# Polymorphic information content of SSR markers for Coffea spp. 

Robson Fernando Missio ${ }^{1}$, Eveline Teixera Caixeta ${ }^{2,3^{*}}$, Eunize Maciel Zambolim ${ }^{2}$, Laércio Zambolim ${ }^{2}$, Cosme Damião Cruz ${ }^{4}$, and Ney Sussumu Sakiyama ${ }^{2}$

Received 21 August 2009
Accepted 10 October 2009


#### Abstract

Thirty-three coffee SSR primers from enriched genomic library with $(G T)_{15}$ and (AGG) ${ }_{10}$ repeats were analyzed in 24 coffee tree accessions. Twenty-two primers were polymorphic among accessions; the number of alleles ranged from 2 to 13 , with the mean number of 5.1 alleles per primer. PIC values ranged from 0.08 to 0.79 . The highest mean PIC values were found for C. canephora (0.46), and the lowest values for C. arabica (0.22) and triploids (0.22) accessions. The polymorphic SSR markers used in this study were useful for genetic fingerprinting in the coffee tree, especially in the C. canephora and the leaf rust resistant arabica cultivars.


Key words: SSR, arabica coffee, molecular markers, genomic DNA libraries enriched, PIC.

## INTRODUCTION

The Coffea genus consists of 103 known species, of which Coffea arabica L . is the most important commercially and the most cultivated worldwide. Previous studies using different molecular markers showed low levels of polymorphism among C. arabica accessions (Poncet et al. 2006, Aggarwal et al. 2007, Missio et al. 2009a), hindering further genetic research in this species. Simple Sequence Repeats (SSRs) or microsatellite markers are potentially useful in this situation, especially for exploring highly variable regions of the genome among individuals or populations of the same species. Furthermore, SSRs have other relevant features, such as high reproducibility, codominant inheritance, and the possibility of automation.

Notwithstanding all the advantages of SSR molecular markers for genetic studies, few SSR primers
have been developed for coffee (Combes et al. 2000, Rovelli et al. 2000, Baruah et al. 2003, Moncada and McCouch 2004, Bhat et al. 2005, Poncet et al. 2006, Aggarwal et al. 2007, Hendre et al. 2008, Missio et al. 2009b), compared to other crops (http:// www.gramene.org/). In this study, the potential of 33 SSR markers, developed from C. arabica were used for assessed the Polymorphism Information Content (PIC) in 24 accessions of the Coffea genus, including C. arabica. We also show here the potential these SSR markers for genetic fingerprinting in coffee tree.

## MATERIAL AND METHODS

The genomic DNA of the C. arabica Bourbon Amarelo (UFV 570) genotype was extracted from leaves according to Diniz et al. (2005). The genomic DNA ( 50 mg ) was digested using the EcoRI, NheI, HaeIII and

[^0]RsaI restriction enzymes. Fragments were blunted with the Mung Bean Nuclease enzyme, dephosphorylated with Calf intestinal phosphatase and linked to the double strand SNX adapters (Hamilton et al. 1999). Enriching was done by DNA hybridization using two biotinylated SSR probes, $(\mathrm{GT})_{15}$ and (AGG) ${ }_{10}$. Enriched fragments where digested with NheI and linked to the pBluescript SK+ plasmid, previously digested with XbaI. Competent Escherichia coli DH5 $\alpha$ cells were transformed with the recombinant plasmids by thermal shock. Selection and diagnosis of white colonies was done by PCR using the T3 and T7 primers (Invitrogen). Colonies containing transformants with insertions over 400bp were selected. Positive clones were sequenced and the DNA fragments were analyzed using the CodonCode Aligner 1.6.3 (CodonCode Corporation) and the SSRIT software.

