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ABSTRACT

The goal of this study was to ascertain why the production of variable seediness is advantageous for Attalea phalerata palms. Our hypothesis was that variation reduces
seed predation by the spiny rats Thrichomys pachyurus and Clyomys laticeps. Although there is a positive correlation between endocarp size and number of seeds,
endocarps sometimes contain more or fewer seeds than expected; palms bluff about the number of seed per endocarp. Therefore, rats do not know how many seeds an
endocarp contains. To model rats’ predating behavior, we applied Charnov’s Marginal Value Theorem. The model shows that rats attack endocarps only when the
energy gain is higher than the energy available in the habitat. Hence, it is not advantageous to eat all the seeds inside an endocarp. This explains why 45 percent of forest
endocarps and 35 percent of savanna endocarps were still viable after predation. We then applied the model to two simulated endocarp populations with less variability
in the number of seeds per endocarp size and determined that viable diaspores after predation were reduced to 15 percent. With less variability, palms cannot bluff
about the number of seeds inside endocarps and predators can predict accurately how many seeds they should try to eat. Uncertainty about the number of seeds
diminished predation but gave selective advantage to multiseeded fruits. Therefore, the bluffing strategy would be evolutionarily stable only if it were counterbalanced
by other forces. Otherwise, predators would win the bluffing game.

Abstract in Portuguese is available at http://www.blackwell-synergy.com/loi/btp.
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IN PLANTS WITH INDEHISCENT FRUITS there are advantages in brood

reduction: from the standpoint of offspring, it would reduce rivalry

and concentrate maternal resources on fewer seeds. From the ma-

ternal standpoint, seed dispersal may be enhanced and the proba-
bility of successful seedling establishment may increase (Augspurger

1986; Uma Shaanker et al. 1988; Casper 1990; Casper et al. 1992;

Arathi et al. 1996, 1999; Akhalkatsi et al. 1999; Sassaki & Felippe

1999). Moreover, because fruit set is resource-limited (Stephenson

1981, McDade & Davidar 1984, Bronstein 1988, Gorchov 1988,

Ehrlen 1992), resources allocated to produce multiseeded diaspores

would eventually lead to a reduction of the total number of fruits

and a decline of maternal fitness. Fewer seeds per fruit allow for a
compensatory increase in seed size or number of fruits (Adams

1967, Primack 1978, Marshall et al. 1985). On the other hand, a

few studies indicate that plants may experience reduction in seed

predation when they produce multiseeded fruits (Downhower &

Racine 1976, Bradford & Smith 1977, Heithaus et al. 1982, Gar-

rison & Augspurger 1983). Although the authors observed that

brood reduction would enhance dispersal distance or increase the

probability of seedling establishment, their results also indicate that
within multiseeded fruits the probability of attack per seed is lower

than in single-seeded fruits, increasing germination success. Thus,

seed predation may play a role in maintaining the production of

multiseeded fruits.

The fruit of Attalea spp. palms (species formerly classified un-

der the genus Scheelea are now all synonymized under the genus

Attalea; Henderson et al. 1995) is a drupe with three layers: a thick

exocarp covering an oily, fibrous mesocarp, which in turn encloses a
hard woody endocarp. Seeds are enclosed in the hard endocarp and

encapsulated individually. Fruits are the unit of dispersion and

eventual seedlings from the same endocarp are strong rivals because

they germinate near each other (1–4 cm), but only one of them may

eventually become a successful adult plant. Attalea spp. seeds are
intensely consumed by bruchids or rodents, usually involving pre-

dation of much more than 70 percent of the diaspores ( Janzen

1971a, Wilson & Janzen 1972, Bradford & Smith 1977, Wright

1983, Forget et al. 1994, Quiroga-Castor & Roldan 2001, Silvius

2002, Silvius & Fragoso 2002, Pimentel & Tabarelli 2004).

Attalea butyracea (former Scheelea zonensis and Scheelea rostrata;

Henderson et al. 1995) populations in Panama and in Costa Rica

have fruits with one seed, but a small proportion of the fruits have two
or three seeds. Bradford and Smith (1977) found that the survival rate

of multiseeded fruits after pre-dispersal predation is much greater than

that of one-seeded fruits. They observed that predators had to attack

more than once a multiseeded nut to kill all the seeds inside. As a

result, seed survivorship increases with seed number. The authors

proposed that multiseeded fruits are a strategy to reduce predation by

bruchids. However, we believe that the production of multiseeded

fruits per se may not be sufficient to reduce predation in the long term.
Within a palm population consistently producing two-seeded fruit,

animals could learn to attack each endocarp twice or even be selected

to do this, as it would increase their fitness. This would happen be-

cause it is energetically favorable to deplete each fruit before investing

in searching another endocarp. In that case, palms producing two-

seeded fruit would lose their advantage.

