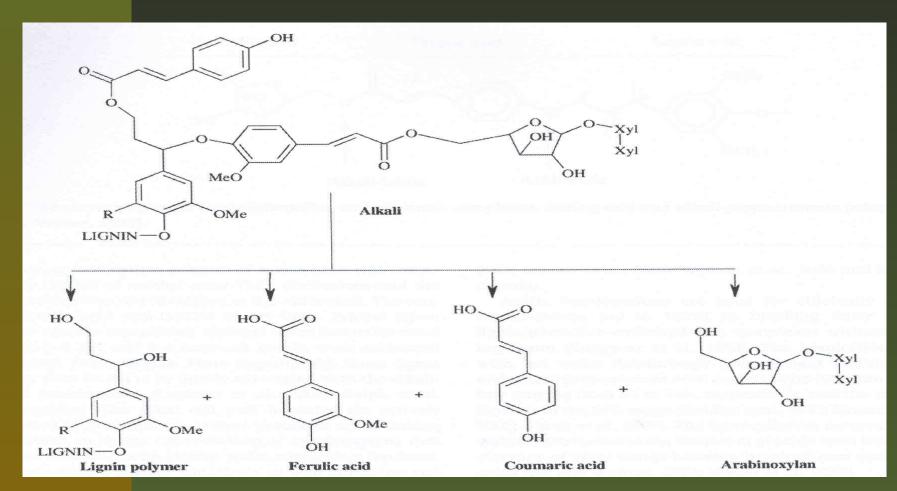


Hemiceluloses, diferentemente da celulose, não são quimicamente homogêneas e muitas vezes são a fração mais abundante da lignocelulose (fibra de milho=35%, palha de trigo=50% e coastal bermuda grass=35%): xiloglucanas, arabinoxilanas e glicomananas

- Hemiceluloses, diferentemente da celulose, não são quimicamente homogêneas e muitas vezes são a fração mais abundante da lignocelulose (fibra de milho=35%, palha de trigo=50% e coastal bermuda grass=35%): xiloglucanas, arabinoxilanas e glicomananas
- Pectina: homogalacturonanas, ramnogalacturonanas I e II e xilogalacturonanas


- Hemiceluloses, diferentemente da celulose, não são quimicamente homogêneas e muitas vezes são a fração mais abundante da lignocelulose (fibra de milho=35%, palha de trigo=50% e coastal bermuda grass=35%): xiloglucanas, arabinoxilanas e glicomananas
- Pectina: homogalacturonanas, ramnogalacturonanas I e II e xilogalacturonanas
- Proteoglucanas: proteínas arabinogalactanas, extensinas e proteínas ricas em prolina

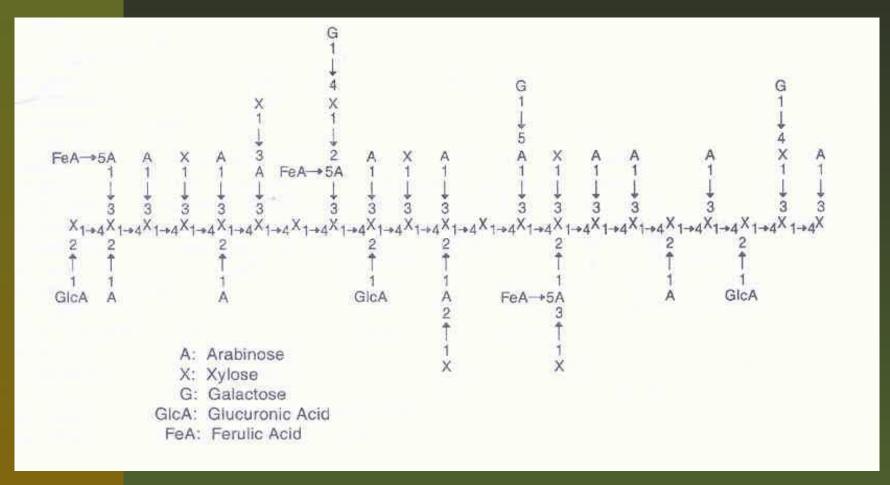
- Hemiceluloses, diferentemente da celulose, não são quimicamente homogêneas e muitas vezes são a fração mais abundante da lignocelulose (fibra de milho=35%, palha de trigo=50% e coastal bermuda grass=35%): xiloglucanas, arabinoxilanas e glicomananas
- Pectina: homogalacturonanas, ramnogalacturonanas I e II e xilogalacturonanas
- Proteoglucanas: proteínas arabinogalactanas, extensinas e proteínas ricas em prolina
- Lignina é de natureza hidrofóbica e formada pelos monolignóis provenientes da fenilalanina, está sempre associada a carboidratos e de composição única para cada espécie de planta.