The PCR reaction were done in a $20 \mu \mathrm{~L}$ volume containing $50 \eta$ g of DNA, 0.6 U of Taq DNA polymerase and a 1 X buffer (Promega), 1 mM of $\mathrm{MgCl}_{2}, 150 \mu \mathrm{M}$ of each dNTP and 0.1 mM of each primer. Amplification was performed in a PTC-200 Thermocycler (MJ Research) using a touchdown PCR procedure consisted
of initial denaturation at $94^{\circ} \mathrm{C} / 2 \mathrm{~min}$, followed by 13 cycles of denaturing at $94^{\circ} \mathrm{C} / 30 \mathrm{~s}$, annealing at $67^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C} / 30$ s, sinking $1^{\circ} \mathrm{C}$ in each cycle, and extension at $72^{\circ} \mathrm{C} / 30$ s. The last 30 cycles were at $94^{\circ} \mathrm{C} / 30 \mathrm{~s}, 55^{\circ} \mathrm{C} /$ 30s and $72^{\circ} \mathrm{C} / 30$ s, followed by final extension at $72^{\circ} \mathrm{C} /$ 8 min . SSR marker polymorphism was verified in $6 \%$ silver stained denaturing polyacrylamide gel.

The potential of the 33 primer pairs as molecular markers was assessed in 24 accessions of the Coffea genus. The analysis included six arabica (C. arabica) accessions, five robusta accessions (C. canephora), three Híbrido de Timor (C. arabica x C. canephora), three Triploids (C. arabica x C. racemosa) and one racemosa (C. racemosa) accession. Six leaf rust resistant arabica were also included in this study (Table 1). The DNA of each of the 24 accessions was extracted from young leaves, according to the protocol described by Diniz et al. (2005).

The allele richness and the PIC (Polymorphism Information Content) were evaluated for each SSR marker. The allele richness was the number of alleles of each microsatellite locus. The PIC was calculated using

Table 1. Coffee tree accessions used in this study

| Group | Accessions | Species (ploidy) |
| :---: | :---: | :---: |
| Arabica | UFV 2144(Catuaí Vermelho IAC 44) | Coffea arabica ( $2 \mathrm{n}=4 \mathrm{x}=44$ ) |
| Arabica | TípicaUFV 2945 | Coffea arabica ( $2 \mathrm{n}=4 \mathrm{x}=44$ ) |
| Arabica | BourbonUFV 2952 | Coffea arabica ( $2 \mathrm{n}=4 \mathrm{x}=44$ ) |
| Arabica | BourbonAmarelo UFV 535-1 | Coffea arabica ( $2 \mathrm{n}=4 \mathrm{x}=44$ ) |
| Arabica | ArábicaUFV 10832 | Coffea arabica ( $2 \mathrm{n}=4 \mathrm{x}=44$ ) |
| Arabica | BourbonAmarelo UFV 10745 | Coffea arabica ( $2 \mathrm{n}=4 \mathrm{x}=44$ ) |
| Robusta | T3751 (Robusta) | Coffea canephora ( $2 \mathrm{n}=2 \mathrm{x}=22$ ) |
| Robusta | T3580 (Robusta) | Coffea canephora ( $2 \mathrm{n}=2 \mathrm{x}=22$ ) |
| Robusta | Conillon UFV 513(Conillon) | Coffea canephora ( $2 \mathrm{n}=2 \mathrm{x}=22$ ) |
| Robusta | Guarini UFV 514(Robusta) | Coffea canephora ( $2 \mathrm{n}=2 \mathrm{x}=22$ ) |
| Robusta | Apoatã IAC 2258 (Robusta) | Coffea canephora ( $2 \mathrm{n}=2 \mathrm{x}=22$ ) |
| Hibrido de Timor | Hibrido de Timor CIFC 832/2 | C. arabica x C. canephora $(2 \mathrm{n}=4 \mathrm{x}=44)$ |
| Híbrido de Timor | Híbrido de Timor CIFC4106 | C. arabica x C. canephora ( $2 \mathrm{n}=4 \mathrm{x}=44$ ) |
| Hibrido de Timor | Hibrido de Timor CIFC 1343/269 | C. arabica x C. canephora $(2 \mathrm{n}=4 \mathrm{x}=44)$ |
| Triploid | UFV557-2 | Triploid (C. arabica $\times$ C. racemosa) $(2 \mathrm{n}=3 \mathrm{x}=33)$ |
| Triploid | UFV557-3 | Triploid (C. arabica x C. racemosa) $(2 \mathrm{n}=3 \mathrm{x}=33)$ |
| Triploid | UFV557-4 | Triploid (C. arabica x C. racemosa) ( $2 \mathrm{n}=3 \mathrm{x}=33$ ) |
| Racemosa | Coffea racemosa | Coffearacemosa ( $2 \mathrm{n}=2 \mathrm{x}=22$ ) |
| Resistant arabica | CatiguáMG2 | Commercial variety (C.arabicaxHT) $(2 n=4 x=44)$ |
| Resistant arabica | IAPAR59 | Commercial variety (C.arabica xHT$)(2 n=4 x=44)$ |
| Resistant arabica | Oeiras MG6851 | Commercial variety (C.arabicaxHT) $(2 n=4 x=44)$ |
| Resistant arabica | Sacramento MG1 | Commercial variety (C.arabicax HT$)(2 n=4 x=44)$ |
| Resistant arabica | Catucai Amarelo 2SL | Commercial variety (C. arabica x Icatu Vermelho) $(2 \mathrm{n}=4 \mathrm{x}=44)$ |
| Resistant arabica | Obatã Amarelo IAC 4932 | Commercial variety (C. arabica $\times \mathrm{HT})(2 \mathrm{n}=4 \mathrm{x}=44)$ |

