Comportamento de Híbridos de Milho no Nordeste Brasileiro: Safra 2009/2010

<u>Cinthia Souza Rodrigues¹</u>, Hélio Wilson Lemos de Carvalho², Ivênio Rubens de Oliveira², Milton José Cardoso³, Cleso Antônio Pato Pacheco⁴, Leonardo Melo Pereira Rocha⁴, José Nildo Tabosa⁵, Camila Rodrigues Castro⁶, Vanessa Marisa Miranda Menezes¹.

Resumo

O presente trabalho teve por objetivo conhecer o comportamento de diversos híbridos simples de milho quando submetido a diferentes condições ambientais do Nordeste brasileiro, para fins de recomendação. Os ensaios foram realizados no ano agrícola de 2009/2010 e foram avaliados utilizando-se o delineamento experimental em blocos ao acaso com duas repetições. Detectaram-se diferenças significativas entre os híbridos, os ambientes e inconsistência no comportamento dos híbridos na média dos ambientes quanto às características alturas e planta e de espigas, estande de colheita, número de espigas colhidas e rendimento de grãos. Os híbridos com rendimentos médios acima da média geral mostraram melhor adaptação, destacando-se, entre eles, os DKB 399, 30 A 86 HX, 2 B 707 HX, 2 B 604 HX, 30 A 91HX e 30 A 70, com produtividades médias entre 9452 kg/ha a 9175 kg/ha, constituindo-se em excelentes opções para a agricultura regional.

Introdução

A produção de grãos de milho vem apresentando um papel de destaque em áreas de cerrados dos estados da Bahia, Maranhão e Piauí e, em áreas do agreste nordestino, inseridas nos estados da Bahia e Sergipe, aonde os níveis de produtividades de grãos, no âmbito experimental vêm ultrapassando o patamar das 10 t/ha, conforme relataram Cardoso et al.(2007); Oliveira et al. (2008) e Carvalho et al. (2009). Esses autores constataram uma melhor adaptação dos híbridos em relação às variedades, enfatizando ainda que a recomendação desse tipo de material genético deve ser precedida de uma pré-avaliação, nas diferentes condições ambientais, com o propósito de fornecer maiores subsídios aos agricultores no tocante à escolha adequada desses materiais de melhor estabilidade de produção (Ramalho et al.1993).

O alto desempenho produtivo de híbridos de milho nas áreas experimentais tem se repetido também em áreas comerciais dos cerrados e do agreste nordestino, com produtividades oscilando entre 8 a 12 t/ha, atraindo cada vez mais a atenção de produtores, os quais vêm demandando esse tipo de material genético em suas lavouras. Dessa forma, o presente trabalho objetivou avaliar o comportamento produtivo de híbridos simples de milho em diferentes condições ambientais do Nordeste brasileiro, para fins de recomendação.

Material e Métodos

Os ensaios foram realizados no ano agrícola de 2009/2010, distribuídos nos estados do Maranhão (4 ensaios), Piauí (3 ensaios), Sergipe (2 ensaios) e Bahia (1 ensaio), entre as latitudes 03°11', em Uruçuí, PI a 10°55', em Frei Paulo, SE.

Foram avaliados 54 híbridos simples de milho, em blocos ao acaso, com duas repetições. Cada parcela constou de quatro fileiras de 5,0 m de comprimento, espaçadas de 0,8 m e, com 0,20m entre covas, dentro das fileiras. Foram colocadas duas sementes por cova, deixando-se, após o desbaste, uma planta por cova. As adubações realizadas nesses ensaios obedeceram aos resultados das análises de solo de cada área experimental.

¹ Bolsista PIBIC / CNPq/Embrapa Tabuleiros Costeiros, Av. Beira Mar, 3250, C.P. 44, Aracaju, SE, CEP: 49025-040. E-mail: cinthia-sr@hotmail.com; vanessammm2003@yahoo.com.br

² Pesquisadores da Embrapa Tabuleiros Costeiros, Av. Beira Mar, 3250, C.P. 44, Aracaju, SE, CEP: 49025-040. E-mails:ivenio@cpatc.embrapa.br; helio@cpatc.embrapa.br

³ Pesquisador da Embrapa Meio-Norte, Av. Duque de Caxias, 5650, Buenos Aires, Teresina, PI, CEP: 64006-220, E-mail:milton@cpamn.embrapa.br

⁴ Pesquisadores da Embrapa Milho e Sorgo, Rod. MG 424, km 45, Sete Lagoas, MG, CEP: 35701-970. E-mails: cleso@cnpms.embrapa.br, leonardo@cnpms.embrapa.br

⁵ Pesquisadores do IPA, Caixa Postal 1022, Recife-PE, e-mail: tabosa@ipa.br

⁶ Estagiária Embrapa Tabuleiros Costeiros, Av. Beira Mar, 3250, Jardins, C.P. 44, Aracaju, SE, CEP: 49025-040. E-mail: camila.rcastro@hotmail.com

As alturas de planta e de espigas, estande de colheita, número de espigas colhidas e peso de grãos foram submetidos a análise de variância, pelo modelo em blocos ao acaso. As análises de variância conjuntas obedeceram ao critério de homogeneidade dos quadrados médios residuais

(Gomes, 1990) e foram realizadas conforme Vencovsky & Barriga (1992), considerando-se como aleatórios os efeitos de blocos e ambientes e, fixo, o efeito de híbridos.