Os monolignóis se incorporam na lignina na forma de fenilpropanóides: p-hidroxifenil (H), guaiacil (G) e siringil (S). Na lignina de milho há as três unidades

Lignina é formada pelos monolignóis que se incorporam na forma de fenilpropanóides: p-hidroxifenil (H), guaiacil (G) e siringil (S)

Lignina

Complexo Lignina/Carboidrato-LCC



(Buranov and Mazza, 2008)

LCC extraído de milho com ácido oxálico mostram que os ácidos ferúlico e p-cumárico estão ligados aos fragmentos de xilose

Heteroxilana

(Saha, 2003)

Pontos de ligação da heteroxilana com a lignina se fazem com o ácido ferúlico

 Agem na defesa contra herbívoros, ação microbiana, degradação enzimática, ação mecânica e dão estrutura à parede celular

- Agem na defesa contra herbívoros, ação microbiana, degradação enzimática, ação mecânica e dão estrutura à parede celular
- Servem de proteção contra aos raios ultravioletas

- Agem na defesa contra herbívoros, ação microbiana, degradação enzimática, ação mecânica e dão estrutura à parede celular
- Servem de proteção contra aos raios ultravioletas
- Interferem na liberação e hidrólise de polissacarídeos da parede celular

- Agem na defesa contra herbívoros, ação microbiana, degradação enzimática, ação mecânica e dão estrutura à parede celular
- Servem de proteção contra aos raios ultravioletas
- Interferem na liberação e hidrólise de polissacarídeos da parede celular
- A síntese de lingina S e de lingina G é regulada pela enzima ferulato-5-hidroxilase (F5H)

- Agem na defesa contra herbívoros, ação microbiana, degradação enzimática, ação mecânica e dão estrutura à parede celular
- Servem de proteção contra aos raios ultravioletas
- Interferem na liberação e hidrólise de polissacarídeos da parede celular
- A síntese de lingina S e de lingina G é regulada pela enzima ferulato-5-hidroxilase (F5H)
- Superexpressão da F5H aumenta a síntese de lingina S, diminiu a lignina G

A lignina se inicia com a síntese, no citosol, dos monolignóis glicosilados que têm como precursor a fenilalanina

- A lignina se inicia com a síntese, no citosol, dos monolignóis glicosilados que têm como precursor a fenilalanina
- As primeiras reações envolvem a via Fenilpropanóide

- A lignina se inicia com a síntese, no citosol, dos monolignóis glicosilados que têm como precursor a fenilalanina
- As primeiras reações envolvem a via Fenilpropanóide
- A ligação, no citoplasma, com a glicose torna os fenilpropanóides mais solúveis em água e menos tóxicos

- A lignina se inicia com a síntese, no citosol, dos monolignóis glicosilados que têm como precursor a fenilalanina
- As primeiras reações envolvem a via Fenilpropanóide
- A ligação, no citoplasma, com a glicose torna os fenilpropanóides mais solúveis em água e menos tóxicos
- A polimerização se inicia só depois que os fenlipropanóides glicosilados atravessam a membrana celular e a glicose é removida

- A lignina se inicia com a síntese, no citosol, dos monolignóis glicosilados que têm como precursor a fenilalanina
- As primeiras reações envolvem a via Fenilpropanóide
- A ligação, no citoplasma, com a glicose torna os fenilpropanóides mais solúveis em água e menos tóxicos
- A polimerização se inicia só depois que os fenlipropanóides glicosilados atravessam a membrana celular e a glicose é removida
- Ainda hoje, muito de seu anabolismo é pouco entendido

■ Definir a matéria prima → Não tem interesse aparente

- Definir a matéria prima → Não tem interesse aparente
- Otimizar a produção agrícola → Não tem interesse aparente

- Definir a matéria prima → Não tem interesse aparente
- Otimizar a produção agrícola → Não tem interesse aparente
- Modificar a estrutura da matéria prima → Atividade estratégica

- Definir a matéria prima → Não tem interesse aparente
- Otimizar a produção agrícola → Não tem interesse aparente
- Modificar a estrutura da matéria prima → Atividade estratégica
- Sistema hidrolítico → Atividade estratégica

- Definir a matéria prima → Não tem interesse aparente
- Otimizar a produção agrícola → Não tem interesse aparente
- Modificar a estrutura da matéria prima → Atividade estratégica
- Sistema hidrolítico → Atividade estratégica
- Processo fermentativo → Atividade estratégica

- Definir a matéria prima → Não tem interesse aparente
- Otimizar a produção agrícola → Não tem interesse aparente
- Modificar a estrutura da matéria prima → Atividade estratégica
- Sistema hidrolítico → Atividade estratégica
- Processo fermentativo → Atividade estratégica
- Sistema de destilação → Atividade estratégica

A xilose é o principal açúcar da hemicelulose

- A xilose é o principal açúcar da hemicelulose
- A xilose compreende de 30 a 40 % da biomassa renovável

- A xilose é o principal açúcar da hemicelulose
- A xilose compreende de 30 a 40 % da biomassa renovável
- LCC de palha de arroz contém 63,9 % de carboidratos com xilose representando 80,1%, arabinose 13%, glicose 4,3% e outros açúcares 2.6%

- A xilose é o principal açúcar da hemicelulose
- A xilose compreende de 30 a 40 % da biomassa renovável
- LCC de palha de arroz contém 63,9 % de carboidratos com xilose representando 80,1%, arabinose 13%, glicose 4,3% e outros açúcares 2.6%
- Sem manipulação genética, *Saccharomyces cerevisiae* não assimila nem a xilose e nem a arabinose

