## **Short Communication**

## Comparison of Aspergillus niger spore production on Potato Dextrose Agar (PDA) and crushed corncob medium

Virna Luiza de Farias,<sup>1,3</sup> Karina Ximenes Monteiro,<sup>1,2</sup> Sueli Rodrigues,<sup>2</sup> Fabiano André Narciso Fernandes,<sup>3</sup> and Gustavo Adolfo Saavedra Pinto<sup>1,\*</sup>

<sup>1</sup> Brazilian Agricultural Research Corporation, Rua Dra. Sara Mesquita, 2270, Pici, 60511–110 Fortaleza/CE, Brazil <sup>2</sup> Universidade Federal do Ceará, Departamento de Tecnologia de Alimentos, Av. Mister Hull, 2977, Campus do Pici, 60356–000 Fortaleza/CE, Brazil <sup>3</sup> Universidade Federal do Ceará, Departamento de Engenharia Química, Campus do Pici,

Bloco 709, 60455-760 Fortaleza/CE, Brazil

(Received January 7, 2010; Accepted April 30, 2010)

Key Words—Aspergillus niger; corncob; low-cost medium; solid-state fermentation

Minimizing the number of generations through which a culture passes from the initial culture until its recovery at the final stage of fermentation is a general principle. For filamentous fungi, a large number of generations can cause the appearance of low-yield producing variants and mutant strains, which are generally genetically unstable. The use of successive sub-cultures can decrease the degree of relationship, causing a decrease in productivity. In order to reduce problems with strain deterioration, all cultures maintained as stock-cultures must be prepared from only one spore of the parental strain. From stock-culture, the microorganism is inoculated in tubes containing agar solidified in an inclined position, resulting in a first-generation culture. For preparation of working-inocule, spores of the first-generation are suspended in a Tween solution and used to inoculate Petri plates containing agar. The inoculation must be carried out over the total agar surface; otherwise growth will be irregular and a uniform culture will not be obtained. Spores produced in

Tel: +55 85 33917241

E-mail: gustavo@cnpat.embrapa.br

the plates are then recovered in Tween solution and used for inoculations of working-media (McNeil and Harvey, 1990).

Several articles have applied agarized medium as an inoculum to *Aspergillus niger* (Ates et al., 2006; Dinu et al., 2007; Djekrif-Dakhmouche et al., 2006; El-Enshasy et al., 2006; Mlakar and Legiša, 2006). The disadvantages in applying agar medium are low spore production and difficulties in obtaining spores, such as defixing of agar from plates during mechanical shaking and the loss of material when transferring the suspension to another recipient.

Solid-state fermentation allows the production of aerial conidia of biological control fungic agents (Ye et al., 2006). Semi-solid media has been developed and tested in strains of different genera, such as *Beauveria*, *Trichoderma* and *Metarhizium*, and this technology was considered more appropriate to large-scale production of fungic spores (Cavalcante et al., 2008; Kang et al., 2005; Prakash et al., 2008; Roussos et al., 1991). Semi-solid culture media are predominantly used in Brazil in large-scale production of entomopathogenic fungi, such as *Metarhizium anisopliae*, which was traditionally done using cooked rice as the substrate (Faria and Magalhães, 2001; Loureiro et al., 2004). Bianchi et al. (2001) have studied the production of

<sup>&</sup>lt;sup>\*</sup> Address reprint requests to: Dr. Gustavo Adolfo Saavedra Pinto, Brazilian Agricultural Research Corporation, Rua Dra. Sara Mesquita, 2270, Pici, 60511-110 Fortaleza/CE, Brazil.

Aspergillus niger spores in corncob moistened with a sucrose solution for inoculum formation for the production of citric acid.

The objective of this work was to test a low-cost medium for production of *Aspergillus niger* spores and compare it with an agarized medium.

Aspergillus niger CNPAT 001, isolated from cashew apple by the Laboratory of Phytopathology of Embrapa Tropical Agroindustry (Fortaleza/CE, Brazil), was used in this work. The stock culture was maintained in sterile soil at  $-18^{\circ}$ C before use (Martin, 1964).