Resultados e Discussão

Nas análises de variância conjuntas detectaram-se efeitos significativos entre os híbridos avaliados, os ambientes e interação híbridos x ambientes evidenciando diferenças entre os híbridos simples e os ambientes e inconsistência no comportamento desses híbridos ante às oscilações ambientais (Tabela1). Situações semelhantes foram relatadas por Cardoso et al., (2007), Oliveira et al. (2008) e Carvalho et al.(2008) em trabalhos realizados nessa ampla região. Os coeficientes de variação encontrados conferiram confiabilidade aos ensaios conforme critérios adotados por Lúcio et al.(1999).

As médias de alturas de planta e de espiga foram de 201 cm e 104 cm, respectivamente (Tabela 1). Os híbridos SHS 7090, SHX 323, Somma, RB 9210, mostraram menores valores de alturas de plantas, apesar de não diferirem de outros, estatisticamente. Cultivares de menores alturas de planta e de espiga exibem maior tolerância ao acamamento e quebramento do colmo, além de permitirem o uso de um maior número de plantas por unidade de área. Os valores médios para o estande de colheita e número de espigas colhidas foram de 47 e 46, respectivamente, registrando-se um estande médio de 58750 plantas por há, com redução de 3750 plantas em relação ao estande proposto (62500 ha).

No que se refere ao peso de grãos, obteve-se um rendimento médio de 8360 kg/ha, com variação de 7259 kg/ha a 9452 kg/ha, evidenciando o alto potencial para a produtividade do conjunto avaliado, equiparando-se aos altos rendimentos médios registrados em áreas tradicionais de cultivo de milho no país (Tabela 1). Esses rendimentos também equiparam-se àqueles que vêm sendo obtidos em outras oportunidades no Nordeste brasileiro, conforme relatam Cardoso et al.(2007), Oliveira et al.(2008) e Carvalho et al.(2009).

Os híbridos com rendimentos médios acima da média geral mostraram melhor adaptação (Vencovsky & Barriga, 1992), destacando-se, entre eles, os DKB 399, 30 A 86 HX, 2 B 707 HX, 2 B 604 HX, 30 A 91HX e 30 A 70, com produtividades médias entre 9452 kg/ha a 9175 kg/ha, constituindo-se em excelentes opções para a agricultura regional.

Conclusão

Os híbridos mostram alta adaptação em áreas de cerrados e de agreste inseridas no Nordeste brasileiro consubstanciando-se em excelentes alternativas para exploração comercial nessas áreas.

Referências

CARDOSO, M. J.; CARVALHO, H. W. L. de; SANTOS RODRIGUES, A. RODRIGUES, S.S. Performance de cultivares de milho com base na análise de estabilidade fenotípica no meio-norte brasileiro. **Agrotrópica**, Ilhéus, v. 19, n. único, p. 43-48, 2007.

CARVALHO, H. W. L. de; CARDOSO, M. J.; GUIMARÃES, P. E. °; PACHECO, C. A. P.; LIRA, M. A. L.; TABOS, J. N.; RIBEIRO, S. S.; OLIVEIRA, V. D de. Adaptabilidade e estabilidade de cultivares de milho no Nordeste brasileiro no ano agrícola de 2006. **Agrotópica**, Ilhéus, v. 21, n. 1, p. 25-32, 2009.

CARVALHO, H. W. L. de; CARDOSO, M. J.; LEAL, M. de L, da S.; SANTOS, M. X. dos.; SILVA, A. A. G. S.; LIRA, M. A. L.; TABOS, J. N.; SOUSA, E. M.; FEITOZA, L. F.; MELO, K. E. °. Adaptabilidade e estabilidade de milho no Nordeste brasileiro. **Agrotópica,** Ilhéus, v. 20, p. 5-12, 2008.

GOMES, F. P. Curso de estatística experimental. 8ª Ed. São Paulo. Nobel, 1990. 450p.

LÚCIO, A.D.; STORCK, L.; BANZATTO, D. A. Classificação dos experimentos de competição de cultivares quanto à sua precisão. **Pesquisa Agropécuária Gaúcha,** v. 5, p.99-103, 1999.

OLIVEIRA, V. D., CARVALHO, H. W. L. de., CARDOSO, M. J., LIRA, M. A. CAVALCANTE, M. H. B., RIBEIRO, S. S. Adaptabilidade e estabilidade de cultivares de milho na zona agreste do Nordeste brasileiro na safra de 2006. **Agrotrópica**, 19:63-68. 2007.