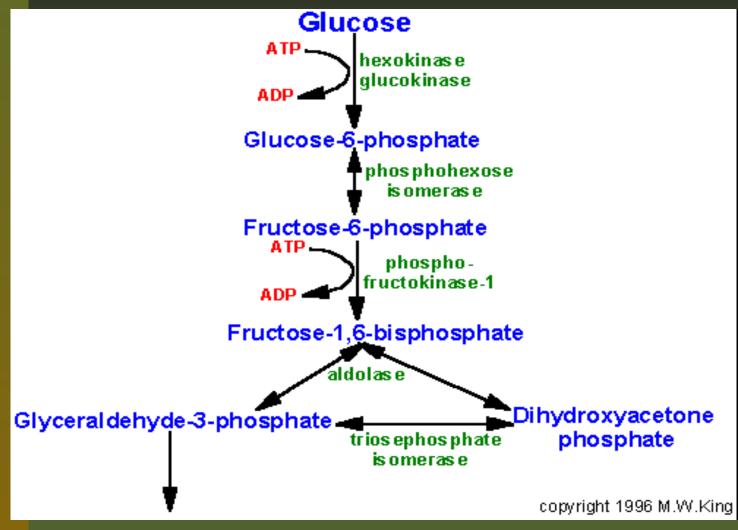
- A xilose é o principal açúcar da hemicelulose
- A xilose compreende de 30 a 40 % da biomassa renovável
- LCC de palha de arroz contém 63,9 % de carboidratos com xilose representando 80,1%, arabinose 13%, glicose 4,3% e outros açúcares 2.6%
- Sem manipulação genética, *Saccharomyces cerevisiae* não assimila nem a xilose e nem a arabinose
- O emprego de uma tecnologia não convencional, como transformar xilose em etanol, daria à <u>Inglaterra</u> uma liderança capaz de transformar países, com potencial significativo de produção agrícola, como o Brasil, tecnologicamente dependentes.

Utiliza uma faixa mais ampla de substrato e portanto garantem um $Y_{x/s}$ mais elevado

- Utiliza uma faixa mais ampla de substrato e portanto garantem um $Y_{x/s}$ mais elevado
- Apresenta uma alta taxa de "turnover"

- Utiliza uma faixa mais ampla de substrato e portanto garantem um $Y_{x/s}$ mais elevado
- Apresenta uma alta taxa de "turnover"
- Mostra um elevado valor de $Y_{p/s}$ e pouca produção de biomassa

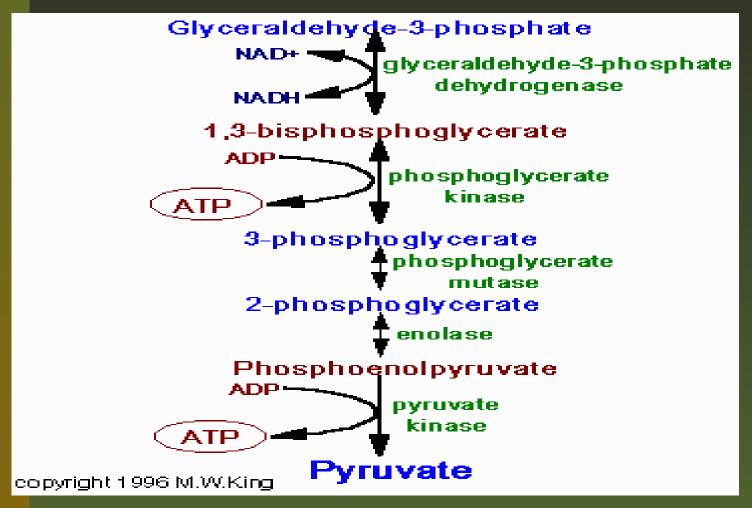
- Utiliza uma faixa mais ampla de substrato e portanto garantem um $Y_{x/s}$ mais elevado
- Apresenta uma alta taxa de "turnover"
- Mostra um elevado valor de $Y_{p/s}$ e pouca produção de biomassa
- Realiza fermentações rápidas devido à alta atividade metabólica


- Utiliza uma faixa mais ampla de substrato e portanto garantem um $Y_{x/s}$ mais elevado
- Apresenta uma alta taxa de "turnover"
- Mostra um elevado valor de $Y_{p/s}$ e pouca produção de biomassa
- Realiza fermentações rápidas devido à alta atividade metabólica
- Há pouco ou nenhum risco de contaminação

- Utiliza uma faixa mais ampla de substrato e portanto garantem um $Y_{x/s}$ mais elevado
- Apresenta uma alta taxa de "turnover"
- Mostra um elevado valor de $Y_{p/s}$ e pouca produção de biomassa
- Realiza fermentações rápidas devido à alta atividade metabólica
- Há pouco ou nenhum risco de contaminação
- Há maior facilidade de manter a anaerobiose

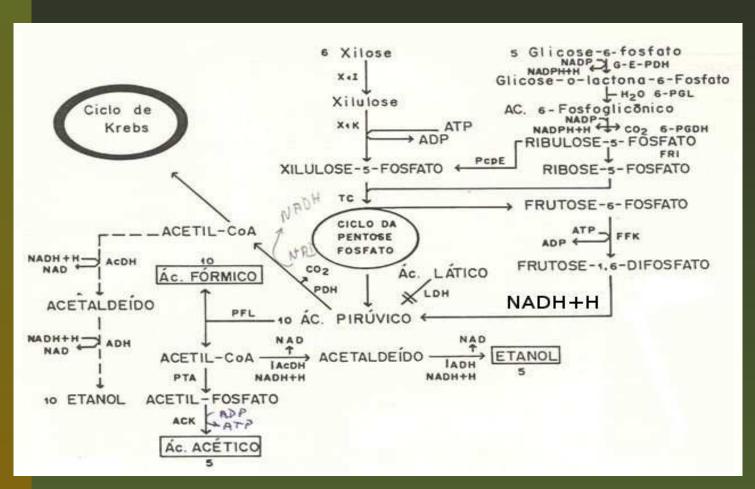
- Utiliza uma faixa mais ampla de substrato e portanto garantem um $Y_{x/s}$ mais elevado
- Apresenta uma alta taxa de "turnover"
- Mostra um elevado valor de $Y_{p/s}$ e pouca produção de biomassa
- Realiza fermentações rápidas devido à alta atividade metabólica
- Há pouco ou nenhum risco de contaminação
- Há maior facilidade de manter a anaerobiose
- Sendo um processo termofílico, fermentação e destilação poderiam ocorrer de forma quase simultânea

