XXXII Congresso Brasileiro de Ciência do Solo

"Torta de Filtro e Turfa na Mitigação de Solo Contaminado por Metais Pesados e Boro e o Uso do Girassol como Fitoextrator"

GISELI CASAGRANDE (1); <u>CLEIDE APARECIDA DE ABREU</u> (2); ADRIANA MARLENE MORENO PIRES (3); MARIANA BASSETTO GABOS (4)

RESUMO - A maioria das plantas testadas para remediar áreas contaminadas tem sido para fins alimentares ou florestais. Hoje, o interesse aumentou para culturas energéticas, cuja biomassa poderá ser utilizada para biodiesel, biogás ou calor. Os objetivos experimento foram avaliar o potencial remediador de plantas de girassol cultivadas em um Neossolo Litólico contaminado com metais pesados e boro e o efeito da aplicação de compostos orgânicos na fitodisponibilidade de metais e de boro. As doses de compostos orgânicos, torta de filtro e turfa, foram de 0,0, 20; 40 e 80 t ha⁻¹ de C orgânico equivalente em, g por vaso, a: 0,0, 37,4, 74,8 e 112,2 para a torta e 0,0, 60,5, 121,0 e 181,5 para a turfa. Plantas de girassol foram crescidas até o estádio de florescimento. Amostras de solo bem como as da parte aérea (caule e flor) e raízes das plantas de girassol foram submetidas às análises químicas para determinação de macro e micronutrientes e metais pesados. As plantas não apresentaram sintomas de toxidez. A produção de massa seca de todas as partes da planta aumentou com o aumento da adição de matéria orgânica, sendo que a adição de torta de filtro foi o tratamento mais efetivo. A aplicação de matéria orgânica não influenciou a concentração de B e de metais pesados disponíveis no solo, mas os valores estavam altos. Concluiu-se que o girassol tem potencial para ser cultivado na área contaminada estudada, além de ser considerado fitoextrator de B.

Palavras-Chave: (boro; fitorremediação; girassol; metal pesado)

Introdução

Até o momento, a maioria das plantas testadas para remediar áreas contaminadas tem sido para fins alimentares ou florestais. Hoje, o interesse aumentou para culturas energéticas, cuja biomassa poderá ser utilizada para biodiesel, biogás ou calor. Assim, essa tecnologia torna-se mais ecologicamente correta — despolui áreas e contribui para o uso de energia menos poluente ao ambiente.

Em áreas contaminadas com concentrações fitotóxicas de metais pesados o sucesso da fitorremediação poderá ser comprometido por causa da redução no crescimento. Uma solução pode ser a imobilização parcial dos contaminantes do solo. Materiais orgânicos podem ser utilizados para imobilizar boro e metais pesados devido a sua capacidade de complexar esses elementos, diminuindo então, as suas disponibilidades, permitindo o crescimento das plantas em áreas contaminadas.

Portanto, os objetivos deste experimento foram avaliar o desempenho do girassol (Helianthus annus), planta bioenergética, como remediadora de áreas contaminadas com metais pesados e boro e o efeito da aplicação de compostos orgânicos na disponibilidade de metais e de boro para o girassol.

Material e Métodos

Amostras coletadas na camada de 0-20 cm de profundidade de um Neossolo Litólico, Piracicaba, SP, contaminado com metais pesados e B foram secas e caracterizadas quimicamente (Tabela 1). A contaminação por metais pesados e boro nesta área foi causada pela aplicação ilegal de resíduo de sucata metálica, com intuito de suprir as necessidades de micronutrientes para a cultura da cana de açúcar. Após a interdição da área, realizou-se a aplicação de 10 t ha¹ de calcário dolomítico, que foi incorporado ao solo por meio de gradagem, com a finalidade de reduzir a solubilidade dos metais e a difusão desses no ambiente [1].

O delineamento experimental foi inteiramente casualizado em esquema fatorial, 2 compostos orgânicos (turfa e torta de filtro) X 4 doses (0, 20, 40 e 80 t ha⁻¹ de C orgânico, equivalente em, g por vaso, a: 0,0, 37,4, 74,8 e 112,2 para a torta e 0,0, 60,5, 121,0 e 181,5 para a turfa),4 repetições.