the CENES software (http://www.ufv.br/dbg/genes/ genes.htm) (Cruz 2007).

## RESULTS AND DISCUSSION

From the 33 primer pairs used in this study, named SSRCa, 26 (79\%) amplified well-defined bands. Twenty two of them (67\%) showed polymorphism among the 24 accessions. These polymorphic loci amplified 112 alleles, a mean 5.1 alleles per primer (Table 2).

PIC values of the polymorphic loci in the 24 Coffea accessions ranged from 0.08 to 0.79 . The highest mean PIC values were found for C. canephora (0.46), while the lowest values were in C. arabica (0.22) and triploid (0.22) accessions. The low polymorphism found for $C$. arabica is in agreement with Baruah et al. (2003) work, and may be explained by the autogamous nature and the narrow genetic base of this species. All SSR primers were able to detect genetic differences between $C$. arabica and C. canephora populations, as well as among C. canephora and the remaining populations. This may be attributed to the C. canephora species allogamy, which results in high genetic variability. The SSRCa 018 and 091 had the highest PIC values (0.87 and 0.82 ) for C. canephora genotypes (Table 1). Primers with the highest PIC values for C. arabica were the SSRCa 094 (0.59), SSRCa 018 (0.54) and SSRCa 087 (0.54) (Table 2).

The SSRCa 018 and 091 primers were able to differentiate all robusta accessions (T 3751; T 3580; Guarini UFV 514 and Apoatã IAC 2258, of the Robusta group; and UFV 513, of the Conillon group). These primers may be useful for genetic fingerprinting and certification of clonal commercial varieties derived from C. canephora (Missio et al. 2009a). The SSRCa 068 and 018 primer differentiated the IAPAR 59 cultivar among the others leaf rust resistant cultivar of arabica (Catiguá MG2, Oeiras MG6851, Sacramento MG1, Catucai Amarelo 2SL and Obatã Amarelo IAC 4932) indicating the potential of this SSR markers in variety identification studies and in genetic fingerprinting (Figure 1).

The SSRCa 003, 016, 019, 020, 023, 026, 062, 078, 079, 082, 083, 091, 094 and 095 amplified not more than two alleles per individual in all accessions. The SSRCa 018, 052, 068, 080, 087, 088 and 092 revealed more tree or four alleles per individual in some triploid and allotetraploid accessions (Figure 1). In the Coffea allotetraploid accessions, SSR markers may show diploid and tetraploid segregation. Markers behave as tetraploids when amplifying homologous regions in both ancestral genomes of the species, and as diploids when amplifying only one of the genomes. No primer in this study showed a higher than expected number of alleles per individual for tetraploid species (up to four alleles), triploid species (up to three alleles) and diploid species (up to two alleles), making them adequate for breeding and genetic studies.