Via Glicolítica-Embden-Meyerhof-Fase Preparatória



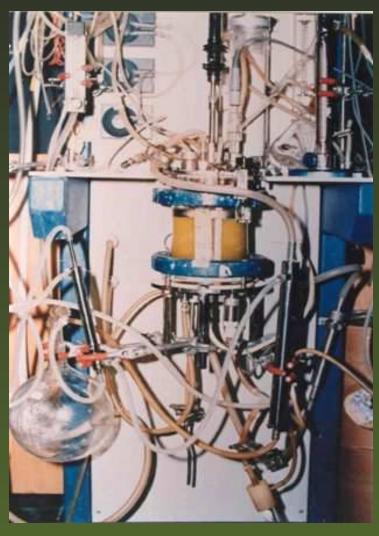
A xilose entra no ciclo da pentose fosfato, sai do ciclo como frutose-6-fosfato e segue a via glicolítica

até formar ácido pirúvico


gildo@cnpuv.embrapa.br – p. 16

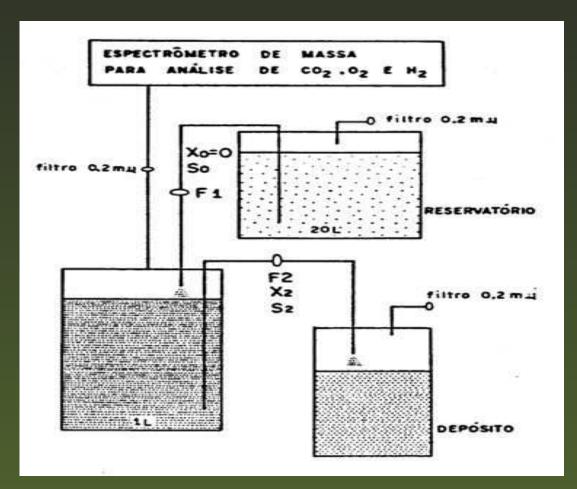
Via Glicolítica-Embden-Meyerhof

O NADH+H⁺ formado terá que ser transformado em NAD para que a outra molécula de gliceraldeído-3-fosfato seja oxidada até formar outra molécula de ácido pirúvico


Via PFL do B. stearothermophilus

A xilose sofre uma isomeria (xilose isomerase), se fosforilisa e entra no ciclo da pentose fosfato, sai do ciclo como frutose-6-fosfato e segue a via glicolítica até formar ácido pirúvico

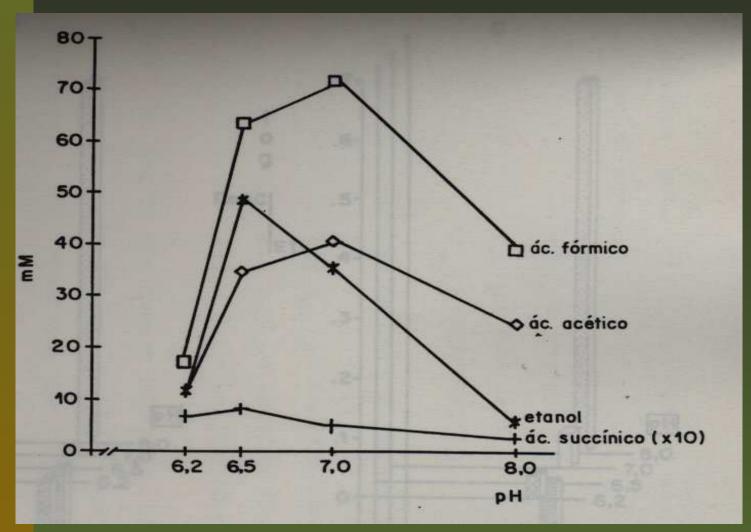
Biorreator Contínuo de Simples Estádio



Sistema Contínuo Simples.


Esboço de Biorreator Contínuo de Simples Estádio

Sistema Contínuo Simples Estádio.



Alteração do Metabolismo na Transição

Transição aerobiose → anerobiose → aerobiose para investigar a hipótese do envolvimento da PDH no processo anaeróbico. O teor de CO₂ deveria aumentar e não deminuir se a PDH ativa gildo@cnpuv.embrapa.br – p. 21

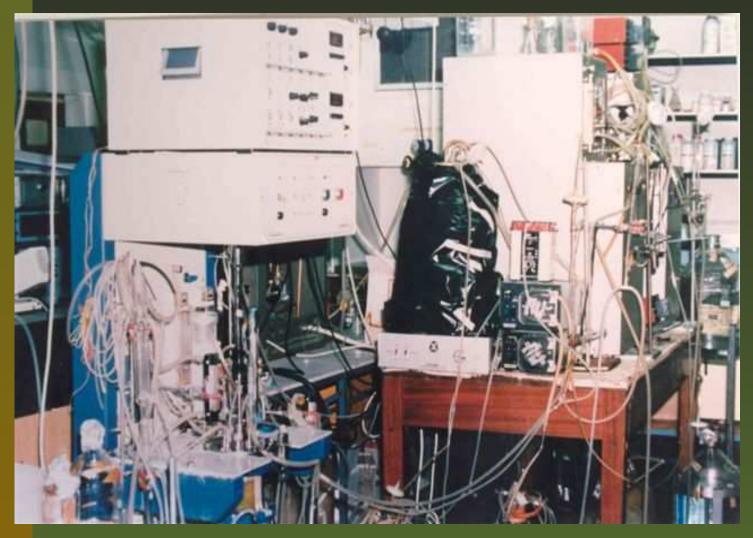
Evidência da Via PFL no Metabolismo de B. stearothermophilus