A torta de filtro foi seca em estufa a 40° C, depois peneirada em malha 2,0 mm e a turfa não recebeu preparo específico (Tabelas 2 e 3). Os materiais orgânicos foram misturados ao solo e homogeneizados, permanecendo incubados por 20 dias.

Decorridos os 20 dias, foi adicionado o equivalente a 200 mg dm⁻³ de P, na forma de superfosfato triplo, homogeneizando-os, permanecendo incubados por

Apoio financeiro: FAPESP

⁽¹⁾ Mestranda em Gestão de Recursos Agroambientais - IAC ⊠ giselicasa@hotmail.com

⁽²⁾ Pesquisadora Instituto Agronômico - C.P.D. em Solos e Recursos Ambientais

⁽³⁾Pesquisadora EMBRAPA Meio Ambiente, Jaguariúna, SP

⁽⁴⁾ Doutoranda em Solos e Nutrição de Plantas - USP/ESALQ

mais 15 dias. Decorrido esse período, retirou-se uma amostra de solo para a determinação dos teores totais (USEPA 3051) e disponíveis de metais pesados DTPA pH 7,3 e boro [2].

A parcela experimental correspondeu a um vaso com capacidade de 5 L contendo 3 plantas de girassol, *Helianthus annus*. Durante a condução do ensaio, em casa de vegetação, fez se o suprimento de água mantendo-se 60% da capacidade de retenção de água no solo, por meio de pesagens diárias dos vasos. O nitrogênio, 30 mg kg⁻¹ de N por aplicação quinzenal, foi adicionado na forma de nitrato de amônio.

O corte do girassol foi realizado aos 65 dias da semeadura, após 80% do florescimento das plantas, separando flor, caule + folhas e raiz. As amostras foram lavadas, secas, pesadas, moídas e submetidas à digestão para quantificação dos teores de macro, micronutrientes e metais pesados.

Os resultados analíticos foram submetidos à análise de variância. No caso do teste F significativo foi aplicado teste de Tukey a 5% para comparação de médias entre os materiais orgânicos e análise de regressão para doses (modelos linear ou quadrático).

Índice de translocação (IT), fator de transferência (F), eficiência (E) dos tratamentos em remover Cu, Zn e B do solo e o tempo (T) necessário para o girassol remover 90% desses elementos do solo foram calculados.

Resultados

A aplicação dos tratamentos não teve influência nos teores totais, exceto para o P, Zn e Cu. Para o P e Zn houve efeito do tipo de material orgânico aplicado, sendo que na presença da torta de filtro os teores estavam bem mais elevados. Os teores médios, em mg kg⁻¹, foram de: 3117 (torta) e 2881 (turfa) para o Zn e de 426 (torta) e 322 (turfa) para o P. O efeito da aplicação de doses de torta de filtro sobre o teor total de P e Zn foi linear crescente.

Os teores disponíveis de P, K, Ca e Cu foram afetados pelos tratamentos (Tabela 4), sendo maiores pela adição de torta, exceção para o Cu. Chama atenção o comportamento do P-resina, onde no tratamento que recebeu torta de filtro foi de 106 mg kg⁻¹ contra os 41 mg kg⁻¹ na turfa. Na presença da torta de filtro, o teor de P resina aumentou linearmente com o aumento da dose de torta de filtro.

A produção de massa seca da raiz, caule e flor do girassol foi influênciada pelos tratamentos, sendo que a massa seca da raiz foi significativa somente para o tipo de material orgânico; a massa seca da flor foi significativa para o tipo de material orgânico e interação; e o caule para todas as causas de variação (Tabela 5 e Figura 1). As produções de massa seca, g por vaso, foram respectivamente, para torta de filtro e turfa, de: caule – 15,46 e 13,97; flor – 4,35 e 3,23; raiz 2,63 e 2,15.

O B, Cu e Zn foram os elementos que mais se destacaram em relação à concentração na parte aérea. O teor médio destes no caule naqueles tratamentos que

receberam torta de filtro e turfa foram, respectivamente, em mg kg⁻¹, de: 384 e 373 para o B; 304 e 289 para o Cu e de 338 e 473 para o Zn. No caule + flor a concentração, em mg kg⁻¹, foi de: 506,3 (torta) e 500,6 (turfa) para B e 431(torta) e 597 (tufa) para o Zn. Nas raízes, a concentração de B e Zn foram respectivamente, em mg kg⁻¹, de: (36,9 e 233,8 – torta) e (42 e 194,1 – turfa).