Potato Dextrose Agar (PDA) was obtained from Himedia Laboratories (India). Bacteriological agar, aniline blue, glycerin and lactic acid were obtained from Vetec. A commercial concentrated suspension of thiabendazole (485 g/L) (Tecto SC) was obtained from Novartis Biociências S.A.

PDA powder (39.0 g) was dissolved in 1 L of distilled water, according to the product recommendations. Water-agar (WA) was prepared by dissolution of 20 g of bacteriological agar in 1 L of distilled water. After dissolution, 10  $\mu$ l of commercial concentrated suspension of thiabendazole was added. All agarized media were autoclaved at 121°C for 15 min.

Corncob was ground using a knife mill with a 6 mm mesh sieve after drying in an aerated stove at 100°C for 4 h. To 100 g of crushed corncob, 130 ml of 5.6% peptone solution was added. After vigorous homogenization, 10.5 g of medium was aliquoted in 125 ml Erlenmeyer flasks, and then sterilized at 121°C for 30 min.

A solution of aniline blue was prepared by dissolution of 0.5 g aniline blue and 62 ml of distilled water, followed by addition of 875 ml of 80% lactic acid and 63 ml of glycerin according to the method described by Weber et al. (2004).

The microorganism was aseptically transferred from stock-culture into tubes containing inclined PDA. The inoculated tubes were incubated at  $30^{\circ}$ C for 7 days and were conserved at  $4^{\circ}$ C.

A 0.3% sterile solution of Tween 80 was added to a tube containing activation culture. Using a platinum loop, spores were manually removed from the agar surface. A sample of 0.1 ml of the suspension was transferred to 90 mm Petri dishes containing PDA, while 1.0 ml of the same solution was added to corncob medium, a solid-state medium. Media were incubated in the dark at 30°C for 10 days. Four samples of each culture were collected every 2 days. A 0.3% sterile solution of Tween 80 was used to recover the spores. An amount of 40 ml of the Tween 80 solution was added to the Erlenmeyer flasks containing corncob culture and 20 ml of the Tween 80 solution was added to the plates containing PDA.

The volume of spore suspension was measured using a 100 ml graduated cylinder. Spore concentration was determined by counting in a Neubauer Chamber, with the help of an optical microscope under a magnification of  $400 \times$  (Bier et al., 2001). The viability of the spores was determined by inoculating and spreading 0.1 ml of the spore suspension in 90 mm Petri dishes containing WA, which was incubated in the dark at 21°C for 24 h. After this period, 1.0 ml of aniline blue staining solution was added and gently spread on the entire plate surface. Using an optical microscope Olympus CBA (400 × magnification), 100 spores were analyzed. Hyphae were considered germinated when the hyphae size was equal to or greater than that of the spores (Horaczek and Viernstein, 2004).

The concentration and the number of spores in the suspensions recovered from PDA and crushed corncob media, after 2 to 10 days under incubation, were compared through Tukey's test at the 5% significance level.

Volumes of suspensions recovered from each medium were significantly different, at all analyzed times (Table 1). An increase from 7.5  $\pm$  0.6 to 10.8  $\pm$  2.5 ml in the average volume recovered from PDA medium was observed, but the difference was not statistically significant. It is not possible to increase the volume added to the Petri plate because of its shape, and higher volumes may cause overflow or may impede the mechanical release of spores from the agar surface. The volume of Aspergillus niger spore suspension recovered from ground corncob was 28.6  $\pm$ 1.5 ml until 6 days of fermentation. After this period, the volume decreased to 21.9  $\pm$  4.6 and 17.9  $\pm$  1.9 ml, respectively in 8 and 10 days of experimentation. This reduction may be caused by a loss of humidity in the medium, resulting in higher absorption of Tween solution.

No significant difference was observed in spore concentration among the suspensions recovered from PDA medium during the 10 days under fermentation. However, a significant increase was observed in the concentration of spores recovered from corncob medium on the 4th day. The concentration of spores remained practically constant thereafter until the 10th Spore production and viability in the recovered suspensions from PDA and crushed corncob media during incubation.

Table 1.