In this study, we use Charnov’s Marginal Value Theorem (1976)

to demonstrate that variation in the number of seeds, rather than the
absolute number of seeds, is what reduces predation on Attalea phale-
rata (Mart. ex Spreng) diaspores by the spiny rats Clyomys laticeps and

Thrichomys pachyurus in Brazil’s Pantanal. The fruits of the studied

species contain from one to five seeds and this variation is previously
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revealed by the number of carpels per flower (C. Camilo-Alves and

G. Mourão, pers. obs.), indicating that this characteristic is intrinsic to

the plant and is not caused by other factors such as pollen restrictions.

The goal of this study was to test if a variable number of seeds per
endocarp reduce seed predation by deceiving predators. The hypoth-

eses are: (1) it is not possible to accurately predict the number of seeds

inside an endocarp only by its size, and (2) the predictability of the

number of seeds affects seed predation. We compared this strategy

with a bluffing game and considered some factors to determine if this

trait is an evolutionarily stable strategy.

METHODS

STUDY SITE.—The Pantanal is a seasonal floodplain located in west-

ern Brazil, close to the geographic center of South America, about

100 m asl. The weather is partly humid tropical, with an average

annual temperature of 251C (Calheiros & Fonseca 1996). This

study was conducted during May 2002 on Nhumirim and Porto

Alegre Ranches (181590 S, 561370 W; Corumbá, Mato Grosso

do Sul, Brazil). These ranches comprise a mosaic of flooded grass-
lands, savannas, scrub savannas, forests, and several permanent and

temporary ponds.

STUDY SPECIES.—The palm A. phalerata (Arecaceae) occurs in

Bolivia, Peru, Brazil, and Paraguay in low dry open areas, disturbed

forests and rainforests (Henderson et al. 1995). It grows abundantly

in the Pantanal forests, sometimes in monospecific formations

known locally as acurizais (Pott & Pott 1994). One plant may
produce 8–12 infructescenses at a time, with 350–500 fruits

each (Quiroga-Castor & Roldan 2001), which drop in winter

(May–September; Pott & Pott 1994). Fruits within the same plant

have one to five or six seeds, depending on population location

(Pott & Pott 1994, Quiroga-Castor & Roldan 2001).

Hyacinth macaws (Anodorhynchus hyacinthinus; Guedes &

Harper 1995), bruchid beetles (e.g., Pachymerus cardo; Quiroga-

Castor & Roldan 2001), and spiny rats such as T. pachyurus and
C. laticeps (Nascimento et al. 2004) are the few animals reportedly

feeding on seeds from A. phalerata palms. We have also observed

the Neotropical red squirrel Sciurus eastuans feeding on A. phalerata
seeds, although this species is uncommon in the study site. Hyacinth

macaws crack open endocarps in the center, destroying all the seeds,

while rodents and bruchids destroy each seed individually.

Clyomys laticeps is a highly fossorial species that lives in

colonies in savanna environments (Eisenberg & Redford 1999).
These rodents dig characteristic burrows (Lacher & Alho 1989),

which are found throughout the study area. Thrichomys spp. are

generally associated with rocky outcrops (Eisenberg & Redford

1999), although T. pachyurus was observed in areas of sandy soils

without rocks (Lacher & Alho 1989). There are no reports of fosso-

rial habits for this species. In the Pantanal, both species occur in

savannas and forest edges (Lacher & Alho 1989) and use A. phale-
rata fruits as an important food resource (Pott & Pott 1994).

DATA COLLECTION.—We demarcated 20 strips, each 0.25� 10 m in

the vicinity of adult palms and caught all the intact A. phalerata

endocarps falling within the transect. All the pulp had already been

removed by frugivores, but the endocarps were not attacked by

spiny rats. They were clean and intact. We measured the length and

diameter of each endocarp and then broke it open to count the
seeds it contained.

