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Abstract—In the present study, acetylcholinesterase (AChE) from the brain of the Amazonian fish tambaqui (Colossoma macropomum)
was partially characterized and its activity was assayed in the presence of five organophosphates (dichlorvos, diazinon, chlorpyrifos,
and tetraethyl pyrophosphate [TEPP]) and two carbamates (carbaryl and carbofuran) insecticides. Optimal pH and temperature
were 7.0 to 8.0 and 45°C, respectively. The enzyme retained approximately 70% of activity after incubation at 50°C for 30 min. The
insecticide concentration capable of inhibiting half of the enzyme activity (IC50) for dichlorvos, chlorpyrifos, and TEPP were calculated
as 0.04 pmol/L, 7.6 pmol/L, and 3.7 wmol/L, respectively. Diazinon and temephos did not inhibit the enzyme. The IC50 values for
carbaryl and carbofuran were estimated as 33.8 wmol/L and 0.92 wmol/L, respectively. These results suggest that AChE from the
juvenile C. macropomum brain could be used as an alternative biocomponent of organophosphorus and carbamate biosensors in routine
pesticide screening in the environment. Environ. Toxicol. Chem. 2010;29:2243-2248. © 2010 SETAC
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INTRODUCTION

Organophosphorus and carbamate are major classes of
pesticides in use throughout the world. Together, they share
about 50% of the world market of insecticides/acaricides. Their
relatively fast hydrolysis and low persistence in the environ-
ment have supported their increasing use. However, their
toxicity to mammals and other nontarget organisms, together
with the large amounts used, constitute a threat to human health
and the environment. Both classes are cholinesterase inhibitors,
and several methodologies have been developed using these
enzymes from various species to monitor their environmental
presence. These neurotoxic agents have been distributed
throughout the world without control in recent decades and,
due to misuse and a lack of specificity, have become a serious
problem to both humans and the environment [1]. Therefore,
methods for organophosphorus and carbamate detection using
either organisms or their enzymes as bioindicators and bio-
markers, respectively, have been evaluated [2,3]. The choli-
nesterase group stands out among such molecules [4-6].

Acetylcholinesterase (AChE; enzyme classification 3.1.1.7)
is widely known as a specific biomarker of organophosphorus
and carbamate pesticides due to the inhibition of its activity [7].
This enzyme is responsible for modulating neural communica-
tion in the synaptic cleft by hydrolyzing the ubiquitous neuro-
transmitter acetylcholine. A lack of AChE activity causes
central and peripheral nervous system disorders and death [8].

Studies have confirmed cholinesterases as suitable for mon-
itoring the occurrence of these pesticide classes in environ-
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mental compartments [6,9-11]. For example, biosensors
have been proposed based on AChE from electric eel and
both genetically engineered (B394) and wild-type strains of
Drosophila melanogaster [12]. However, the high interspecific
and intraspecific polymorphism of these enzymes cause varied
responses to insecticide compounds, thereby hindering the
evaluation and comparison of results from different studies
[13]. Consequently, it is necessary to characterize AChE
activity in each species and type of tissue.

In previous work, AChE from the brain of the juvenile
Amazonian fish tambaqui (Colossoma macropomum) was
shown to be sensitive to dichlorvos [14]. This enzyme source
could be proposed as a feasible alternative for setting up
biosensors once it is located in a discarded tissue (brain) of
this fish, which is the third most farmed species in Brazil
(30,598 tons in 2007, according to the Brazilian Ministry of
Environment;  http://www.ibama.gov.br/recursos-pesqueiros/
documentos/estatistica-pesqueira/).

The aims of the present study were to partially characterize
some kinetic and physicochemical parameters of this enzyme,
and to evaluate the effect of seven relevant organophosphorus
and carbamate pesticides on its activity, to propose it as the
biocomponent of an in vitro biosensor.