RAMALHO, M A. P.; SANTOS, J. B. dos; ZIMMERMANN, M. J de O. **Genética quantitativa em plantas autógamas**: aplicação no melhoramento do feijoeiro. Goiânia, Editora UFG, 1993. cap. 6, p. 131-169. (Publicação, 120).

SOUZA, E. M. de.; CARVALHO. H. W. L. de.; LEAL, M. de L. da S.; SANTOS, D. M. dos Adaptabilidade e estabilidade de cultivares de milho nos Estados de Sergipe e Alagoas. **Revista Ciência Agronômica,** Fortaleza, v. 35, n. 1

VENCOVSKY. R.; BARRIGA, P. **Genética biométrica no fitomelhoramento.** Ribeirão Preto: Sociedade Brasileira de Genética, 1992. 496p.

Tabela 1- Médias e resumos das analises de variância referente às características, rendimento de grãos (kg/ha), alturas (cm) de plantas e de espigas, estande de colheita e numero de espigas colhidas, obtidas em ensaios de competição híbridos simples de milho. Região Nordeste do Brasil, 2009/2010.

Híbridos	Peso de grãos	Altura de plantas	Altura de espiga	Estande de colheitas	Numero de espigas
DKB 399	9453a	209b	114b	46b	46b
30 A 86 Hx	9399a	213a	108b	47a	47b
2 B 707 Hx	9324a	204b	104b	48a	48a
2 B 604 Hx	9314a	212a	108b	48a	47a
30 A 91 Hx	9232a	205b	103b	48a	47b
30 A 70	9176a	208b	104b	48a	47a
DKB 177	8964b	211a	113b	47a	46b
DKB 390 YG	8957b	204b	159a	48a	44c
Maximus	8954b	200c	103b	48a	48a
DKB 175	8928b	215a	109b	47a	46b
Impacto	8847b	205b	107b	48a	47a
30 A 77	8783b	209b	110b	48a	48a
GNZ 9501	8736b	205b	110b	46b	46b
BM 709	8713b	210a	112b	47a	47a
30 A 95	8667b	199c	99b	46b	45c
Omega	8617b	198c	108b	48a	47a
2 B 587	8555b	195c	97b	48a	47a
Speed	8492c	197c	109b	47b	47a
BX 1200	8484c	211a	114b	47a	46b
DKB 185 YG	8469c	204b	108b	47a	46b
XB 6012	8468c	199c	108b	47a	47a
30 A 37	8437c	193d	97b	47a	47b
Somma	8410c	187d	104b	47a	47b
Status	8335c	208b	115b	47b	46b
ALFA 905	8334c	212a	112b	48a	48a
RBX 9006	8327c	196c	101b	45c	43d
GNZX 8132	8288c	197c	104b	48a	47a
BRS 1031	8276c	201c	96b	48a	46b
SHX 7222	8275c	197c	103b	47a	47a
GNZ 2500	8222c	199c	105b	46b	45c
CMS 1 F 626	8220c	213a	103b	47a	48a
DKB 350 YG	8198c	202c	99b	48a	46b
CMS 1 D 219	8181c	197c	97b	47a	46b
					44c
2 B 710 Hx	8176c	200c	100b	46b	
Formula	8165c	198c	93b	47a	47b
BRS 1030	8144c	193d	100b	46b	45c
BRS 1035	8124c	205b	106b	46b	45b
SHS 7090	8108c	184d	97b	47b	46b
OKB 330 YG	8060c	196c	97b	46b	45b
BX 1280	8047c	205b	111b	48a	46b
ALFA 50	8028c	218a	105b	47a	47b
SHX 7111	7957d	191d	95b	47a	46b
BRS 1010	7932d	192d	96b	46b	46b
BX 1290	7928d	193d	105b	47a	46b
BM 810	7918d	205b	97b	47a	45c
3X 1293	7873d	203b	106b	45c	44c
OKB 315	7871d	194d	98b	47a	46b
GNZX 9505	7844d	197c	99b	47b	46b
ALFA 10	7807d	199c	102b	48a	47a
KB 9003	7756d	191d	95b	47b	46b
SHX 7323	7528e	186d	95b	46b	45c
RB 9210	7496e	189d	94b	44c	42d
	7490e 7403e	202c	107b	48a	48a
BMX 924					
PRE 12 S 12	7259e	199c	100b	45c	45c
Média	8360	201	104	47	46
C.V (%)	8,2	7,1	31,2	4	5
F (tratamento)	11,3**	6,1**	1,8**	5,7**	4,6**
F (Local)	387,9**	165,7**	30,8**	20,8**	71,2**
F (Interação)	2.6**	1,2*	1,0ns	2.4**	1,8**

^{**}e ns Significativo a 1% de probabilidade e não significativo pelo teste F. As médias seguidas pelas mesmas letras não diferem entre se pelo teste Scott-Knott.