Produtos de fermentação em diferentes valores de pH. Xilose =66,607 mM, rpm = 200, D=0,1 h $^{-1}$, temperatura= 65 °C; anaerobiose= N_2 4 L.min $^{-1}$ gildo@cnpuv.embrapa.br - p. 22

■ Relação→Piruvato:NADH:Etanol:CO₂:formato

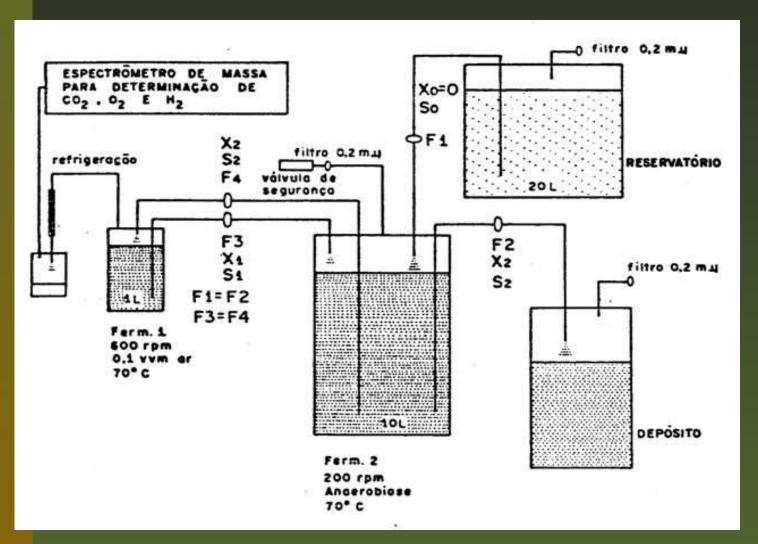
- Relação→Piruvato:NADH:Etanol:CO₂:formato
- PDC \rightarrow 1:1:1:1:0 \rightarrow processo eficiente

- Relação→Piruvato:NADH:Etanol:CO₂:formato
- PDC \rightarrow 1:1:1:1:0 \rightarrow processo eficiente
- PFL →2:2:1:0:2 → processo de produção de etanol é ineficiente por haver grande déficit de H⁺. Não há formação de CO₂



- Relação→Piruvato:NADH:Etanol:CO₂:formato
- PDC \rightarrow 1:1:1:1:0 \rightarrow processo eficiente
- PFL →2:2:1:0:2 → processo de produção de etanol é ineficiente por haver grande déficit de H⁺. Não há formação de CO₂
- PFL-FDH \rightarrow 1:1:1:1:0 \rightarrow processo eficiente

- Relação→Piruvato:NADH:Etanol:CO₂:formato
- PDC \rightarrow 1:1:1:1:0 \rightarrow processo eficiente
- PFL →2:2:1:0:2 → processo de produção de etanol é ineficiente por haver grande déficit de H⁺. Não há formação de CO₂
- PFL-FDH \rightarrow 1:1:1:1:0 \rightarrow processo eficiente
- PDH →1:1:0:0:0 → A enzima PDH exige NAD⁺. Existe excesso de NADH+H⁺. Em anaerobiose, esta via hipotética, para a formação de etanol, é improvável.


Biorreator de Duplo Estádio

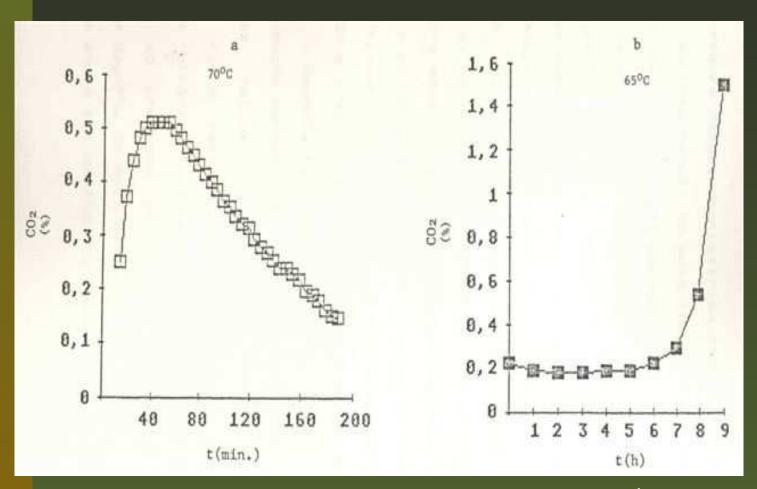
Biorreator de 1L acoplado a outro de 10L, operando no sistema contínuo