Discussão

Sintomas visuais de toxicidade de boro ou metais pesados não foram observados durante a condução do ensaio, embora as plantas de girassol não estivessem vigorosas. Comparando os valores totais de metais pesados em solos (Tabela 1) com àqueles valores orientadores para o Estado de São Paulo [3] era de se esperar sintomas visuais de toxicidade característicos de Zn e de Pb, pois os valores desses metais estavam acima do valor utilizado pela Cetesb para a intervenção industrial 2000 e 300 mg kg⁻¹, respectivamente. Os teores de Cr, Cd e Ni estavam, respectivamente, próximos aos valores de prevenção (75 mg kg⁻¹) e intervenção agrícola (3 mg kg⁻¹ e 70 mg kg⁻¹).

O aumento no teor total de Zn e P pela aplicação de torta é justificado pelos teores totais desses elementos nos materiais orgânicos. Conforme Espinoza & Oliveira [4] a torta de filtro, resíduo proveniente do processo de produção da cana-de-açúcar, é rico em C orgânico, Ca, P e Zn, principalmente. Os dados aqui apresentados corroboram com esta afirmação, onde a aplicação de torta de filtro, rica em P (Tabela 2) deve ter contribuído para o aumento de P total no solo. O teor de P na torta de filtro foi de, aproximadamente, 13 vezes maior que aquele da turfa (Tabela 2).

Embora a aplicação de matéria orgânica não tenha influenciado a concentração de B e de metais pesados disponíveis no solo, chama atenção para os teores de B, Cu e Zn (Tabela 1), bem elevados conforme Abreu et al. [5]. Acima dos valores, em mg kg⁻¹, de: 3,0 para B (água quente); 15 para Cu (DTPA); e 130 (DTPA) para Zn é de se esperar problemas de toxicidade às plantas (Abreu et al., 2005). Conforme Raij et al. [6] o valor máximo, em mg kg⁻¹, da faixa adequada de B, Cu e Zn nas folhas de girassol é de 100, 100 e 80, respectivamente.

A adição de torta de filtro promoveu maior produção de massa seca para a raiz, caule e flor (Figura 1). Comparando a composição química dos materiais orgânicos, teores totais (Tabela 2) e disponíveis (Tabela 3), verifica-se que a torta de filtro é um material mais rico quimicamente e isto deve ter contribuído para a maior produção de massa seca do caule, flor e raiz. Baseando-se na análise do solo após a incubação dos materiais orgânicos e antes do plantio do girassol (Tabela 4), verifica-se que pela aplicação da torta de filtro houve um aumento na disponibilidade de P-resina, sendo que este efeito foi maior com o aumento da dose aplicada. O efeito da maior disponibilidade de P no solo, na presença de torta de filtro, refletiu no teor deste elemento na flor. O teor de P, em g kg⁻¹, foi de: 1,76 (torta de filtro) e 1,46 (turfa) no caule; e de 3,07 (torta de filtro) contra 2,30 (turfa) na flor de girassol. Portanto, acredita-se que a maior produção de massa seca da raiz, caule e flor seja justificada, principalmente, pelo teor de fósforo da torta de filtro.

O potencial das plantas em fitorremediar o solo pode ser medido usando alguns índices (Tabela 4). O índice de translocação (IT) avalia a capacidade das espécies em translocar os metais da raiz para a parte aérea. Para todos os três elementos este índice foi alto, acima de 91 % (Tabela 4). Quando se visa à escolha de plantas fitoextratoras torna-se desejável que o fator de transferência (F) seja o maior possível, indicando alta transferência do elemento do solo para a planta e, conseqüentemente, a possibilidade de retirada deste do sistema. Para o Cu e Zn o valor F foi muito baixo, diferentemente do que ocorreu para o B, que foi alto (Tabela 4). O maior valor de F para o B refletiu em maior eficiência e menor tempo necessário para a retirada deste do sistema.

A partir dos índices de translocação e de transferência é possível determinar a eficiência de remoção dos elementos e o tempo, em anos, necessário para a remoção desses do solo. Para remover 90 % de Zn, Cu e B do solo seriam necessários, respectivamente, 796, 197 e 18 anos de cultivo de girassol, caso aplicasse a turfa; e 1050, 93 e 14 anos pela adição de torta de filtro (Tabela 4).