L 

2010

| spores                    | Corncop | t.0 ± 0.9) × 10 <sup>10 a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.8 \pm 0.6) \times 10^{11} \text{ b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $.2 \pm 0.5) \times 10^{11} a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7 ± 3.8)×10 <sup>10 a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .1 ± 3.1)×10 <sup>10 a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             |
|---------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Total viable spores       | PUA     | $2  7.5 \pm 0.6^{a}  29.4 \pm 1.1^{a}  (2.0 \pm 1.1) \times 10^{6}{a}  (4.4 \pm 1.0) \times 10^{7}{a}  (1.5 \pm 0.7) \times 10^{7}{a}  (1.3 \pm 0.3) \times 10^{9}{a}  64.0 \pm 13.0^{a}  (9.8 \pm 6.3) \times 10^{8}{a}  (8.0 \pm 0.9) \times 10^{10}{a}  (8.0 \pm 0.9) \times 10^{10}{a$ | $(1.6 \pm 0.3) \times 10^{8}  (2.3 \pm 1.3) \times 10^{7}  (4.4 \pm 0.6) \times 10^{9}  42.0 \pm 6.0  62.0 \pm 8.0  9.7 \pm 5.3) \times 10^{8}  (2.8 \pm 0.6) \times 10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11}  10^{11} $ | $(1.5 \pm 0.1) \times 10^{8} b  (6.2 \pm 1.1) \times 10^{7} a  (4.3 \pm 0.4) \times 10^{9} a  21.0 \pm 7.0^{\circ}  26.0 \pm 10.0^{\circ}  (1.3 \pm 0.6) \times 10^{9} a  (1.2 \pm 0.5) \times 10^{11} a = 10^{10} a =$ | $10.2 \pm 2.9^{a}  22.0 \pm 4.6^{b}  (6.2 \pm 5.3) \times 10^{6}{a}  (1.5 \pm 0.5) \times 10^{8}{b}  (7.3 \pm 8.3) \times 10^{7}{a}  (3.1 \pm 0.7) \times 10^{9}{a}  14.0 \pm 11.0^{c}  28.0 \pm 13.0^{b}  (7.2 \pm 3.7) \times 10^{8}{a}  (8.7 \pm 3.8) \times 10^{10}{a}  (8.7 \pm 3$ | $10 \ 10.8 \pm 2,5^{a} \ 17.9 \pm 1.9^{b} \ (4.6 \pm 1.9) \times 10^{6}{a} \ (1.5 \pm 0.6) \times 10^{8}{b} \ (5.1 \pm 3.3) \times 10^{7}{a} \ (2.7 \pm 0.9) \times 10^{9}{a} \ 14.0 \pm 5.0^{c} \ 27.0 \pm 8.0^{b} \ (7.3 \pm 5.4) \times 10^{8}{a} \ (7.1 \pm 3.1) \times 10^{10}{a} \ (7.1 $ |                                                             |
| ity (%)                   | Corncop | 64.0 ± 10.0 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $62.0 \pm 8.0^{a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.0 ± 10.0 <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28.0 ± 13.0 <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27.0 ± 8.0 <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |
| Viability (%)             | PDA     | 64.0 ± 13.0 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $42.0 \pm 6.0^{\text{b}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $21.0 \pm 7.0^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.0 ± 11.0 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $14.0 \pm 5.0^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |
| Number of spores/volume   | Corncop | $(1.3 \pm 0.3) \times 10^9 a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(4.4 \pm 0.6) \times 10^{9}$ b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(4.3 \pm 0.4) \times 10^9 a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $(3.1 \pm 0.7) \times 10^9 a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(2.7 \pm 0.9) \times 10^9 a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | svel ( <i>p</i> <0.05).                                     |
| Number of sp              | FUA     | $(1.5 \pm 0.7) \times 10^7 \text{ a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(2.3 \pm 1.3) \times 10^7 \text{ a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(6.2 \pm 1.1) \times 10^7 a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $(7.3 \pm 8.3) \times 10^7 \text{ a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $(5.1 \pm 3.3) \times 10^7 a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | difference at the 95% confidence level ( $p$ <0.05).        |
| (spores/ml)               | Corncop | $(4.4 \pm 1.0) \times 10^7 a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(1.6 \pm 0.3) \times 10^{8}$ b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(1.5 \pm 0.1) \times 10^{8}$ b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(1.5 \pm 0.5) \times 10^{8}$ b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $(1.5 \pm 0.6) \times 10^{8}$ b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ficant difference at th                                     |
|                           | PUA     | $(2.0 \pm 1.1) \times 10^{6} a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $9.8 \pm 2.9^{a}$ $27.7 \pm 1.6^{a}$ $(2.3 \pm 1.0) \times 10^{6} a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $9.5 \pm 1.0^{a}$ $28.6 \pm 1.8^{a}$ $(6.5 \pm 0.7) \times 10^{6} a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(6.2 \pm 5.3) \times 10^{6}  a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $(4.6 \pm 1.9) \times 10^{6} a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Different superscripts within a column indicate significant |
| Volume of suspension (ml) | Corncop | 29.4 ± 1.1 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.7 ± 1.6 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28.6 ± 1.8 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22.0 ± 4.6 <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17.9 ± 1.9 <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cripts within a c                                           |
| Day Volume of su          | FUA     | $2  7.5\pm0.6^{\text{a}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 9.8 $\pm$ 2.9 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6 $9.5 \pm 1.0^{a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8 10.2 $\pm$ 2.9 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 10.8 $\pm$ 2,5 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Different supers                                            |