Figure 1. Allelic variation revealed by SSRCa 068 (A), SSRCa 092 (B) and SSRCa 018 (C) primers. M: Molecular weight marker; C.a: Coffea arabica; C.c: Coffea canephora; HT: Híbrido de Timor; T: Triploids; C.r: Coffea racemosa; V: Leaf rust resistant arabica varieties
Table 2. The alle le richness and Polymorphic Information Content of SSR loci for Coffea genus
Primer
Repeats

| Primer | Repe ats | Primer sequence ( $5^{\prime} \rightarrow 3^{\prime}$ ) | $\begin{aligned} & \text { Size of } \\ & \text { frag. (bp) } \end{aligned}$ | Number of a lleles/P IC |  |  |  |  |  | Totalnumber of alleles/PIC ( $\mathrm{n}=24$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | C.c ( $\mathrm{n}=5$ ) | C. $\mathrm{a}(\mathrm{n}=6$ ) | HT ( $\mathrm{n}=3$ ) | T ( $\mathrm{n}=3$ ) | C. $\mathrm{r}^{1}$ | $\mathrm{V}(\mathrm{n}=6)$ |  |
| SSRCa 003 | (GT) ${ }_{12}$ | F: ATG ATTCG TA GG TGGA GTGG | 196 | 2/0.31 | 1/0.00 | 1/0.00 | 1/0.00 | 2 | 1/0.00 | $4 / 0.21$ |
|  |  | R: CTAAG CCGC AAA TG A CAG A |  |  |  |  |  |  |  |  |
| SSRCa 010* | (CT) ${ }_{6}$ | F: G TTGA TTGG TGG AGTG ATTG | 105 | 2/0.00 | 2/0.00 | 2/0.00 | 2/0.00 | 2 | 2/0.00 | 20.00 |
|  | $(\mathrm{GAA})_{3} /(\mathrm{GGAAAG})_{3}$ | R: AA GCA TCA AG TA AG GG AG GA F: AG CAG ATTCCATCCTTATCCT |  |  |  | 2/0.38 | 2/0.38 | 2 | 2/0.38 |  |
| SSRCa 016 |  | R: CCACTAATCCATTCCATTCC | 172 | 1/0.00 | 2/0.38 |  |  |  |  | 3/0.54 |
| SSRCa 017* | $\left(\right.$ ATTTT) ${ }_{3}$ | F: TATGATTGG TTG CTTG GATG | 205 | 2/0.00 | 2/0.00 | 2/0.00 | 2/0.00 | 2 | 2/0.00 | 20.00 |
|  |  | R: ATCCTACAAG GCGG TGTG F: GTCTCGTTTCACGCTCTCTC |  |  |  |  |  | 2 |  |  |
| SSRCa 018 | $(\mathrm{GT})_{18}(\mathrm{G} \mathrm{A})_{10}$ | R: ATTTTTGGCACGG TATG TTC | 115 | 9/0.87 | 3/0.54 | 2/0.38 | 3/0.54 |  | 3/0.54 | 13/0.74 |
| SSRCa 019 | (GA) ${ }_{11}$ | F: G GGTt AG ATAG AGC AA GA ATGA | 329 | 4/0.67 | 1/0.00 | 2/0.24 | $2 / 03.7$ | 1 | 1/0.00 | 40.44 |
|  |  | R: CTGTGAAGG TGTGG AGTTTT |  |  |  |  |  |  |  |  |
| SSRCa 020 | (AGA)G(AGA) $x^{\prime}$ (TG) $/$ ( $\left.{ }^{\text {ATT }}\right)_{6}$ | F: G GTAGGCG AAG GACAG ATAA | 264 | 1/0.00 | 1/0.00 | 1/0.00 | 1/0.00 | 1 | 1/0.00 | 3/0.08 |
|  |  | R: TGG GGCA GA GTGAAG ATAAG |  |  |  |  |  |  |  |  |
| SSRCa 023 | (AATG) ${ }_{3}$ | $\begin{aligned} & \text { F: G ACCCTTGCCTTTTGTTG } \\ & \text { R: GCC ATTCATCCATTCATTC } \end{aligned}$ | 259 | 2/0.38 | 2/0.36 | 2/0.38 | 2/0.38 | - | 2/0.38 | 20.37 |