We located 20 C. laticeps burrows at least 200 m away from

each other. At the entrance to each burrow we collected up to 10

gnawed endocarps that were probably discarded when the spiny rats

cleaned their burrows. To compare the strategies of rats living in

different habitats, half the samples we collected came from forest

patches and the other half from shrub-savannas. We counted the

number of seeds eaten in each endocarp and scarifications indicat-
ing unsuccessful attempts to eat a seed. The sum of successful and

unsuccessful attempts indicated the intensity of predation. To esti-

mate endocarp length and diameter, we rebuilt them with clay, then

measured them and broke them open to count the seeds. We set up

Sherman live traps at burrow entrances to ascertain which species of

rodents were active in the field under study.

DATA ANALYSIS.—The size of endocarps collected by spiny rats and
endocarps caught in the vicinity of the palms was compared by

analysis of variance (ANOVA) to test the hypothesis that rats se-

lected larger endocarps. A graph analysis suggested a correlation

between endocarp size and the number of seeds it contained, albeit

with considerable variability (Fig. 1). Therefore, we used logistic

regression to model the probability of there being one (Px1 ), two

(Px2 ), three (Px3 ), four (Px4
), or five seeds (Px5 ), according to endo-

carp size. The logistic regression analysis detected no differences in
size between four and five-seeded fruits (t4, 676 =� 0.684,

P = 0.494), hence we pooled together the probability of there being

four or five seeds (Px4þ5).

We used ANCOVA to analyze if spiny rats attacked larger

endocarps more intensively and if the intensity of predation by

forest and savanna rats differed. To check for the assumption of

FIGURE 1. Relation between size and number of seeds of Attalea phalerata

endocarps, collected during May 2002 in Brazilian Pantanal. There is a tendency

for larger endocarps containing more seeds, albeit with a considerable overlap.
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homogeneity of slopes, we tested a preliminary model including the

term of interaction between the independent variables (Wilkinson

2004). Because this term was not significant (F3, 320 = 1.21,

P = 0.272), we proceeded to the ANCOVA model.
We conducted a binary logistic regression to analyze if multi-

seeded endocarps were more likely to escape predation and which of

the habitats contained more viable diaspores.

MARGINAL VALUE THEOREM MODEL.—To test our hypothesis, we

built a model based on the Marginal Value Theorem (Charnov
1976), which explains the use of patchy habitats by an optimal pre-

dator. Briefly, the theory predicts the behavior of a predator that

encounters food items within a patch, but spends time traveling

between patches. When the predator is in a patch, it reduces the

availability of food so the food intake rate decreases over time. The

model calculates the ideal time for the predator to leave its present

patch, even if food is still available, and move to another one to

maximize the net rate of energy intake. We considered each endo-
carp a foraging ‘patch’ containing food (seeds). There were several

patch types of different sizes.

Adapted from the Marginal Value Theorem, our equation is as

follows:

fSiðsÞ � G � ½1� SiðsÞ� � Cg < fðSðPi �H iÞ � LÞ=
ðSðPi � RiÞ þ LÞg:

The first term quantifies the energy assimilated by a predator

while attacking an endocarp, while the second term quantifies the
energy available in the habitat. When the first term is lower than the

second term, the equation indicates when a predator should stop

attacking the endocarp and search for another.

The model has the following variables: P(i), proportion of

endocarps of size I; Si(s), proportion of endocarps of size i that have

s seeds; G = 1, net gain of energy from eating a seed; C, energy cost

per unit of scarification (this value is proportional to the net energy

gained from eating a seed [G = 1] and is calculated by iteration. We
tested values between 0.01 and 0.9 and calculated the difference

between observed and expected values, selecting the one that

minimized the sum of the squared residuals. This cost is related to

the energy and time spent in unsuccessful attempts to eat a seed.);

Ei(s) = Si(s)�G� [1� Si(s)]�C, assimilated energy when scarify-

ing an endocarp of size i 1, 2, 3 or 4 times (s); CEi(s) =SEi(s),
cumulative assimilated energy when scarifying an endocarp of size i
1, 2, 3 or 4 times (s); Hi, highest CEi(s) for each endocarp of size I;
Ri, optimal number of scarifications according to Hi for each

endocarp of size I; L, cost of searching for endocarps (this is

calculated by iteration and is proportional to the energy gained

from eating a seed [ = 1]. This value varies according to habitat type

and is calculated as C, above. This cost represents the energy and

time spent searching for endocarps. It also involves endocarp

availability); AR = L 1S(Pi�Ri), average optimal scarifications;

AE =S(Pi�Hi), average assimilated energy when applying the
optimal number of scarifications Ri; and Eh = (AE� L)/AR, average

energy of the habitat (indicates the average amount of energy a

predator can assimilate from each seed).