Esboço do Biorreator de Duplo Estádio

Biorreator de 1L acoplado a outro de 10L, operando no sistema contínuo

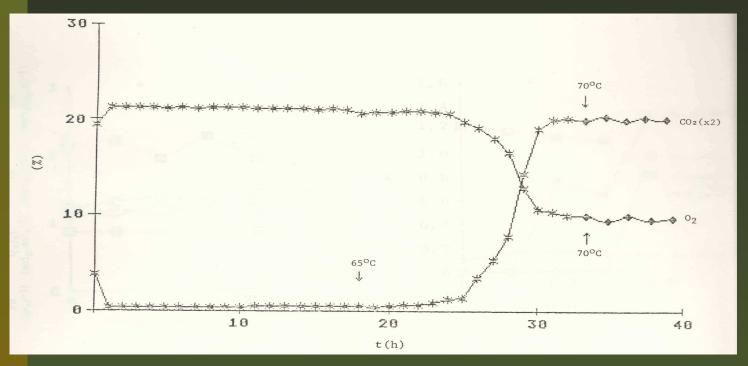
 US Patent 5182199 - Thermophilic ethanol production in a two-stage closed system

- US Patent 5182199 Thermophilic ethanol production in a two-stage closed system
- US Patent Issued on January 26, 1993

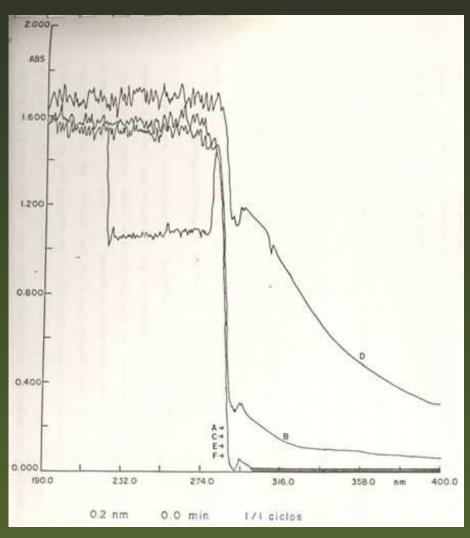

- US Patent 5182199 Thermophilic ethanol production in a two-stage closed system
- **US** Patent Issued on January 26, 1993
- B. S. Hartley, D. J. Leak, S. Amartey, P. Goddard, G. da Silva and R. San Martin (1987) "Fermentation Ethanol From Straw" In: Straw, A Valuable Raw Material. vol. 1. Paper Industries Research Association, Leatherhead, Surrey, UK

- US Patent 5182199 Thermophilic ethanol production in a two-stage closed system
- **US** Patent Issued on January 26, 1993
- B. S. Hartley, D. J. Leak, S. Amartey, P. Goddard, G. da Silva and R. San Martin (1987) "Fermentation Ethanol From Straw" In: Straw, A Valuable Raw Material. vol. 1. Paper Industries Research Association, Leatherhead, Surrey, UK
- Inventor(s): Hartley, Brian S.

- US Patent 5182199 Thermophilic ethanol production in a two-stage closed system
- **US** Patent Issued on January 26, 1993
- B. S. Hartley, D. J. Leak, S. Amartey, P. Goddard, G. da Silva and R. San Martin (1987) "Fermentation Ethanol From Straw" In: Straw, A Valuable Raw Material. vol. 1. Paper Industries Research Association, Leatherhead, Surrey, UK
- Inventor(s): Hartley, Brian S.
- Application: No. 742515 filed on 08/05/1991


Inibição da Atividade Metabólica do B. stearothermophilus

Sistema Contínuo Simples- Temp=70 °C; 0,1 vvm ar; 600 rpm; D= 0,240h⁻¹; meio de cultura contendo xilose-66,607 mM; CO₂ liberado foi monitorado por espectrometria de massa.


Recuperação da Atividade Metabólica

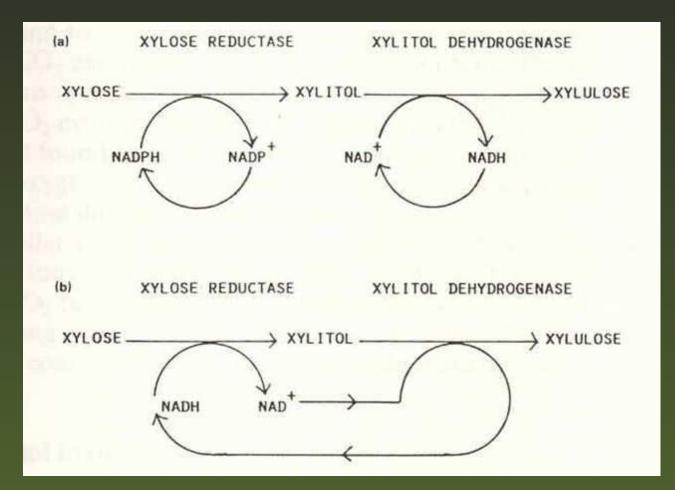
Condições: Temp=70 °C; 0,1 vvm ar; 600 rpm; D= 0,05h⁻¹; meio de cultura contendo xilose = 66,607 mM; pH= 6,5; O_2 e CO_2 monitorados por espectrometria de massa. Quebra do regime: pH 6,5 \rightarrow 4,9. Quando o CO_2 atingiu 1,85%, o pH 4,9 \rightarrow 6,5, mantendo-se a temperatura de 70°C por 18 horas. A temperatura foi alterada: 70°C \rightarrow 65°C até o regime. Após atingir o regime a temperatura de trabalho foi restabelecida: 65°C \rightarrow 70°C