day. The highest concentration in suspension recovered from this medium was  $1.6 \times 10^8$  spores/ml, at day 4. This concentration was two orders of magnitude higher than the concentration recovered from PDA medium (Table 1). Total spore number in the suspension recovered from corncob, calculated by multiplying the volume obtained by the concentration of the suspension, showed that the period between the fourth and the sixth day was the most appropriate to production, with values ranging from  $4.3 \times 10^9$  to  $4.5 \times 10^9$ spores.

In a study on the production of inocule in large-scale fermentation, Roussos et al. (1991) compared the spore production of Trichoderma harzianum in agar medium and in a solid-state fermentation system using cane bagasse as support. Spore production in the inert medium (cane bagasse) and substrate composed by cassava flour and nutrient solution, during 6 days, was up to  $5.0 \times 10^{10}$  spores/g of medium. The quantity of spores produced in the semi-solid medium was 5 times higher than in the agarized medium.

In the present work, spore viability was also evaluated. An accentuated reduction in spore viability was observed from the second day on in the PDA medium, while in corncob medium the reduction was observed only from the fourth day on. Until that time the viability was higher than 60% (Fig. 1).

The use of the solid-state crushed corncob medium was better than the agarized medium because of the higher concentration of spores of the suspensions recovered from it. For the production of the same guantity of total viable spores (concentration of spores of the suspension  $\times$  volume of the suspension  $\times$  viability of spores of the suspension) of one Erlenmeyer, it would be necessary to use 217 Petri plates, the comparison made at the best time of fermentation of each

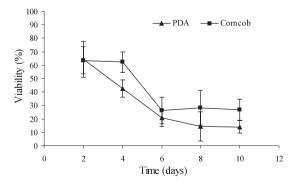



Fig. 1. Viability of spores in the suspensions recovered from PDA and crushed corncob media during incubation.

medium, being the 4th for the crushed corncob, and the 6th for the agarized medium. Using crushed corncob medium as inoculum demands less laborious work, since fewer laboratory flasks are necessary; the medium is easier to prepare, more economical and more environmentally correct because the demand of reagents is smaller and they are cheaper than agar; the handling of wastes is easier; and it provides bigger amounts of spores, which make it more suitable for work on a large scale.

## Acknowledgments

This research was supported by Embrapa (Brazilian Agricultural Research Corporation). The author Virna Farias thanks CAPES for her fellowship.