| SSRCa 026 | (T) $16 \mathrm{~N}_{12}(\mathrm{TC})_{7} /(\mathrm{CA} \mathrm{C})_{4}$ | F: G AATCTGG TG GG CTTT GA | 289 | 4/0.60 | 2/0.38 | 2/0.38 | 2/0.38 | - | 2/0.38 | 5/0.60 |
|  |  | R: AA GG AG AG GGG A AGA AA AT G |  |  |  |  |  |  |  |  |
| SSRCa 036* | $(\mathrm{CA})_{8}$ | F: ATG TTCGTGA AA CACA CGTC R: GG TTTGCCTTCATCTTTGTT | 128 | 2/0.00 | 2/0.00 | 2/0.00 | 2/0.00 | 2 | 2/0.00 | 20.00 |
| SSRCa 052 | (TTG) ${ }_{7}$ | F: G ATGG AAA CCCAG A AAG TTG | 129 |  |  |  |  | 1 |  |  |
|  |  | R: TAG AAG GG CTTTGA CTG GAC |  |  |  |  |  |  |  |  |
| SSRCa 062 | (CAA) $)_{2} \mathrm{G}(\mathrm{AGAA})_{2}$ <br> $(\mathrm{AG})_{4} \mathrm{~N}_{8}(\mathrm{G} \mathrm{A})_{4}$ <br> (TG) ${ }_{3} \mathrm{~A}(\mathrm{GT})_{3} \mathrm{~N}(\mathrm{TG})_{4}$ | F: A AGTT ATTA GG GCAAG AG TG GA | 275 | 2/.038 | 2/0.38 | 2/0.38 | 2/0.38 | 1 | 2/0.38 | $3 / 0.37$ |
|  |  | R: AA GCTCCA AGA CCA AAG ATG F: СTCCGCTGATTTTGTCTTTT |  |  |  |  |  |  |  |  |
| SSRCa 063 |  | R: ACC ACTTTTTCCTCCCTCTC | 222 | - | - | ${ }^{-}$ | - | - | ${ }^{-}$ | - |
| SSRCa 064* | $(\text { TTCT })_{3}$ | F: TGCA GTAA GTGAGA CCAA CC <br> R: TGG ACTATCCCATACA TAACC A | 242 | 2/0.00 | 2/0.00 | 2/0.00 | 2/0.00 | 2 | $2 / 0.00$ | 20.00 |
| SSRCa 068 | $(\mathrm{AGG})_{7} /(\mathrm{GAA})_{4}$ | F: ATG TTGTTGG AGG CATTTTC | 236 | 2/0.31 | 1/0.00 | 4/0.26 | 1/0.00 | - | 2/0.14 | 40.38 |
|  |  | R: AG GA GCAGTTG TTG TTTTCC |  |  |  |  |  |  |  |  |
| SSRCa 078 | $(\mathrm{TCC})_{5}$ | F: AG CCTCCCTTAGTTTGTTCTC | 210 | 2/0.27 | 1/0.00 | 1/0.00 | 1/0.00 | - | 1/0.00 | 20.10 |
|  |  | R: GG AA AG TCG TCA G ATTG GTT |  |  |  |  |  |  |  |  |
| SSRCa 079 | $(\mathrm{CCCT})_{2} \mathrm{~N}_{5}(\mathrm{G} \mathrm{AAAA})_{3}$ | F: A AGTG GAG G AGTTTTGTG GA | 287 | 2/0.37 | 1/0.00 | 1/0.00 | 1/0.00 | 2 | 1/0.00 | 3/0.19 |
|  |  | R: CCA AGTGG ATAG GTG TG AG AG |  |  |  |  |  |  |  |  |
| SSRCa 080 | (CA) ${ }_{9} \mathrm{~N}_{8}(\mathrm{CT})_{30}$ | F: G TTCTTTCCGCCG TC AAT | 250 | 4/0.72 | 1/0.00 | 4/0.61 | 2/0.44 | - | 4/0.71 | 10/0.79 |
| SSRCa 081 | $(\mathrm{CT})_{38}$ | R: GA GA AG AG AG AGG AA GG GAAA F: ACCGTTG TTG GAT ATCTTTG | 229 | 3/0.59 | 1/0.00 | 2/0.24 | 1/0.00 | - | 1/0.00 | 40.28 |
|  |  | R: GG TTG AACCTA GAC CTT ATTT |  |  |  |  |  |  |  |  |
| SSRCa 082 | $(\mathrm{CT})_{17} \mathrm{CG}(\mathrm{CT})_{6}$ | F: G CTT GTTTCCA TCGCTAAA | 178 | 3/0.50 | 2/0.24 | 3/0.54 | 2/0.35 | 1 | 3/0.36 | 7/0.62 |
|  |  | R: TTA CACG TCA ACCCACAA AC |  |  |  |  |  |  |  |  |