Temperatura e a Reação da Xilose com Componentes do Meio de Cultura

Condições: Sem aquecimento → A (xilose+Sal-1), C (xilose+ meio de cultura), E (xilose+Sal-2); Com

aquecimento a $70^{\circ}\text{C} \rightarrow \text{B}$ (xilose+Sal-1), D (xilose+ meio de cultura), F (xilose +Sal-2) gildo@cnpuv.embrapa.br - p. 29

Temperatura e a Reação da Xilose



Aquecimento por 24h a 70°C - Xilose e meio; Sem aquecimento - Xilose e meio; Aquecimento por 24h

a 70°C - Xilose e meio

gildo@cnpuv.embrapa.br - p. 30

Destino da Xilose em Leveduras

(Berry and Brown, 1987)

(a) Leveduras que não fermentam anaerobicamente a xilose (*Candida utilis*) ou exibem efeito Custer (*Pachysolen tannophilus*). (b) Leveduras que fermentam anaerobicamente a xilose (*Candida sehatae*,

Emorapa

Pichia stipitis

São positivas e relevantes porque:

 Está se trabalhando com a maior fonte pronta e biologicamente protegida de energia da natureza

- Está se trabalhando com a maior fonte pronta e biologicamente protegida de energia da natureza
- O clima e a extensão territorial brasileiras oferecem condições para a exploração de diversas matérias primas

- Está se trabalhando com a maior fonte pronta e biologicamente protegida de energia da natureza
- O clima e a extensão territorial brasileiras oferecem condições para a exploração de diversas matérias primas
- O Brasil possui Centros de Pesquisa com tradição em melhoramento genético de plantas e nos mais variados aspectos que envolvem sistemas de produção agrícola.

São positivas e relevantes porque:

O Brasil já possui estruturas fermentativas consistentemente instaladas, utilizando fontes não-lignocelulósicas com bE positivo, que, se acopladas às novas tecnologias, viabilizarão a transformação de lignocelulose em etanol

- O Brasil já possui estruturas fermentativas consistentemente instaladas, utilizando fontes não-lignocelulósicas com bE positivo, que, se acopladas às novas tecnologias, viabilizarão a transformação de lignocelulose em etanol
- Reduz a dependência por fontes não renováveis (petróleo) de energia

- O Brasil já possui estruturas fermentativas consistentemente instaladas, utilizando fontes não-lignocelulósicas com bE positivo, que, se acopladas às novas tecnologias, viabilizarão a transformação de lignocelulose em etanol
- Reduz a dependência por fontes não renováveis (petróleo) de energia
- Cria independência da única e atual fonte renovável não-lignocelulósica (sacarose) de combustível líquido

São positivas e relevantes porque:

Expande o período de produção industrial de etanol

- Expande o período de produção industrial de etanol
- A matéria prima é, na sua maioria, a parte não comestível da planta e ainda é uma fonte de energia limpa, barata e confiável

- Expande o período de produção industrial de etanol
- A matéria prima é, na sua maioria, a parte não comestível da planta e ainda é uma fonte de energia limpa, barata e confiável
- A liderança no uso desta matéria prima tem impacto sobre o crescimento econômico

- Expande o período de produção industrial de etanol
- A matéria prima é, na sua maioria, a parte não comestível da planta e ainda é uma fonte de energia limpa, barata e confiável
- A liderança no uso desta matéria prima tem impacto sobre o crescimento econômico
- Envolve segurança nacional no que se refere à energia

- Expande o período de produção industrial de etanol
- A matéria prima é, na sua maioria, a parte não comestível da planta e ainda é uma fonte de energia limpa, barata e confiável
- A liderança no uso desta matéria prima tem impacto sobre o crescimento econômico
- Envolve segurança nacional no que se refere à energia
- Tem compromissos com o ambiente por estar inserido no ciclo do carbono

 Não acreditar em milagres, mas na pesquisa séria e aplicada sem vínculo com o nervosismo do dólar ou da bolsa de valores ou ainda do preço do barril de petróleo

- Não acreditar em milagres, mas na pesquisa séria e aplicada sem vínculo com o nervosismo do dólar ou da bolsa de valores ou ainda do preço do barril de petróleo
- Assumir de forma corajosa e persistente os desafios que nos são impostos pela complexidade da matéria prima

- Não acreditar em milagres, mas na pesquisa séria e aplicada sem vínculo com o nervosismo do dólar ou da bolsa de valores ou ainda do preço do barril de petróleo
- Assumir de forma corajosa e persistente os desafios que nos são impostos pela complexidade da matéria prima
- Definir barreiras e desafios inerentes à transformação da lignocelulose em etanol

- Não acreditar em milagres, mas na pesquisa séria e aplicada sem vínculo com o nervosismo do dólar ou da bolsa de valores ou ainda do preço do barril de petróleo
- Assumir de forma corajosa e persistente os desafios que nos são impostos pela complexidade da matéria prima
- Definir barreiras e desafios inerentes à transformação da lignocelulose em etanol
- Determinar os meios para acelerar as soluções

- Não acreditar em milagres, mas na pesquisa séria e aplicada sem vínculo com o nervosismo do dólar ou da bolsa de valores ou ainda do preço do barril de petróleo
- Assumir de forma corajosa e persistente os desafios que nos são impostos pela complexidade da matéria prima
- Definir barreiras e desafios inerentes à transformação da lignocelulose em etanol
- Determinar os meios para acelerar as soluções
- Silêncio: mostre a chegada, mas não o trajeto

importante para a proteção intelectual

e para impedir a evasão em cadeia

 Os açúcares da lignocelulose estão inteligentemente fechados num polímero complexo