## References

- Ates, S., Ozenir, S., and Gökdere, M. (2006) Effect of silicone oil on gibberellic acid production by *Gibberella fujikuroi* and *Aspergillus niger. Appl. Biochem. Microbiol.*, **42**, 500–501.
- Bianchi, V. L., Moraes, I. O., and Capalbo, D. M. F. (2001) Solidstate fermentation. *In* Industrial Biotechnology: Biochemistry Engineering, 1st ed., ed. by Schmidell, W., Lima, U. A., Aquarone, E., and Borzani, W., Edgard Blücher, São Paulo, Vol. 2, pp. 250, 269 (in Portuguese).
- Bier, J. W., Splittstoesser, D. F., and Tortorello, M. L. (2001) Microscopic methods. *In* Compendium of Methods for the Microbiological Examination of Foods, 4th Chapter, ed. by Downes, F. P. and Ito, K., pp.37–44.
- Cavalcante, R. S., Lima, H. L. S., Pinto, G. A. S., Gava, C. A. T., and Rodrigues, S. (2008) Effect of moisture on *Trichoderma conidia* production on corn and wheat bran by solid state fermentation. *Food Bioprocess Technol.*, 1, 100-104.
- Dinu, D., Nechifor, M. T., Stoian, G., Costache, M., and Dinischiotu, A. (2007) Enzymes with new biochemical properties in the pectinolytic complex produced by *Aspergillus niger* MIUG 16. *J. Biotechnol.*, **131**, 128–137.
- Djekrif-Dakhmouche, S., Gheribi-Aoulmi, Z., Meraihi, Z., and Bennamoun, L. (2006) Application of a statistical design to the optimization of culture medium for α-amylase production by *Aspergillus niger* ATCC 16404 grown on orange waste powder. *J. Food Eng.*, **73**, 190–197.
- El-Enshasy, H., Kleine, J., and Rinas, U. (2006) Agitation effects

on morphology and protein productive fractions of filamentous and pelleted growth forms of recombinant *Aspergillus niger*. *Process Biochem.*, **41**, 2103–2112.

- Faria, M. R. and Magalhães, B. P. (2001) The use of entomopathogenic fungi in Brazil: Current situation and perspectives. *Biotechnol. Sci. Dev.*, **22**, 18–21 (in Portuguese).
- Horaczek, A. and Viernstein, H. (2004) Comparison of three commonly used drying technologies with respect to activity and longevity of aerial conidia of *Beauveria brongniartii* and *Metarhizium anisopliae*. *Biol. Control*, **31**, 65–71.
- Kang, S. W., Lee, S. H., Yoon, C. S., and Kim, S. W. (2005) Conidia production by *Beauveria bassiana* (for the biocontrol of a diamondback moth) during solid-state fermentation in a packed-bed bioreactor. *Biotechnol. Lett.*, 27, 135– 139.
- Loureiro, E. S., Filho, A. B., Almeida, J. E. M., Garcia, J. F., and Pessoa, I. G. A. (2004) Production entomopathogenic fungus *Metarhizium anisopliae* (metsch.) sorok strains. *Arq. Inst. Biol.*, **71**, 1–149 (in Portuguese).
- Martin, S. M. (1964) Conservation of microorganism. *Annu. Rev. Microb.*, **18**, 1–16.
- McNeil, B. and Harvey, L. M. (1990) Fermentation: A Practical Approach, IRL Press, Oxford, pp. 52–53.
- Mlakar, T. and Legiša, M. (2006) Citrate inhibition-resistant form of 6-phosphofructo-1-inase from *Aspergillus niger. Appl. Environ. Microbiol.*, **72**, 4515–4521.
- Prakash, G. V. S. B., Padmaja, V., and Kiran, R. R. S. (2008) Statistical optimization of process variables for the largescale production of *Metarhizium anisopliae* conidiospores in solid-state fermentation. *Bioresour. Technol.*, **99**, 1530– 1537.
- Roussos, S., Olmos, A., Raimbault, M., Saucedo-Castañeda, G., and Lonsane, B. K. (1991) Strategies for large scale inoculum development for solid state fermentation system: Conidiospores of *Trichoderma itarzianum*. *Biotechnol. Tech.*, **5**, 415–420.
- Weber, O. B., Souza, C. C. M., Gondin, D. M. F., Oliveira, F. N. S., Crisóstomo, L. A., Caproni, A. L., and Júnior, O. S. (2004) Arbuscular mycorrhizal fungi inoculation and phosphate manuring in seedling dwarf-precocious cashew. *Pesq. Agropec. Bras.*, **39**, 477–483 (in Portuguese).
- Ye, S. D., Ying, S. H., Chen, C., and Feng, M. G. (2006) New solid-state fermentation chamber for bulk production of aerial conidia of fungal biocontrol agents on rice. *Biotechnol. Lett.*, 28, 799–804.