| SSRCa 083 | (TC) $3_{2}$ | F: TCCAA CAA CATTAAG CGTATTC | 223 | 3/0.59 | 1/0.00 | 2/0.35 | 1/0.00 | - | 1/0.00 | $5 / 0.32$ |
|  |  | R: GACAA ACCTGAGGGAAAAGA |  |  |  |  |  |  |  |  |
| SSRCa 084 | $(\mathrm{CCA})_{4} /(\mathrm{CAC})_{5}$ | F: ATCG GAAAG ATGTCA ACCAT | 157 | + | + | + | + | + | + | + |
|  |  | R: CAA ATTGA AGCC AGTG GTG |  |  |  |  |  |  |  |  |
| SSRCa 085 | (TC) ${ }_{24}$ | F: ATG TG AA AATG GG AAG GA TG | 105 | - | - | - | - | - | - | - |
|  |  | R: CAC AGG AA AG TG ACA CGA AG |  |  |  |  |  |  |  |  |
| SSRCa 086 | $(\mathrm{AC})_{11}$ | F: AG AG AG AA GCCA TG ATTTG A | 105 | - | - | - | - | - | - | - |
|  |  | R: TCAGTCCCA GA GA ATAA GGA |  |  |  |  |  |  |  |  |
| SSRCa 087 | (TC) ${ }_{2}$ | F: TCACTCTCGCAG A CACACTAC | 143 | 4/0.57 | 3/0.54 | 4/0.67 | 3/0.13 | 1 | 4/0.53 | 80.65 |
|  |  | R: GCA GA GATG ATCAC AAG TCC |  |  |  |  |  |  |  |  |
| SSRCa 088 | $\left(\right.$ TTTTCT) ${ }_{3}$ | F: TACCTCTCCTCCTCCTTCCT | 180 | 3/0.49 | 3/0.25 | 3/0.13 | 2/0.38 | 2 | 2/0.38 | 5/0.47 |
|  |  | R: ATTTCTATGG ACCG GC AAC |  |  |  |  |  |  |  |  |
| SSRCa 090 | $(\mathrm{G} \mathrm{A}){ }_{21}$ | F: TGA CTCG ATTACATCCCTAATG | 120 | - | - | - | - | - | - | - |
| SSRCa 091 | $(\mathrm{G} \mathrm{T}){ }_{8}(\mathrm{GA})_{10}$ | F: GGTCTCGTATCACGCTCTC | 110 | 8/0.82 | 3/0.48 | 2/0.35 | 1/0.00 | - | 3/0.46 | 10/0.60 |
|  |  | R: TGTTCCTCGTTCCTCTCTCT |  |  |  |  |  |  |  |  |
| SSRCa 092 | $(\mathrm{CCA})_{7} \mathrm{CT}(\mathrm{TCCACC})_{5}$ | F: ATA GCCTGA GCCGTAACCA | 142 | 4/0.64 | 2/0.38 | 3/0.15 | 2/0.38 | 2 | 2/0.38 | $6 / 0.56$ |
|  |  | R: GG GTAA TT ATG ACG AG GG ACA |  |  |  |  |  |  |  |  |
| SSRCa 093 | (CT) 37 | F: TTG CCTACAA TACCTGTCTCC | 196 | - | - | - | - | - | - | - |
|  |  | R: СССA ATTCCTCTCCATTCT |  |  |  |  |  |  |  |  |
| SSRCa 094 | $(\mathrm{TC})_{4}(\mathrm{TTCT})_{3} /$ | F: G TG TCCTAG GG AA GG GTAAG | 195 | 2/0.30 | 3/0.59 | 2/0.38 | 2/0.38 | 1 | 2/0.24 | 40.49 |
|  | $(\mathrm{TTTCCT})_{3}(\mathrm{TTTC})_{5}$ | R: GA GT GCTAG GA GA GG GA GA G |  |  |  |  |  |  |  |  |
| SSRCa 095 | (TG) ${ }_{11}$ | F: G AG AGA GCCG AG TG AA GA GA | 185 | 4/0.45 | 1/0.00 | 1/0.00 | 1/0.00 | - | 1/0.00 | 40.30 |
|  |  | R: GA GA GA GA AGC CATGATTTGA |  |  |  |  |  |  |  |  |
| SSRCa 096 | (CT) ${ }_{18}$ | F: G AAA TG GTG AACTCTCTCTTGG R: ATTTG CATGG | 183 | + | + | + | + | + | + | + |
| Mean |  |  |  | 3.3/0.46 | 1.8/0.22 | 2.2/0.27 | 1.7/0.22 | 1.5 |  | 5.1/0.43 |
|  |  |  |  | $3.3 / 0.46$ | 1.80 .22 | 2.2 | 1.70 .22 |  | ${ }_{6}^{2.01}$ | 5.10 .43 |