MATERIALS AND METHODS

Acetylthiocholine iodide, bovine serum albumin, 5,5'-
dithiobis(2-nitrobenzoic) acid (DTNB), Tris (hydroxymethyl)
aminomethane, and dimethyl sulfoxide were purchased from
Sigma. Analytical grade dichlorvos (98.8%), diazinon (99.0%),
chlorpyrifos (99.5%), temephos (97.5%), tetraethyl pyrophos-
phate (97.4%), carbofuran (99.9%), and carbaryl (99.8%) were
obtained from Riedel-de-Haén, Pestanal™. Disodium hydrogen
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phosphate and HCl1 were obtained from Merck. Trisodium
citrate was acquired from Vetec. Glycine was acquired from
Amersham Biosciences. The spectrophotometer used was Bio-
Rad Smartspec™ 3000. The juvenile specimens of C. macro-
pomum were supplied by Mar Doce Piscicultura e Projetos.
Tambaqui specimens, 16.5 3.7 cm in length and 93.8 £79¢
in weight, were captured from a 750-m? pond.

Enzyme extraction

Twenty juvenile fish were acclimatized in 100-L aquaria
(dissolved oxygen 8.04+0.05mg/L, temperature 26.04 &
0.07°C, pH 6.93 +0.22, salinity 0.17 g/L) for one week and
then sacrificed by immersion in an ice bath (0°C). The brains
were immediately removed, joined in pairs, and homogenized
in 0.5 mol/L Tris-HCI buffer, pH 8.0, maintaining a ratio of
20 mg of tissue per ml of buffer using a Potter—Elvehjem tissue
disrupter. The homogenates were centrifuged for 10min at
1,000 g (4°C) and the supernatants (crude extracts) were frozen
at —20°C.

Enzyme activity and protein determination

The crude extract (30 wl) was added to 500 w1 of 0.25 mmol/L
DTNB dissolved in 0.5 mol/L Tris-HCI buffer, pH 7.4, and the
reaction started by the addition of 0.125 mol/L acetylthiocho-
line iodide (30 1) [14]. Enzyme activity (quadruplicate) was
spectrophotometrically determined by following the absor-
bance at 405 nm for 180s, in which the reaction exhibited a
first-order kinetics pattern [14]. A unit of activity (U) was
defined as the amount of enzyme capable of converting 1 pmol
of substrate per minute. A blank assay was similarly prepared
except that 0.5mol/L. Tris-HCI buffer, pH 8.0, replaced the
crude extract sample. Protein content was estimated according
to a modified dye-binding method [15], using bovine serum
albumin as the standard.

Optimal pH and temperature

Assays were performed using DTNB solutions in a pH range
from 2.5 to 9.5 by using citrate-HCl (2.5 to 4.5), citrate-
phosphate (4.0 to 7.5), Tris-HCl (7.2 to 9.0) buffers. Substrate
nonenzymatic hydrolysis (in basic pH) was corrected by sub-
tracting their values from the activities. Optimum temperature
was established by assaying the enzyme activity at temperatures
ranging from 5 to 70°C for 180s.

Thermal stability

Thermal stability of juvenile C. macropomum AChE was
evaluated by exposing crude extract samples for 30 min at
temperatures ranging from 25 to 80°C and assaying the
activity retained after 5min of equilibration at 25°C (room
temperature).

Inhibition assay

Acetylcholinesterase inhibition was assayed using five
organophosphates (dichlorvos, diazinon, chlorpyrifos, teme-
phos, and tetraethyl pyrophosphate [TEPP]) and two carba-
mates (carbaryl and carbofuran). The insecticides were first
dissolved in dimethyl sulfoxide and then diluted in distilled
water to five final concentrations ranging from 0.001 to 10 ppm,
with each subsequent concentration 10-fold higher than the
previous concentration. These concentrations correspond
respectively: 0.0045 to 45.2 pmol/L (dichlorvos); 0.0032 to
32.8 wmol/L (diazinon); 0.0028 to 28.5 wmol/L (chlorpyrifos);
0.0021 to 21.4 pmol/L (temephos); 0.0034 to 34.5 pmol/L
(TEPP); 0.0061 to 61.3 pmol/L. (carbaryl); and 0.0045 to
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45.2 pmol/L. (carbofuran). The insecticide solutions (10 wl)
were incubated with crude extract (20 wl) for 1h [14] and
the residual activity (%) was determined as previously
described, using the absence of pesticide as 100% activity.
All enzymatic and inhibition assays were carried out at room
temperature (25°C). Five crude extracts from 10 fish brains
were analyzed in triplicate for each insecticide concentration
and data were expressed as mean =+ standard deviation. These
data were statistically analyzed by nonlinear regression fitted to
polynomial or exponential decay (p > 0.05) modeling using the
software MicroCal®™ Origin Version 8.0. The concentration
capable of inhibiting half of the enzyme activity (IC50) was
estimated for each pesticide.

