ESTABILIDADE DE GENÓTIPOS DE FEIJOEIRO COMUM COM GRÃOS PRETO NO CENTRO-SUL DO BRASIL NOS ANOS DE 2003/2004

<u>Paula Pereira Torga¹</u>, Helton Santos Pereira², Patrícia Guimarães Santos Melo³, Leonardo Cunha Melo², Luís Cláudio de Faria², José Luis Cabrera Díaz⁴, Maria José Del Peloso² e Adriane Wendland²

Resumo

O objetivo deste trabalho foi identificar genótipos de feijoeiro-comum (*Phaseolus vulgaris*) tipo preto, com boa adaptabilidade e estabilidade de produção, na Região Centro Sul do Brasil, pelo uso de dois métodos. Foram conduzidos 26 ensaios de valor de cultivo e uso (VCU), com 13 genótipos, em blocos completos ao acaso, com três repetições, nos Estados de São Paulo, Paraná, Santa Catarina e Rio Grande do Sul, nos anos de 2003 e 2004. Os dados de produtividade foram submetidos a análises de variância e de estabilidade e adaptabilidade pelos métodos de Eberhart & Russell e de Annichiarico. Os genótipos CNFP 7994 e CNFP 8000 foram identificados como ideais pelas duas metodologias, apresentando maior estabilidade e adaptabilidade.

Introdução

No Brasil, o feijoeiro comum é cultivado em praticamente todos os estados, em diferentes sistemas de cultivo e épocas de semeadura estando, portanto, a cultura submetida às mais diversas condições ambientais. Essa diversidade de condições requer que os ensaios sejam conduzidos em rede, em vários ambientes, nas regiões de importância para a cultura, permitindo que se obtenha uma boa estimativa da interação genótipos x ambientes. Dentre as regiões de importância para a cultura merece destaque a Região Centro-Sul, compreendendo os Estados do Rio Grande do Sul, Paraná, Santa Catarina e São Paulo, que respondem por 45% da produção, com média de produtividade de 1.469 kg ha⁻¹ (FEIJÃO, 2009). O feijoeiro comum com grãos preto representa 17% do mercado consumidor brasileiro, o que corresponde a cerca de 480 mil toneladas/ano, sendo este o 2º tipo mais consumido (DEL PELOSO; MELO, 2005).

A identificação de cultivares com maior estabilidade fenotípica tem sido uma alternativa bastante utilizada para atenuar os efeitos da interação genótipos com ambientes e tornar o processo de indicação de cultivares mais seguro (MELO *et al.*, 2007). Contudo, estudos dessa natureza em feijoeiro-comum, com grãos pretos, na Região Centro-Sul do Brasil, são escassos. Assim, o objetivo deste trabalho foi identificar genótipos de feijoeiro-comum, com grãos pretos e alta adaptabilidade e estabilidade de produção, na Região Centro-Sul do Brasil, utilizando-se dois métodos de análise.

Material e Métodos

Foram utilizados dados do ensaio de VCU de feijão preto do ciclo 2003/2004 da Embrapa Arroz e Feijão. Os experimentos foram instalados, segundo a exigência mínima estabelecida para o ensaio de VCU de feijão, conforme a Portaria nº 294, alterada pela Instrução Normativa nº 25, de 23 de maio de 2006, do Ministério da Agricultura Pecuária e Abastecimento (MAPA), que consiste no delineamento em blocos casualizados, com três repetições e parcelas de quatro fileiras de 4 m de comprimento. Os dados referentes à produtividade foram obtidos desconsiderando-se as duas linhas laterais (bordadura). Os experimentos foram instalados em 26 ambientes nos Estados de São Paulo, Paraná, Santa Catarina e Rio Grande do Sul, nas épocas das águas, seca e inverno. Cada experimento foi

¹Doutoranda em Genética e Melhoramento de Plantas, Universidade Federal de Goiás, Goiânia, GO, CEP 74001-970. E-mail: paulaptorga@yahoo.com.br

²Pesquisador (a) da Embrapa Arroz e Feijão, Santo Antônio de Goiás, GO, CEP 75375-000. E-mails: helton@cnpaf.embrapa.br, helton@cnpaf.embrapa.embrapa.br, helton@cnpaf.embrapa.embrapa.embrapa.embrapa.embrapa.embrapa.embrapa.embrapa.em

Professora da Universidade Federal de Goiás, Goiânia, GO, CEP 74001-970. E-mail: pgsantos@agro.ufg.br

⁴Analista da Embrapa Arroz e Feijão. E-mail: <u>cabrera@cnpaf.embrapa.br</u>

Apoio financeiro: CAPES e Embrapa Arroz e Feijão.

constituído de 13 genótipos e os dados de produtividade de grãos (kg ha⁻¹) foram submetidos à análise de variância individual e, posteriormente, foi realizada a análise conjunta dos experimentos. Como as variâncias residuais não foram homogêneas, procedeu-se o ajuste dos graus de liberdade do erro médio e da interação GxA, conforme o método de Cochran (1954). Para as análises de estabilidade foram adotadas duas metodologias: Eberhart & Russell (1966) e Annicchiarico (1992). Foi utilizado o aplicativo Genes (CRUZ, 2001). Os genótipos mais estáveis foram identificados de acordo com os parâmetros utilizados por cada metodologia.