Although developed from C. arabica, all polymorphic loci obtained in this study amplified fragments in C. canephora, Híbrido de Timor and Triploid accessions. Thirteen of these (59\%) were also validated for C. racemosa (Table 2). These results demonstrate the potential of these SSR markers for genetic studies in related species of Coffea. Cross-species transferability primers in Coffea has been observed previously for EST-SSR markers (Bhat et al. 2005, Aggarwal et al. 2007).

According to our results the 22 polymorphic SSR loci showed a considerable Polymorphic Information Content among the accessions of coffee, and can enable molecular advances,
especially in genetic studies of the C. arabica species. In addition, it was showed that it is possible to use these SSRs for coffee variety identification studies.

## ACKNOWLEDGEMENTS

To Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG) and Consórcio Brasileiro de Pesquisa e Desenvolvimento do Café (CBP\&D) for funding. The authors wish to thank Dr Vagner Tebaldi de Queiroz and Dr Everaldo Gonçalves de Barros for the protocol support.

# Conteúdo de informação polimórfica de marcadores SSR para Coffea spp. 


#### Abstract

RESUMO - Trinta e três primers SSR para o gênero Coffea, oriundos de biblioteca genômica enriquecida com repetições $(G T)_{15}$ e $(A G G)_{10}$, foram analisados em 24 acessos de cafeeiros. Vinte e dois primers foram polimórficos entre os acessos; o número de alelos variaram de 2 a 13, com um número médio de 5,1 alelos por primer. Os valores de PIC variaram de 0,08 a 0,79 . Os maiores valores médios de PIC foram encontrados para C. canephora ( 0,46 ), e os menores valores para acessos de C. arabica $(0,22)$ e Triplóides $(0,22)$. Os marcadores SSR polimórficos utilizados neste estudo foram úteis para fingerprinting genético em acessos de cafeeiros, especialmente em C. canephora e cultivares arábicas resistente a ferrugem.