To maximize its energy intake, a predator should attack the next

seed of the same endocarp if the probability of available energy is

higher than Eh. When Ei falls below Eh, an optimal predator should

attack another endocarp. The point where Ei = Eh indicates the
optimal average number of scarifications for an endocarp of size i.

Using the logistic regression model, which estimated the

probability of having 1, 2, 3 or 415 seeds per endocarp size, we

simulated two sets of populations with less variation in diameter for

each number of seeds. To simulate the new data sets, we generated

normal random distributions having the same mean diameter of

sampled endocarps with 1, 2, 3 or 415 seeds. The simulated

populations had the same original means, but the first set was
computed to have 50 percent of the standard deviation and the

second 25 percent of the original standard deviation.

Using the parameters found for predation in the forest, we

applied the model to the two simulated populations to verify how

predation intensity would change if the uncertainty about the

number of seeds were reduced.

Considering rats as optimal predators, we used the expected

average scarification function, which was obtained through the
Marginal Value Theorem applied to each simulated population, to

calculate the proportion of diaspores surviving predation according

to the simulated conditions (see example in Fig. 2A) For example,

an optimal predator that scarified 20 mm diam endocarps on

average 2.23 times would scarify all the endocarps at least twice

and 23 percent of them three times. Therefore, all one and two-

seeded endocarps of that size would be attacked, 77 percent of

three-seeded endocarps would have one seed not attacked, and all
four and five-seeded endocarps would have one or more seeds

viable. Considering their relative proportions in the endocarp

population, we would thus determine the proportion of total

endocarps predated after the attack.

RESULTS

At the time of our study, we did not capture any C. laticeps,
although we found endocarps inside their burrows. We only caught

three individuals of T. pachyurus with the Sherman traps, two in

forest habitat and one in the savanna.

We collected 356 intact endocarps and 320 predated ones,

making a total of 676. Seven percent of all the diaspores were one-

seeded, 26 percent were two-seeded, 45 percent were three-seeded, 22

percent were four-seeded and only three endocarps were five-seeded.

Size distribution had normal shape with mean 20.7� 2.7 mm.
According to ANOVA, spiny rats did not select endocarps

according to size (F2, 676 = 2.08, P = 0.126; Fig. 3). Although

logistic regression showed that larger endocarps contain more seeds

(w2 = 349, df = 3, P o 0.001), endocarps with different seed counts

showed a certain extent of overlapping size distribution. For

example, 60 percent of the endocarps of intermediate diameter

(21.5 mm) contained three seeds, but 15 percent had fewer and 25

percent held more than three seeds (see Fig. 4A).
ANCOVA indicated that the frequency of attacks by spiny rats

was directly correlated to the size of endocarps (F2, 320 = 47.1,

Po 0.001). Savanna rats attempted to attack seeds more frequently

Strategies Used to Avoid Seed Predation 3



than forest rats (F2, 320 = 10.2, P = 0.002). According to binary

logistic regression, endocarp viability was positively correlated with

the number of seeds they contained (t = 5.79, N = 320, P o 0.001)

and with habitat (t =� 2.91, N = 320, P = 0.004).

Applying the Marginal Value Theorem, the energy cost per

unit of scarification was C = 0.5 in both forest and savanna. The
cost of search was L = 0.01 in forest and L = 0.2 in savanna. When

higher cost values were applied, the model indicated that endocarps

would be attacked more intensely, while the opposite applied to

lower values, albeit in the same proportion for each size. Graphi-

cally, only the point of origin changed, while the shape of the curve

remained the same. When the probability of assimilating energy

decreased to Eh = 0.81 in forest and to Eh = 0.70 in savanna, an

optimal predator would search for a new endocarp (Fig. 5).

Based on the Marginal Value Theorem, our model fit the

observed data (Fig. 6). The model indicated that, after predation,

46 percent of diaspores remained viable under forest conditions
and 31 percent under savanna conditions. This is close to the

recorded findings of 47 percent and 35 percent of surviving

diaspores found in the forest and savanna, respectively. When we

simulated two data sets with less variability (see Fig. 4) under forest

conditions, our model indicated that viable diaspores after ‘preda-

tion’ decreased to 36 and 15 percent, respectively (Fig. 2).