Resultados e Discussão

A análise de variância da maioria dos 26 experimentos mostrou diferenças significativas entre os genótipos e os valores do coeficiente de variação (CV) foram todos inferiores a 25%, indicando boa precisão experimental. Houve variação nas médias e CV dos ensaios, evidência de que as condições a que foram submetidos os genótipos foram divergentes. Na análise conjunta todos os efeitos foram significativos, indicando variabilidade entre os genótipos, entre os ambientes e a ocorrência de interação genótipos x ambientes (Tabela 1), o que determina a necessidade de análises de estabilidade.

Os genótipos mais produtivos foram CNFP 7994 e CNFP 8000 (Tabela 2). Para Eberhart & Russell (1966), o genótipo ideal é aquele com produção média alta, resposta positiva à melhoria das condições ambientais ($\beta_{1i}=1$) e comportamento altamente previsível (σ^2_{di} não significativas) ou aceitável (σ^2_{di} significativas e R² > 80%). O genótipo CNFP 7994 apresentou comportamento ideal segundo essa metodologia (Tabela 2). O genótipo CNFP 8000 apesar de apresentar previsibilidade de comportamento aceitável, obteve alta média e coeficiente de regressão igual a um (β_{1i} não significativa), tendo comportamento desejável. Os demais genótipos apresentaram médias de produção mais baixas, segundo o teste de médias, porém alguns se destacaram nos demais critérios avaliados pela metodologia, como os genótipos CNFP 9328, CNFP 10138 e CNFP 7966 que apresentaram resposta positiva às melhorias das condições ambientais e comportamento altamente previsível, e o genótipo TB 9713 que apresentou resposta positiva à melhoria do ambiente e previsibilidade aceitável. Os genótipos FT Nobre e Soberano foram identificados como adaptados a ambientes desfavoráveis (β_{1i} < 1) e com previsibilidade aceitável, e o genótipo IPR Uirapuru adaptado a ambientes favoráveis (β_{1i} > 1), com previsibilidade alta.

O método de Annichiarico (1992) identificou para os genótipos CNFP 7994, CNFP 8000 e TB 9713, índice de confiança (W) acima de 100%, o que indica que esses genótipos superam a média do ambiente em 5,8; 2,0 e 1,2% de produção, respectivamente (Tabela 2), com 75% de confiança. Nos ambientes desfavoráveis os genótipos que se destacaram foram os mesmos da análise geral, incluindo ainda o FT Nobre, que superaram a média do ambiente em 9,0; 2,9; 5,3 e 1,3% de produção respectivamente. Já para os ambientes favoráveis os genótipos que se destacaram foram o CNFP 7994, CNFP 10138, CNFP 8000 e IPR Uirapuru, que superaram a produção em 1,8; 1,4; 1,3 e 0,8% em relação a média do ambiente. Merecem destaque os genótipos CNFP 7994 e CNFP 8000 que foram superiores nas três análises (geral, ambientes favoráveis e ambientes desfavoráveis), sendo estes os de melhor estabilidade identificados pelo método. Uma vantagem dessa metodologia é descriminar bem os genótipos em condições específicas, como foi o caso do genótipo CNFP 10138, que foi o segundo nos ambientes favoráveis e décimo primeiro nos ambientes desfavoráveis, e do genótipo FT Nobre que foi o quarto nos ambientes desfavoráveis e penúltimo nos ambientes favoráveis. O genótipo CNFP 8000 por apresentar excelente desempenho e boa arquitetura, foi indicado como nova cultivar, recebendo o nome de BRS Esplendor.

Conclusão

Os genótipos CNFP 7994 e CNFP 8000 foram identificados como ideais pelas duas metodologias, apresentando maior estabilidade e adaptabilidade.

Referências

ANNICHIARICO, P. Cultivar adaptation and recomendation from alfafa trials in Northern Italy. *Journal of Genetics na Plant Breeding*, v.46, p.269-278, 1992.

COCHRAN, W.G. The combination of estimates from different experiments. *Biometrics*, v.10, p.101-129, 1954.