Palavras chave: SSR, café arabica, marcadores moleculares, biblioteca genômica enriquecida, PIC.

## REFERENCES

Aggarwal RK, Hendre PS, Varshney RK, Bhat PR, Krishnakumar V and Singh L (2007) Identification, characterization and utilization of EST-derived genic microsatellite markers for genome analyses of coffee and related species. Theoretical and Applied Genetics 114: 359-372.

Baruah A, Naik V, Hendre PS, Rajkumar R, Rajendrakumar P and Aggarwal RK (2003) Isolation and characterization of nine microsatellite markers from Coffea arabica (L.) showing wide cross-species amplifications. Molecular Ecology Notes 3: 647-650.

Bhat PR, Krishnakumar V, Hendre PS, Rajendrakumar P, Varshney RK and Aggarwal RK (2005) Identification and characterization of expressed sequence tags-derived simple sequence repeats markers from robusta coffee variety 'CxR' (an interspecific hybrid of Coffea canephora x Coffea congensis). Molecular Ecology Notes 5: 80-83.

Combes MC, Andrzejewski S, Anthony F, Bertrand B, Rovelli P, Graziosi G and Lashermes P (2000) Characterization of microsatellite loci in Coffea arabica and related coffee species. Molecular Ecology Notes 9: 1171-1193.

Cruz CD (2007) Programa Genes: versão Windows. Editora UFV, Viçosa, 381p.

Diniz LEC, Sakiyama NS, Lashermes P, Caixeta ET and Oliveira ACB (2005) Analysis of AFLP marker associated to the Mex-1 resistance locus in Icatu progenies. Crop Breeding and Applied Biotechnology 5: 387-393.

Hamilton MB, Pincus EL, Di Fiore A and Fleischer RC (1999) Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. Biotechniques 27: 500-507.

Hendre PS, Phanindranath R, Annapurna V, Lalremruata A and Aggarwal RK (2008) Development of new genomic microsatellite markers from robusta coffee (Coffea canephora Pierre ex A. Froehner) showing broad crossspecies transferability and utility in genetic studies. BMC Plant Biology 8: 51-70.

Missio RF, Caixeta ET, Zambolim EM, Pena GF, Ribeiro AP, Zambolim L, Pereira AA and Sakiyama NS (2009a) Assessment of EST-SSR markers for genetic analysis on coffee. Bragantia 68: 573-581.

Missio RF, Caixeta ET, Zambolim EM, Zambolim L, and Sakiyama NS (2009b) Development and validation of SSR markers for Coffea arabica L. Crop Breeding and Applied Biotechnology 9: 361-371.

Moncada P and McCouch S (2004) Simple sequence repeat diversity in diploid and tetraploid Coffea species. Genome 47: 501-509.

Poncet V, Rondeau M, Tranchant C, Cayrel A, Hamon S, De

Kochko A and Hamon P (2006) SSR mining in coffee tree EST databases: potential use of EST-SSRs as markers for the Coffea genus. Molecular Genetics and Genomics 276: 436-449.

Rovelli P, Mettulio R and Anthony F (2000) Microsatellites in Coffea arabica L. In: Sera T, Soccol CR, Pandey A, Roussos S (Eds.) Coffee biotechnology and quality. Kluwer Academic Publishers, Amsterdam, p. 123-133.


[^0]:    ${ }^{1}$ Universidade Federal do Paraná - Campus Palotina (UFPR), Rua Pioneiro, 2153, 85950-000, Palotina, PR, Brazil
    ${ }^{2}$ Universidade Federal de Viçosa (UFV), Laboratório de Biotecnologia do Cafeeiro (Biocafé), BIOAGRO, 36570-000, Viçosa, MG, Brazil
    ${ }^{3}$ Empresa Brasileira de Pesquisa Agropecuária, Embrapa Café, 36570-000, Viçosa, MG, Brazil. *E-mail: eveline.caixeta@embrapa.br
    ${ }^{4}$ Universidade Federal de Viçosa (UFV), Departamento de Biologia Geral, 36570-000, Viçosa, MG, Brazil

