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ABSTRACT. We identified 14 microsatellite loci for the wolf fish, 
Hoplias malabaricus (Erythrinidae), from a genomic shotgun library. 
Twenty-five primers were designed, and 48 individuals of H. malabaricus 
from four localities of northwest Goiás, in central Brazil, were genotyped 
to characterize the polymorphism at each locus. Fourteen primers 
amplified clearly interpretable products using a single PCR protocol; six 
loci were polymorphic, but with a low number of alleles per locus (2 or 
3).  Expected heterozygosities for polymorphic loci ranged from 0.136 
to 0.505. Combined paternity exclusion probability (0.638) was low and 
combined genetic identity (0.056) was high in studies of parentage. The 
low polymorphism may be due to the small microsatellite size and the 
large size of the motifs.
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Hoplias malabaricus (Erythrinidae) is a widely distributed Brazilian wolf fish from 
lentic environments. Karyotypic analyses show high diversity in the number and type of chro-
mosomes (e.g., Bertollo et al., 2000; Born and Bertollo, 2000), suggesting that H. malabaricus 
comprises a species complex. However, no information on population genetics using molecu-
lar markers is available for understanding population differentiation and clarifying species 
circumscription. In the last decades, the number of hydroelectric power plants have increased 
in Brazil, isolating and threatening fish populations due to habitat loss and population size 
reduction. Thus, the availability of molecular tools for population genetic studies is highly 
important to evaluate the impact of this process in the long-term population genetic viability.

Microsatellites are one of the most powerful molecular markers to estimate population genetic 
parameters and perform detailed parentage and gene flow analyses because of the high genetic informa-
tion content (Morgante and Olivieri, 1993). Despite the advantages of microsatellite makers, reports on 
the development and use of microsatellite loci in Neotropical fish species are still scarce (but, see Re-
valdaves et al., 2005; Carvalho-Costa et al., 2006; Morelli et al., 2007; Batista et al., 2009). In this study, 
we report on the development and genetic characterization of 14 microsatellite loci for H. malabaricus.

Microsatellite isolation for primer design was based on a genomic shotgun library, 
coupled with bioinformatics tools. First, genomic DNA from 48 individuals of H. mala-
baricus was extracted from muscle strips using the Genomic PrepTM Cells and Tissue DNA 
Isolation Kit (GE HealthCare, Sweden). These individuals were sampled in four locali-
ties in Northwest Goiás, Central Brazil: 18 individuals from Caiapó River (16°18’53.25”S, 
51°28’03.63”W); 21 individuals from Mucunã River (17°00’32.29”S, 49°21’24.40”W); 8 
individuals from Anicuns Lake (16°28’09.37”S, 49°56’32.84”W), and 5 individuals from 
Serra da Mesa Lake (14°01’31.30”S, 48°18’09.37”W). Total genomic DNA (2.0 µg) from 
one individual was sheared using a sonicator, to obtain fragments of 200 bp to 1.0 kb. Frag-
ments were recovered and cloned into pMOSBlue dephosphorylated blunt vector using the 
Blunt-ended polymerase chain reaction (PCR) Cloning Kit® (GE HealthCare). Cloned frag-
ments were transformed into chemically pMOSBlue® competent cells (GE HealthCare) and 
plated onto Luria-Bertani (LB) plates containing ampicillin and X-Gal. Recombinant clones 
were grown overnight in liquid ampicillin LB medium, and plasmid DNA was extracted 
using a standard protocol (Sambrook and Russell, 2001). DNA inserts were sequenced us-
ing U19 primer in a 3100 automated DNA sequencer (Applied Biosystems, USA) using the 
DYEnamicET terminator kit (GE Healthcare), according to manufacturer instructions. The 
reads were filtered by their quality and length (phred value ≥20; length ≥150) and analyzed 
for their nucleotide content. The reads were filtered by their quality and length (phred value 
≥20; length ≥150) and screened for microsatellites, and primers were designed using the 
web service primer designer (Martins et al., 2009).

For the characterization of loci, DNA of the 48 sampled individuals of H. malabaricus 
were amplified using the designed primers in a total reaction volume of 15 µL containing 25 
ng template DNA, 1.8 µM of each primer, 1 U Taq DNA polymerase (Phoneutria), 325 μM of 
each dNTP, 0.13 μg BSA and 1X reaction buffer (10 mM Tris-HCl, pH 8.3, 50 mM KCl, 1.5 
mM MgCl2). PCR was carried out in a thermal cycler with the following conditions: 94°C for 
5 min (one cycle), 94°C for 1 min, 54 to 68°C (according to the primer annealing tempera-
ture, see Table 1) for 1 min, and 72°C for 1 min (30 cycles), and 72°C for 7 min (one cycle). 
Individuals were genotyped on 6% denaturing polyacrylamide gels stained with silver nitrate 
(Creste et al., 2001) and sized by comparison to a 10-bp DNA ladder standard (Invitrogen). 
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The number of alleles per locus, observed and expected heterozygosities under Hardy-Weinberg 
(Nei, 1978), and inbreeding coefficient (f ) were estimated (Weir and Cockerham, 1984). Analy-
ses were performed with FSTAT 2.9.3.2 (Goudet, 2002) and randomization-based tests with 
Bonferroni’s correction were performed to test for deviation from Hardy-Weinberg expectations 
and for linkage disequilibrium (Goudet et al., 1996). We also estimated the probability of genetic 
identity (I ) (Paetkau et al., 1995) and paternity exclusion probability (Q) (Weir, 1996) for each 
polymorphic locus and overall loci, using the Identity 1.0 software (Wagner and Sefc, 1999).

Of the 864 clones sequenced, 78 (9.03%) showed nucleotide repeat motifs recog-showed nucleotide repeat motifs recog-
nized as microsatellites. Flanking primers were designed for 25 fragments containing mic-
rosatellites, and 14 loci were successfully amplified using a single PCR protocol. Of the 14 
microsatellite loci, five displayed no polymorphism and only one polymorphic locus showed 
more than 2 alleles (Hmal60). Expected heterozygosities ranged from 0.137 to 0.505, and all 
polymorphic loci deviated significantly from Hardy-Weinberg equilibrium (Table 1). Com-
bined probability of identity was high (0.056), and probability of paternity exclusion was low 
(0.638), showing that further studies on parentage analysis and fine-scale genetic structure 
will require the search for a new set of polymorphic loci.

The low polymorphism found in this study is most likely due to the small mic-
rosatellite size found in H. malabaricus. Besides, most microsatellite loci are tri-, tetra- 
and pentanucleotides, which typically show lower levels of polymorphisms due to low-
er mutation rates when compared to dinucleotides (Chakraborty et al., 1997; Ellegren, 
2000, 2004). The number of alleles per locus is positively correlated with the number of 
repeat motifs (Weber, 1990; Taramino and Tingey, 1996; Ellegren, 2004; Brandström and 
Ellegren, 2008). Although the number of sequences surveyed in this study was limited, 
our results show that the H. malabaricus genome has a low abundance of microsatellites 
(only 9.02% of the sequences showed microsatellites) and also that repeat length is short, 
which may limit polymorphism.
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