CRUZ, C.D. *Programa Genes*: aplicativo computacional em genética e estatística: versão Windows. Viçosa: Editora UFV, 2001. 648p.

DEL PELOSO, M.J.; MELO, L.C. *Potencial de rendimento da cultura do feijoeiro-comum*. Santo Antônio de Goiás: Embrapa Arroz e Feijão, 2005. 131p.

EBERHART, S.A.; RUSSELL, W.A. Stability parametrs for comparing varieties. *Crop Science*, v.6, p.36-40, 1996.

FEIJÃO: dados conjunturais do feijão (área, produção e rendimento) - Brasil - 1985 a 2007. Disponível em: http://www.cnpaf.embrapa.br/apps/socioeconomia/index.htm. Acesso em: 25 mai. 2009.

MELO, L.C; MELO, P.G.S.; FARIA, L.C. de; DIAZ, J.L.C.; DEL PELOSO, M.J.; RAVA, C.A.; COSTA, J.G.C. da. Interação com ambientes e estabilidade de genótipos de feijoeiro-comum na região Cento-Sul do Brasil. *Pesquisa e Agropecuária Brasileira*, v.42, p.715-723, 2007.

Tabela 1. Análise de variância conjunta para a produtividade de grãos de feijoeiro comum tipo preto (kg ha⁻¹) dos 26 experimentos conduzidos na Região Centro Sul do Brasil.

Fontes de Variação	Grau de Liberdade	Quadrado Médio	F					
Repetição/Ambiente	52	202.201	-					
Ambientes (A)	25	29.976.871	148,00**					
Genótipos (G)	12	880.662	1,99**					
AXG	$(205)^1$	443.455	2,81**					
Resíduo	$(422)^{1}$	157.555	-					
Total	1.013	-	-					
Média		2.428						
CV (%)	16,0							

^{**:} Significativo a 1% de probabilidade pelo teste de F. ¹ Grau de liberdade ajustado (Cochan, 1954).

Tabela 2. Estimativas de parâmetros de adaptabilidade e estabilidade fenotípica de 13 genótipos de feijão comum tipo preto, avaliados em 26 ambientes na Região Centro Sul do Brasil nos anos de 2003 e 2004, pelos métodos de Eberhart & Russell. (1966) e Annichiarico (1992) (W- Índice de confiança), com decomposição em ambientes favoráveis (W_f) e desfavoráveis (W_d).

Genótipo	Média (1)	Eberhart e Russell		Annichiarico ⁴						
		$\hat{oldsymbol{eta}}_{\!\!\!1i}^{}$ (2)	$\hat{\sigma}_{di}^{(3)}$	$R^2(\%)$	W	C	\mathbf{W}_{f}	C	\mathbf{W}_{d}	C
CNFP7994	2.627 a	1,00 ^{ns}	21.338 ns	92	105,8	1	101,8	1	109,0	1
CNFP 8000	2.592 a	1,05 ^{ns}	51.319**	89	102,0	2	101,3	3	102,9	3
ТВ 9713	2.516 b	$0,93^{\text{ ns}}$	59.259**	86	101,2	3	96,2	9	105,3	2
CNFP 9328	2.496 b	1,05 ^{ns}	21.379 ns	92	99,3	4	99,6	6	99,0	5
IPR Uirapuru	2.444 c	1,11*	11.466 ns	94	96,8	6	100,8	4	94,0	6
FT Nobre	2.441 c	0,87*	95.921**	80	97,8	5	93,2	12	101,3	4
CNFP 10138	2.425 c	1,09 ns	16.557 ns	93	94,4	8	101,4	2	90,1	11
CNFP 7966	2.389 c	$0,99^{\text{ns}}$	$7.712^{\text{ ns}}$	93	95,7	7	98,4	7	93,9	7
BRS Valente	2.364 d	$1,06^{ns}$	24.595 ns	92	92,7	10	96,8	8	89,9	12
ТВ 9409	2.338 d	$0.93^{\text{ ns}}$	17.541 ns	91	93,4	9	94,4	10	92,9	9
Diamante Negro	2.324 d	$0,98^{\text{ ns}}$	57.761**	87	92,3	11	93,4	11	91,5	10
CNFP 7972	2.319 d	1,06 ns	27.183 ns	92	90,2	13	99,6	5	84,3	13
Soberano	2.288 d	0,89*	111.812**	80	91,2	12	87,9	13	93,8	8

⁽¹⁾ Médias seguidas da mesma letra são iguais (Scott-Knott, α=0,10); ⁽²⁾H₀: $β_{1i} = 1$; ⁽³⁾H₀: $σ_{di} = 0$; ^{ns}, * e **, não significativos, significativos a 5% e 1% de probabilidade pelo teste t, respectivamente; ⁴α=0,25.