Para remover 90 % de Zn e de Cu do sistema seriam necessários muitos anos de cultivo, tornando-se esta técnica inviável ao médio prazo. Contudo, para o B, a remoção de 90 % poderá ocorrer em 14 anos, o que a faz viável na prática.

Conclusões

O girassol é uma planta que tem potencial para ser cultivada na área contaminada com B, Cu e Zn.

O girassol pode ser considerada uma fitoextratora de boro.

As disponibilidades de B e Cu foram diminuidas pela adição de turfa.

Agradecimentos

À FAPESP pelo apoio financeiro e ao CNPq pelo auxílio bolsa de iniciação científica e de pesquisa.

Referências

- GONÇALVES, F.A. Fertilidade e fitodisponibilidade de metais pesados em solo com resíduo de sucata automobilística.
 2008. 89p. Dissertação (Mestrado em Gestão de Recursos Agroambientais) - Instituto Agronômico, Campinas.
- [2] ABREU, M.F.; ABREU, C.A.; ANDRADE, J.C. Análise química para avaliação da fertilidade de solos tropicais. IAC, p.231-239, 2001.
- [3] CETESB COMPANHIA DE TECNOLOGIA DE SANEAMENTO AMBIENTAL. 2009 (Online). Decreto n. 8.468. http://www.cetesb.sp.gov.br
- [4] ESPINOZA, W.; OLIVEIRA, A.J. 1984. Utilização agrícola dos resíduos da agroindústria canavieira. In: Anais do simpósio sobre fertilizantes na agricultura brasileira, Brasília, p. 451-470.
- [5] ABREU, C.A.; RAIJ, B.VAN & PAZ GONZÁLEZ. A. 2005. Routine soil testing to monitor heavy metals and boron. Science Agricola, 62:564-571.
- [6] RAIJ, B. van & CAMARGO. C.E.O. 1997. In: RAIJ, B.van; CANTARELA, H.; QUAGGIO, J.A. & FURLANI, A.C. (Eds). Rcomendações de adubação e calagem para o Estado de São Paulo. Campinas: Instituto Agronômico, p.45-47. (Boletim Técnico 100)
- [7] USEPA UNITED STATES ENVIRONMENTAL PROTECTION AGENCY. Method 3051: microwave assisted acid digestion of sediments, sludges, soil and soils (2007). http://www.epa.gov/epaoswer/hazwaste/test/3_series.htm (10 de janeiro de 2009).
- [8] BATAGLIA, O.C.; FURLANI, A.M.C.; TEIXEIRA, J.P.F.; GALLO, J.R. 1983. Métodos de análise química de plantas. Campinas: Instituto Agronômico (Boletim Técnico, 78), p.48.
- [9] SONNEVELD, C.; DEN ENDEN van J.; DIJK van P.A. 1974. Analysis of growing media by means of a 1:1,5 volume extract. Communication in soil science and plants analysis, 5:, 183-202.

Tabela 1 – Teores totais de alguns nutrientes e elementos potencialmente tóxicos no solo contaminado, determinados pelo método U.S.EPA 3051*.

P	K	Ca	Mg	S	Na	Ba	В	Cu	Fe	Mn
			g kg ⁻¹					mg k		,
0,33	0,89	5,6	1,46	0,31	0,25	264	62,1	335	38651	578
Mo	Zn	Cd	Cr	Ni	Pb	Al	Hg	As	Se	-
			mg	g kg ⁻¹						-
6,3	2998	4,3	88,2	53,6	332	5488	<1,0	6,5	<1,0	

^{*}digestão com ácido nítrico, método da U.S.EPA 3051 [7].

Tabela 2 - Valor de pH, Teores totais de macro e micronutrientes, dos compostos orgânicos torta de filtro e turfa.

	На	N	P	K	Ca	Mg	S	R	Cu	Fe	Mn	Zn	Umidade	С	C:N
	PII	14		- 12	1	wig			Cu	. 1	14111	211		- 11	C.I
				g	kg					mg kg ⁻¹			%	g kg	
turfa	5,5	6,7	0,8	1,4	1,7	1,7	0,4	16,1	45	6300	47	36	37,9	163	24,3
Torta	7,5	22,0	10,3	2,3	16,2	3,7	20,8	20,8	60	5900	557	141	62,6	264	12,0

^{*}extração nitroperclórica [8].