- Os açúcares da lignocelulose estão inteligentemente fechados num polímero complexo
- Esta estrutura foi estrategicamente desenhada para resistir às degradações biológicas e químicas

- Os açúcares da lignocelulose estão inteligentemente fechados num polímero complexo
- Esta estrutura foi estrategicamente desenhada para resistir às degradações biológicas e químicas
- A base da conversão da lignocelulose em etanol está relacionada com a compreensão das estruturas químicas e físicas da parede celular e ainda com o conhecimento de fisiologia microbiana

- Os açúcares da lignocelulose estão inteligentemente fechados num polímero complexo
- Esta estrutura foi estrategicamente desenhada para resistir às degradações biológicas e químicas
- A base da conversão da lignocelulose em etanol está relacionada com a compreensão das estruturas químicas e físicas da parede celular e ainda com o conhecimento de fisiologia microbiana
- Envolve, portanto, o entendimento da síntese e da desconstrução da parede celular e das relações entre vias metabólicas microbianas

- Os açúcares da lignocelulose estão inteligentemente fechados num polímero complexo
- Esta estrutura foi estrategicamente desenhada para resistir às degradações biológicas e químicas
- A base da conversão da lignocelulose em etanol está relacionada com a compreensão das estruturas químicas e físicas da parede celular e ainda com o conhecimento de fisiologia microbiana
- Envolve, portanto, o entendimento da síntese e da desconstrução da parede celular e das relações entre vias metabólicas microbianas
- Com estes conhecimentos, cultivares especificamente designadas para a produção de biocombustível podem ser obtidas

Fases para o Uso da Lignocelulose

Fases para o Uso da Lignocelulose

- Pesquisa
- Implantação do Pacote Tecnológico

Fases para o Uso da Lignocelulose

- Pesquisa
- Implantação do Pacote Tecnológico
- Integração entre Sistemas

Na escolha da matéria prima deve-se ter em mente:

- Na escolha da matéria prima deve-se ter em mente:
 - Sustentabilidade

- Na escolha da matéria prima deve-se ter em mente:
 - Sustentabilidade
 - Conhecimento agronômico da matéria prima

- Na escolha da matéria prima deve-se ter em mente:
 - Sustentabilidade
 - Conhecimento agronômico da matéria prima
 - Economicidade nos processos de colheita e transporte

- Na escolha da matéria prima deve-se ter em mente:
 - Sustentabilidade
 - Conhecimento agronômico da matéria prima
 - Economicidade nos processos de colheita e transporte
 - O sistema de hidrólise deve ser feita preferencialmente por ação enzimática, resultando em açúcares de 5 e 6 carbonos prontamente assimiláveis e lignina. A mistura não deve conter inibidores

- Na escolha da matéria prima deve-se ter em mente:
 - Sustentabilidade
 - Conhecimento agronômico da matéria prima
 - Economicidade nos processos de colheita e transporte
 - O sistema de hidrólise deve ser feita preferencialmente por ação enzimática, resultando em açúcares de 5 e 6 carbonos prontamente assimiláveis e lignina. A mistura não deve conter inibidores
 - Os açúcares devem ser convertidos em etanol, utilizando microrganismos que apresentem vias metabólicas adequadas

- Na escolha da matéria prima deve-se ter em mente:
 - Sustentabilidade
 - Conhecimento agronômico da matéria prima
 - Economicidade nos processos de colheita e transporte
 - O sistema de hidrólise deve ser feita preferencialmente por ação enzimática, resultando em açúcares de 5 e 6 carbonos prontamente assimiláveis e lignina. A mistura não deve conter inibidores
 - Os açúcares devem ser convertidos em etanol, utilizando microrganismos que apresentem vias metabólicas adequadas
 - Os processos devem ser integrados e consolidados para reduzir custos

Implantação do Pacote Tecnológico

Criação de uma nova geração de matérias primas com:

Implantação do Pacote Tecnológico

- Criação de uma nova geração de matérias primas com:
 - Sustentabilidade, produtividade agrícola e composição química melhoradas

Implantação do Pacote Tecnológico

- Criação de uma nova geração de matérias primas com:
 - Sustentabilidade, produtividade agrícola e composição química melhoradas
 - Acoplamento adequado aos processos de hidrólise e de conversão de açúcares em etanol por sistemas biológicos novos de transformação

Envolve a incorporação de tecnologias competitivas:

- Envolve a incorporação de tecnologias competitivas:
 - Novas matérias primas especificamente modificadas e adpatadas para um determinado agrosistema

- Envolve a incorporação de tecnologias competitivas:
 - Novas matérias primas especificamente modificadas e adpatadas para um determinado agrosistema
 - Novos e melhorados processos enzimáticos destinados à hidrólise

- Envolve a incorporação de tecnologias competitivas:
 - Novas matérias primas especificamente modificadas e adpatadas para um determinado agrosistema
 - Novos e melhorados processos enzimáticos destinados à hidrólise
 - Incorporação de sistemas robustos de fermentação

- Envolve a incorporação de tecnologias competitivas:
 - Novas matérias primas especificamente modificadas e adpatadas para um determinado agrosistema
 - Novos e melhorados processos enzimáticos destinados à hidrólise
 - Incorporação de sistemas robustos de fermentação
 - Emprego de sistemas altamente integrados para reduzir custos, acelerar e simplificar a transformação do açúcar em etanol