RESULTS AND DISCUSSION

Optimum pH for juvenile C. macropomum AChE was found
to be in the range 7.0 to 8.0 (Fig. 1A) similar to those described
in the literature for other fishes (Table 1): Solea solea (7.0),
Scomber scomber (8.0), and Pleuronectes platessa (8.5) [9];
Cymatogaster aggregate[16] and Hypostomus punctatus [17]
(between 7.0 and 7.2). Optimum temperature was estimated as
45°C (Fig. 1B). Bocquené et al. [9] found temperatures in the
range 32 to 34°C for Pleuronectes platessa; Beauvais et al. [4]
at 25°C for Lepomis macrochirus, and Hazel [18] at 35°C for
Carassius auratus. In the present study, AChE from juvenile
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Fig. 1. Effect of pH (A) and temperature (B) on the AChE from brain of
juvenile C. macropomum. The pH range was attained by using citrate-HCL,
citrate-phosphate, and tris-HCI buffers, whereas the temperature effect was
investigated either on the enzyme activity (optimum temperature, ll) or on
the enzyme preparation (thermal stability, O) for 30 min; after 5 min (25°C
equilibrium), its activity was estimated. AChE = acetylcholinesterase.
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Table 1. Kinetics and physicochemical parameters of AChE from some freshwater and marine species®

Vinax Optimum

Species [reference] K., (mmol/L) (U/mg of protein)  Optimum pH  temperature (°C) Source Life stage
Oreochromis niloticus[5] 0.10+0.03 0.229+0.014 ND ND Brain Juvenile 48.2+39 ¢
Pleuronectes vetulus[6] 1.69 +£0.26 0.482+0.034 ND ND Muscle Juvenile 13.5-29.5cm
Pleuronychtis verticalis [6] 0.30 +0.07° 0.524 +0.032° ND ND Muscle Juvenile

0.23 4+ 0.06° 0.120 £ 0.08°
Solea solea [9] ND ND 7.5 ND Brain ND
Pleuronectes platessa [9] ND ND 8.5 33 Brain ND
Scomber scomber [9] ND ND 8.0 ND Brain ND
Colossoma macropomum [present work] 0.43 + 0.02 0.13£0.05 7.5 45 Brain Juvenile 16.6 £3.7cm

* AChE = acetylcholinesterase; K,, =Michaelis—Menten constant; V,,,x = maximum velocity of enzyme activity; ND = not determined.

® Female specimens.
“Male specimens.

C. macropomum after being incubated for 30 min at 50°C
retained about 70% of its activity at 35°C (Fig. 1B). Zinkl
et al. [19] reported absence of cholinesterase activity in the
brain of Oncorhyncus mykiss (formerly known as Salmo gaird-
neri) subjected to temperatures higher than 45°C.

The Michaelis—Menten kinetics is displayed in Figure 2,
from which the maximal velocity (Vi) and apparent bimo-
lecular constant (K,,) were 0.128 £0.005 U/mg protein and
0.434 £ 0.025 mmol/L, respectively, using acetylthiocholine
iodide as substrate. The Lineweaver—Burk plot is also pre-
sented. Vard et al. [20] reported acetylthiocholine iodide inhib-
ition at concentrations greater than 5.12 mmol/L in brain tissue
from Sparus aurata, in contrast to muscle tissue, for which
inhibition occurred at 20.48 mmol/L. Rodriguez-Fuentes
and Gold-Bouchot [5] found acetylthiocholine inhibition at
4.89 mmol/L in AChE from the brain of Oreochromis niloticus.
However, in the present study, no substrate inhibition was
observed even at the 15mmol/L acetylthiocholine iodide.
According to Table 1, the apparent Michaelis—Menten constant
of the juvenile C. macropomum AChE was lower than that
estimated for Pleuronectes vetulus muscle and higher than
Pleuronychtis verticalis muscle and Oreochromis niloticus
brain, whereas the maximum velocity was smaller than those
reported for these mentioned tissues.