DISCUSSION

According to the Marginal Value Theorem, predator choices are

based on the time elapsed between prey captures. The main

difference of our model is that predator choices are based on the

probability of capture. Our model can therefore be compared with

a bluffing game, whose strategy is based on the probability of eating

several seeds, the bluffing capacity of the other player (variation in

seed number) and the risk that the player may assume (available

energy of the habitat). The probability of finding an edible seed
depends on the variation in the number of seeds according to

endocarp size. Although larger endocarps usually contained more

seeds, the palm bluffed with some uncertainty about the correct

number of seeds. Thus, optimal predators have to play with the

probabilities. The chance of finding a seed must be balanced against

the cost of spending time and energy. According to the model, after

the predator has successfully consumed a seed, it should attempt to

consume another seed from the same endocarp only if the possible
resulting net energy gain is higher than the average energy available

in the habitat. This statement leads to two consequences: first,

larger endocarps should be attacked more intensively because, on

FIGURE 2. Relation between calculated scarification per endocarp size and viable diaspores in (A) the original sample collected during May 2002 in the Brazilian

Pantanal, and in two simulated populations with (B) 50 percent and (C) 75 percent less variation in the number of seeds per size, respectively. The area above the

expected average scarification curve (area with vertical lines) indicates the percentage of viable diaspores after predation, e.g., when rats scarify 20 mm diam endocarps

on average 2.23 times, they predate 100 percent of the one- and two-seeded endocarps, 23 percent of the three-seeded endocarps and 0 percent of the four-seeded

endocarps.

FIGURE 3. Size distribution of three Attalea phalerata endocarp samples

collected during May 2002 in Brazilian Pantanal. The samples correspond to

intact endocarps collected in the vicinity of the parent palms, predated

endocarps collected in savanna and predated endocarps collected in forest. The

three samples have the same size distribution.
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average, they contain more seeds; second, intensity of predation
should be greater in habitats with less available energy. In fact, we

observed that larger endocarps were attacked more often than

smaller ones and that predation was more intense in the savanna.

This suggests that the rats’ behavior was close to optimal and that

the Marginal Value Theorem can be applied to test predation by

spiny rats in simulated endocarp populations. The calculated cost

of scarifying remained the same in both habitats, but the cost of

searching was greater in savanna than in forest. Savanna predators
are not as close to seed sources as forest predators, because they

depend on palms distributed sparsely in the savanna and on small

numbers of endocarps occasionally dispersed by large animals such

as cattle (Soriano et al. 1994) and feral pigs (Galetti et al. 2003,
Donatti et al. 2005). Therefore, it is probable that more time and

energy is spent searching in this habitat than in forest. Consequently,

there is less energy available in savannas and predators from this

habitat may assume higher costs than predators from forest, attacking

endocarps more intensely (see Fig. 5). However, this study involved

two species of rodents. We detected C. laticeps because of its

characteristic burrows, but only T. pachyurus were caught in the

traps. In previous studies we noted that both species feed on
A. phalerata seeds but we could not distinguish differences in their

gnawing marks. We did not study each species separately, and

although we do not know if predation intensity differs among species,

we do know that the two species forage in both habitats, hence our

findings involve combined data of the two species. The savanna held

few viable diaspores after predation, due to the more intense

predation in this habitat. Nevertheless, about one third and one half

of the diaspores predated, respectively, in savanna and forest, were
still able to generate seedlings, particularly multiseeded endocarps.

The proportion of viable diaspores would probably be much

lower if the variability were reduced, as in the simulated data.

Doing an analogy to a bluffing game, when the number of seeds is

FIGURE 4. Proportion (Prop) of endocarps with 1, 2, 3 and 415 seeds per size in (A) the original sample collected during May 2002 in the Brazilian Pantanal, and in

two simulated populations with (B) 50 percent and (C) 75 percent less variation in the number of seeds per size, respectively.

FIGURE 5. Optimal average number of scarifications for a 20 mm diam

endocarp as a function of habitat. Horizontal lines indicate the average energy

available per endocarp in forest and savanna relative to the energy from one seed

( = 1). The dashed line indicates assimilated energy when a 20 mm diameter

endocarp is scarified 1–4 times. The point where lines intersect indicates the

optimal number of scarifications for that endocarp size.