Tabela 3 - Caracterização química, com base nos teores disponíveis, dos compostos orgânicos torta de filtro e turfa

	pН	EC	N- NO ₃	N- NH ₄	P	K	Ca	Mg	S	Na	Cl	В	Cu	Fe	Mn	Zn
		dS m ⁻¹							mg	L ⁻¹						
turfa	5,5	0,2	8,6	1,8	0,1	2,9	5,8	3,9	1,1	1,0	0,4	0,02	0,01	0,1	0,1	0,1
torta	7,5	0,9	3,5	61,4	10,1	37,0	70,8	52,0	21,1	0,9	62,1	0,01	0,05	0,5	0,5	0,1

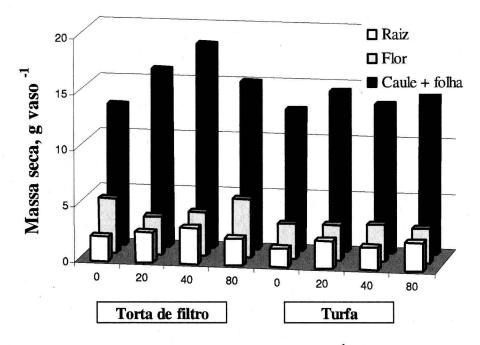

^{*}extração 1:1,5 (substrato:água) [9].

Tabela 4 – Efeito da aplicação de doses de torta de filtro e turfa nos valores de pH em CaCl₂ matéria orgânica, macro e micronutrientes e metais pesados em solo.

Tratamento	Dose	M.O.	pH	P	K	Ca	Mg	H+Al	В	Cu	Fe	Mn	Zn	Cd	Cr	Ni	Pb
					resina			HITAL .	A.Q.					TPA		1	
	t.ha ⁻¹	g.dm ⁻³		mg.dm ⁻³		mmole	c.dm ⁻³						mg.dn	1 ⁻³			`
	0	31,0	7,40	42	2,75	298	61	9,0	8,77	53,8	18	11,8	452	0,68	0,01	1,96	15,06
Torta	20	33,5	7,55	83	2,70	239	47	9,0	8,82	54,4	22	13,6	435	0,64	0,01	1,84	19,34
	40	37,0	7,50	125	2,45	230	53	9,0	8,54	52,8	27	11,5	411	0,59	0,01	1,79	28,84
	80	42,0	7,60	176	2,70	308	56	9,0	8,62	67,9	17	13,3	451	0,69	0,01	1,99	17,1
	0	30,0	7,55	45	2,40	290	57	9,0	8,14	69,4	14	12,3	452	0,77	0,01	2,05	13,36
Turfa	20	31,5	7,55	41	2,30	226	45	9,0	7,96	75,9	18	10,2	440	0,79	0,01	1,92	20,8
	40	31,5	7,50	42	2,35	246	52	9,0	7,92	63,6	22	11,7	423	0,76	0,01	1,89	17,5
	80	32,0	7,35	36	2,15	183	50	10,0	7,68	46,7	36	11,3	377	0,64	0,01	1,78	23,38
M.O.		*	ns	* _ '	ns	*	ns	ns	*	*	*	*	ns	*	ns	ns	ns
Dose		*	ns	*	ns	ns	ns	ns	*	*	*	ns	*	ns	ns	*	ns
Interação		*	*	*	ns	*	ns	'ns	ns	*	*	*	*	*	ns	*	ns

Tabela 5. Indice de translocação (IT), fator de transferência (F), eficiência (E) dos tratamentos em remover Cu, Zn e B do solo e o tempo (T) necessário para remediar o solo, usando o girassol como planta extratora.

Tipo de C orgânico	IT	\mathbf{F}	\mathbf{E}	T					
		%		anos					
_			Zn						
Torta	95,12	0,14	0,06	796					
Turfa	91,56	0,09	0,04	1050					
	Cu								
Torta	97,84	0,54	0,22	197					
Turfa	98,62	0,86	0,42	93					
_	2 10 2 10								
Torta	98,62	5,04	1,97	18					
Turfa	98,74	5,22	2,44	14					

Teor de C orgânico, t ha⁻¹

Figura 1. Produção de massa seca da raiz, caule e flor de plantas de girassol em função da aplicação de doses crescentes de torta de filtro ou turfa, equivalentes a 0, 20, 40 e 80 t ha⁻¹ de C orgânico.