Among the anticholinesterasic agents, organophosphates
and its analogues play a different role in the metabolic paths

100 120

AChE activity (mU/mg protein)

80

Acetylthiocholine {(mM)

Fig. 2. Michaelis-Menten plot of the AChE from brain of juvenile
C. macropomum acting on acetylthiocholine. Data are expressed as the
mean =+ standard deviation of three replicates from four homogenates.
The inset shows the Lineweaver—Burk plot. AChE = acetylcholinesterase.

before reaching sites of neuronal transmission. Some of them
are produced in a less toxic form (thion form, P=S) which is
more stable in the environment. When absorbed by an organ-
ism, this form of pesticide undergoes bioactivation to a more
toxic form (oxon form, P=0) by monooxigenases from the
cytochrome P450 complex present in some organs/tissues
including liver, kidneys, lungs, and brain. Therefore, this
phenomenon and the diverse effect of the resulting products
on the AChE can determine differences in the behavior of the
enzyme.

The Food and Agriculture Organization [21] recommends
that 20% inhibition is the relevant end-point to determine
acceptable daily intakes of an anticholinesterasic compound.
In the present study, some of the compounds analyzed were
highly toxic to tambaqui AChE, and the inhibition they caused
could rapidly reach the above-mentioned levels.

Results from inhibition assays are displayed in Figure 3 and
Table 2 and summarize the IC50 values estimated from these
data for the five organophosphates (dichlorvos, diazinon, chlor-
pyrifos, temephos, and TEPP) and two carbamate insecticides
(carbaryl and carbofuran). Dichlorvos as previously demon-
strated [14] was shown to strongly inhibit the juvenile
C. macropomum AChE. Among the investigated pesticides in
the present study, this insecticide presented the lowest IC50
value (0.04 pmol/L; 0.01 ppm) and the lowest value compared
with those reported in the literature for other fish species.
Chuiko [22] estimated the IC50 value of 0.31 wmol/L for
Leuciscus idus and Esox lucius, and 0.63 pwmol/L for Alburnus
alburnus. Dichlorvos is a direct inhibitor of AChE. It is an oxon
organophosphate compound [23] and does not require bioacti-
vation for enzyme inhibition in contrast with thion compounds,
for which only a fraction of the total amount is activated in the
tissues [24,25]. Chlorpyrifos also displayed lower IC50 value
(7.6 pmol/L) than that reported for Cyprinus carpio [26].
Diazinon and temephos did not show inhibition effect on the
juvenile C. macropomum AChE under the experimental con-
ditions used in the present study. According to a number of
studies, acute toxicity from phosphorothionate pesticides
such as diazinon and chlorpyrifos is strongly influenced by
differences in the activity of cytochrome P450-mixed oxidase
systems, which bioactivate these compounds [27,28]. Never-
theless, these influences only determine toxic effects through
the balance between activation and detoxification pathways:
P450 dearylation, carboxylesterase and butyrylcholinesterase
phosphorylation, and oxonase-mediated hydrolysis [29]. Thus,
the contrast between high sensitivity to oxons and apparent
lower oxidation activity possibly could be a C. macropomum
enantiostatic mechanism when facing xenobiotic threats [30].
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Fig. 3. Effectoforganophosphates and carbamates on the activity of AChE from brain of juvenile C. macropomum. Dichlorvos (A), diazinon (B), chlorpyrifos (C),
temephos (D), TEPP (E), carbaryl (F), and carbofuran (G) concentrations ranged from 0.001 to 10 ppm. All the assays were performed at 25°C, and the
experimental points are the mean =+ standard deviation of triplicate of four crude extracts. AChE = acetylcholinesterase; TEPP = tetraethyl pyrophosphate.