FIGURE 6. Comparison of average scarifications observed (� ) per endocarp

size and optimal (�) average scarifications calculated by the Marginal Value

Theorem, for (A) forest and (B) savanna predators.
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not unpredictable (prey players cannot bluff), predators are able to

know how many seeds there are inside an endocarp (predators know

what cards are dealt) and how many scarifications they should attempt

(what they should go after). Scarification would be more correlated to
the number of seeds and fewer diaspores would survive predation.

Dispersal ability and competition among siblings are strong

factors that promote brood reduction. However, predation plays a

major role in determining patterns in life history, and traits that

affect the ability to avoid predation should therefore be under

strong selection (Abrams 2000). Earlier studies have generally

reported that the main predators of Attalea spp. are bruchid beetles,

although they are only pre-dispersal predators ( Janzen 1971a,
Wilson & Janzen 1972, Bradford & Smith 1977, Forget et al.
1994) that attack endocarps clustered in palm forests. Fragoso

(1997) observed that post-dispersed Attalea spp. seeds, free of

bruchid predation and of competition with the parent palm, are

more likely to generate a new plant than nondispersed seeds. If

seeds dispersed in savannas have more impact on the palms’ fitness,

savanna spiny rats will probably have a stronger effect on palm

strategies to avoid seed predation than forest spiny rats. Because
predators from the savanna attack endocarps intensely, palms

should respond with more seeds per fruit.

Our study was carried out in a habitat mosaic, with patches of

palm forests surrounded by savanna. These palm populations are

more subject to savanna predators than palms forming large forests.

In future studies, it would be interesting to compare the production

of multiseeded fruits by palm populations from these different

habitats. It would be reasonable to expect to find more multiseeded
fruits in patchy habitats than in large forests. Further studies about

the role of predation in the maintenance of multiseeded fruits in

Attalea spp. populations must consider bruchid beetle predation,

but we believe the same logic can be applied to them. Various

studies found that bruchids usually lay one egg on each endocarp

(Wilson & Janzen 1972, Bradford & Smith 1977); however, we

observed several endocarps predated by more than one bruchid

larva. Palms may also be playing a bluffing game with bruchids.
Finally, does this bluffing game have a winner? Palms that are

preyed upon will succeed if they are able to maintain variation in

the population, therefore keeping seed predation at the same levels

they have already achieved. In other words, is variation an

evolutionarily stable strategy? Our results showed that multiseeded

endocarps have a selective advantage, because each additional seed

increases the probability of surviving predation. Therefore, palms

producing multiseeded endocarps may have a selective advantage.
In our sample, we found one to five seeds per endocarp, with three

seeds on average. In ad hoc observations of A. phalerata populations

in the southern Amazon, we found one to six seeds per endocarp.

Other populations in the Beni Biological Station, Bolivia, also

contain up to six seeds per endocarp (Quiroga-Castor & Roldan

2001). If seed predation is driving A. phalerata populations to

produce more multiseeded endocarps, this interaction may lead to a

Red Queen Strategy (Van Valen 1973), an ongoing process of
reciprocal coadaptation, in which the evolving parties continually

respond and counterrespond to the selection pressures imposed by

each other (Lythgoe & Read 1998). Red Queen assumes that the

more extreme a phenotypic trait is, the better it is, and that there are

no constraints on the growth of such a phenotypic trait value. If

there are no constraints in increasing the number of seeds per fruit,

species will reach an equilibrium at which they all continually
evolve to neutralize each other’s improved counteradaptations, and

their ecological relationships remain fixed (Rosenzweig et al. 1987),

i.e., variation in the number of seeds per fruit is maintained.

However, it is more realistic to assume that there is a biological

limit to the number of seeds per fruit. In that case, the bluffing

strategy would only be stable if other forces rendered the produc-

tion of few-seeded fruits advantageous. This may occur, for

example, when there is a tradeoff between the production of large
quantities of fruits and multiseeded fruits. If the survival of each

individual seed increases when more endocarps are available (pre-

dator satiation hypothesis; Janzen 1971b, Kelly & Sork 2002), the

production of large numbers of few-seeded fruits is also selectively

advantageous and variation is maintained. Otherwise, there is a

tendency for more multiseeded rather than few-seeded fruits to

be produced until the limit is reached, reducing the variability in

the number of seeds per fruit and increasing its predictability. The
strategy will thus fail and predators will have more seeds available

to them, thereby winning the bluffing game.

ACKNOWLEDGMENTS

We thank Embrapa/Pantanal for logistic support and CNPq/Peld

(n 520056/98-1) for financial support. William Magnusson made

many useful suggestions and Arnaud Desbiez and Dustin Chase

Perry improved the English of the draft manuscript.

LITERATURE CITED

ABRAMS, P. A. 2000. The evolution of predator-prey interactions: Theory and
evidence. Annu. Rev. Ecol. Syst. 31: 79–105.

ADAMS, M. W. 1967. Basis of yield component compensation in crop plants with
special reference to the field bean, Phaseolus vulgaris. Crop. Sci. 7: 505–510.

AKHALKATSI, M., M. PFAUTH, AND C. L. CALVIN. 1999. Structural aspects of
ovule and seed development and nonrandom abortion in Melilotus
officinalis (Fabaceae). Protoplasma 208: 211–223.

ARATHI, H. S., K. N. GANESHAIAH, R. UMA SHAANKER, AND S. G. HEGDE. 1996.
Factors affecting embryo abortion in Syzygium cuminii (L.) Skeels
(Myrtaceae). Int. J. Plant. Sci. 157: 49–52.

ARATHI, H. S., K. N. GANESHAIAH, R. UMA SHAANKER, AND S. G. HEGDE. 1999.
Seed abortion in Pongamia pinnata (fabaceae). Am. J. Bot. 86: 659–662.

AUGSPURGER, C. K. 1986. Double- and single-seeded indehiscent legumes of
Platypodium elegans: Consequences for wind dispersal and seedling
growth and survival. Biotropica 18: 45–50.

BRADFORD, D. F., AND C. C. SMITH. 1977. Seed predation and seed number in
Scheelea palm fruits. Ecology 58: 667–673.

BRONSTEIN, J. L. 1988. Limits to fruit production in a monoecious fig:
Consequences of an obligate mutualism. Ecology 69: 207–214.

CALHEIROS, D. F., AND W. C. JR. FONSECA. 1996. Perspectivas de estudos
ecológicos sobre o Pantanal. EMBRAPA-CPAP, Documentos 18.
Brazilian Agricultural Research Corporation, Corumbá, MS, Brazil.
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STEPHENSON, A. G. 1981. Flower and fruit abortion: Proximate causes and
ultimate functions. Annu. Rev. Ecol. Syst. 12: 253–279.

UMA SHAANKER, R., K. N. GANESHAIAH, AND K. S. BAWA. 1988. Parent-offspring
conflict, sibling rivalry, and brood size patterns in plants. Annu. Rev.
Ecol. Syst. 19: 177–205.

VAN VALEN, L. 1973. A new evolutionary law. Evol Theory 1: 1–30.
WILKINSON, L. 2004. SYSTAT—Systems for Statistics. Version 11. Systat

Software Inc, Chicago, Illinois.
WILSON, D. E., AND D. H. JANZEN. 1972. Predation on Scheelea palm seeds by

bruchid beetles: Seed density and distance from the parent palm.
Ecology 53: 954–959.

WRIGHT, S. J. 1983. The dispersion of eggs by a bruchid beetle among Scheelea
palm seeds and the effect of distance to the parent palm. Ecology 64:
1016–1021.

Strategies Used to Avoid Seed Predation 7

http://www.earthwatch.org/images/Pdfs/AboutUs/Conservation/CRI_ANNUAL_REPORT_PANTANAL_2005.PDF
http://www.earthwatch.org/images/Pdfs/AboutUs/Conservation/CRI_ANNUAL_REPORT_PANTANAL_2005.PDF
http://www.earthwatch.org/images/Pdfs/AboutUs/Conservation/CRI_ANNUAL_REPORT_PANTANAL_2005.PDF
http://www.earthwatch.org/images/Pdfs/AboutUs/Conservation/pantanal_03.pdf
http://www.earthwatch.org/images/Pdfs/AboutUs/Conservation/pantanal_03.pdf
http://www.earthwatch.org/images/Pdfs/AboutUs/Conservation/pantanal_03.pdf
http://www.cpap.embrapa.br/agencia/simpan/sumario/artigos/asperctos/pdf/bioticos/645RB-Acuri%20cutia-OKVisto.pdf
http://www.cpap.embrapa.br/agencia/simpan/sumario/artigos/asperctos/pdf/bioticos/645RB-Acuri%20cutia-OKVisto.pdf