Another condition that may cause discrepancies, particularly in
case of chlorpyrifos, is that this compound accumulates in
tissues, which likely affects other results. Antwi [31] also found
no statistical differences in four fish species (Oreochromis
niloticus, Sarotherodon galilaea, Alestes nurse, and Schilbe

mystus) between controls and individuals living in areas treated
weekly with temephos over a six-year period. Temephos is also
a thion compound, but the reasons for such results are not
only caused by the circumstances mentioned for diazinon and
chlorpyrifos. This pesticide is known to exhibit moderate to low
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Table 2. Pesticide IC50 values for in vitro freshwater fish™"

Species [reference] IC50 (pmol/L)

Dichlorvos

Alburnus alburnus [23] 0.63

Leuciscus idus [23] 0.31

Esox lucius [23] 0.31

Colossoma macropomum [14]° 0.36

Colossoma macropomum [present study] 0.04
Chlorpyrifos

Cyprinus carpio [27] 810

Colossoma macropomum [present study] 7.6
Diazinon

Oncorhynchus mykiss [26] 2.5

Danio rerio [26] 20.0

Poecilia reticulata [26] 7.5

Cyprinus carpio [26] 0.2

Colossoma macropomum [present study]® No effect
Temephos

Oreochromis niloticus, Sarotherodon galilaea, No effect

Alestes nurse, and Schilbe mystus [32]

Colossoma macropomum [present study] No effect
TEPP

Colossoma macropomum [present study] 3.7
Carbaryl

Colossoma macropomum [present study] 33.8
Carbofuran

Cyprinus carpio [27] 0.45

Colossoma macropomum [present study] 0.92

#1C50 = insecticide concentration capable of inhibiting 50% of enzyme
activity; TEPP = tetraethyl pyrophosphate.

® Pesticide purity degree varied from 97.4 to 99.9%.

¢ Commercial formulation.

4Up to 1.0 ppm.

toxicity to mammals and other nontarget organisms, and is
commonly used in potable water treatment against mosquito
larva vectors of diseases in public health campaigns [31].
Tetraethyl pyrophosphate displayed an IC50 value of
3.7 pmol/L. This is an organophosphorus known to be highly
toxic to mammals; it is the biotransformation product of another
pesticide, which is classified as extremely hazardous by
the World Health Organization [32]. Table 3 displays its in
vivo LC50 for other fish species provided by the U.S. Environ-
mental Protection Agency Ecotoxicology Database (http://cfpu-
b.epa.gov/ECOTOXY/), which reflects the high toxicity of this
compound (6.8h at 25°C) [33]. Tetraethyl pyrophosphate is
currently classified as an obsolete pesticide [32], but in fact is
responsible for part of the toxic action in some organophosphate
products, such as diazinon, chlorpyrifos, parathion, and
demeton, where it appears as an impurity or breakdown product
due to the manufacturing process or unsuitable storage con-
ditions [33]. The two analyzed carbamate insecticides, carbaryl
and carbofuran, presented IC50 values of 33.8 wmol/L and

Table 3. TEPP LC50 in several fish species™®

Species TEPP (%) LC50 (mg/L)
Carassius auratus 40.0 21.00
Gambusia affinis 40.0 2.84
Ictalurus punctatus 40.0 1.60
Lepomis macrochirus 40.0 0.79
Pimephales promelas 40.0 1.00
Poecilia reticulata 40.0 1.80
Oncorhynchus tshawytscha 40.0 0.31

4 TEPP = tetraethyl pyrophosphate; LC50 = concentration resulted in death
for half of the animals.
" Source: U.S. Environmental Protection Agency ECOTOX Database.
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0.99 pmol/L, respectively. The latter IC50 value is similar to
that reported by Dembélé et al. for in vitro, Cyprinus carpio
[26], namely, 0.45 pmol/L (0.1 ppm).

The monitoring of pesticides such as organophosphates and
carbamates can be evaluated by using organisms in aquatic
environments (in vivo assays). In these cases, tanks, animal
manipulation, feeding demands, and specially trained personnel
are required. Otherwise, animals can be collected from their
environment and these toxic components analyzed in their
tissues. The use of enzymes, namely, cholinesterases, allows
in vitro procedures that are less costly, less time-consuming,
less laborious, and more sensitive. The analysis of reactions can
take place without interfering compounds present in tissues or
animal sensors that could interact with anticholinesterasic
agents, thereby causing false positives or negatives. Moreover,
biosensors based on these enzymes can be built and used in
environmental monitoring. The findings described here confirm
previous findings [14] related to the sensitivity of AChE
from the brain of the juvenile Amazonian tambaqui towards
dichlorvos, and its possible use as the biocomponent of in vitro
sensor for this pesticide, and also for chlorpyrifos, carbaryl, and
carbofuran.
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