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The soil’s nitrogen (N) supply can vary drastically in the field, spatially as well as 

temporally making any soil prediction difficult even with very detailed mapping. 

Consequently, a plant-based approach wherein the measured canopy can indicate the N 

needs in a reactive and spatially-variable way can be a better approach than mapping, 

because integrate the soil N supply and translate the crop need on-the-go. The first 

experiment evaluated the performance of various spectral indices for sensing N status of 

corn, where spectral variability might be confounded by water-induced variations in crop 

reflectance. We found that water and previous crops effects on vegetation indices (VI) 

must be considered, and also that some VIs are less susceptible to water with good ability 

for N differentiation. In the second experiment, the objective was to develop an approach 

that relies on local soil conditions as well as on active canopy sensor measurements for 

real-time adjustment of N application rate. We found that local variations in plant N 

availability must be considered to determine the optimal N rate on-the-go, and that the 

localized reference incorporated the spatial variability of the N-rich plot. Next, we 



 

 

 

 

determined the correlation between active canopy sensors assessments of N availability 

and ultrasonic sensor measurements of canopy height at several growth stages for corn. 

We found strong correlations between both sensors and that they had similar abilities to 

distinguish N-mediated differences in canopy development. The integrated use of both 

sensors improved the N estimation compared to the isolated use of either sensor. Based 

on these strong correlations, we developed an N recommendation algorithm based on 

ultrasonic plant height measurements to be used for on-the-go variable rate N application. 

Lastly, we evaluated the crop water status using infrared thermometry integrated with 

optical and ultrasonic sensors, we concluded that the integration of sensors was beneficial 

to detect water-stressed zones in the field, affecting yield and possibly promising to 

delineate zones for N and water management. 
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GENERAL INTRODUCTION 

 

Nitrogen Use Efficiency (NUE) 

 

Given its transformations and mobility in the soil profile, nitrogen (N) is the most 

dynamic nutrient in agricultural systems. Normally, it is the most limiting nutrient for the 

achievement of high yield. This complexity makes for uncertainty in its recommendation, 

based on traditional soil analysis. This dynamic characteristic of N in the soil suggests a 

need for research and development of new management practices or devices to predict 

when, where, and how much N is required (Schepers and Raun, 2008). 

Current practices for applying N have resulted in low nitrogen use efficiency 

(NUE) mainly because uniform applications disregard spatial and temporal variability in 

the soil and crop and also the use of N rates above the crop needs (Raun and Johnson, 

1999). Increasing the problem, the risk of N loss (through denitrification, volatilization, 

surface runoff, leaching, etc.) can be considerably higher if the N fertilizer application 

timing and procedure are inadequate. 

One of the major causes for low NUE is the poor synchrony of soil N supply and 

crop demand (Shanahan et al., 2008). Normally, N application takes place before the time 

of N uptake from crops, for practical and operational reasons. When the method and 

timing of N application is not ideal, related high losses can occur. 

In most of the American corn crop production, the N fertilizers have been applied 

at preplant in early spring or in the late fall. Normally, the high N uptake for crops is two 
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to six months later in the middle of growing season, with an N uptake peak around VT 

(Abendroth et al., 2011). This approach causes a delay that can be responsible for a major 

loss of N to the environment. In the U.S. Corn Belt, an estimated 75% of the N 

application occurs prior to planting and only 25% after planting, with rates around 150 

kg/ha (Shanahan et al, 2008). Considering that only 30% is utilized by crop production, 

farmers are applying 105 kg N ha
-1

 in each season uniformly to the environment 

following current management practices. 

 

Nitrogen Management Strategies Using Precision Agriculture 

 

Using the concept of precision agriculture wherein the spatial variability of crops 

is considered three approaches are available for applying nitrogen fertilizers: (i) map-

based (adjusting the N rate according to previous maps); (ii) real time or on-the-go 

(deciding on the N rate electronically using a device/sensor to measure some 

characteristic before variable rate application); or (iii) integrated (using a combination of 

sensor and map) (Adamchuk et al., 2011). 

In the effort to increase the NUE in crop systems, many researchers have 

proposed techniques and procedures involving soil spatial variability based on soil 

analysis and sensor readings. Examples include: (i) the use of grid sampling to adjust the 

N fertilizer application (Ferguson et al, 2002); (ii) the use of soil conductivity maps to 

address different soil types and zones in the field with different N demand (Eigenberg et 

al, 2006, Heiniger et al., 2003, Perry and Roberts, 2008); and (iii) the use of aerial images 

or other types of remote sensing techniques to estimate the N and water stress in corn 
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(Clay et al, 2006 and Hong et al., 2006). All these techniques require some type of 

mapping approach to be able to vary the N fertilizers in the field. However, the ideal 

should be to apply the fertilizer in real time or near to that. But how can we measure N 

demand and apply fertilizers in accordance with crop needs considering the spatial and 

temporal variability of N in the plant in real time? 

 

Plant-Based Active Canopy Sensors 

 

One promising technique involves the use of proximal remote sensing based on 

plant-based active canopy sensors (ACS) that can vary the N rate on-the-go without the 

need for maps to control the application. These sensors have their own light source and 

they are not influenced by sunlight. The sensors use the crop canopy reflectance in 

certain wavebands resulting from chlorophyll content in the leaves. This chlorophyll 

content correlates highly with N content in the plant. 

In previous studies with hand-held chlorophyll meters, researchers found that 

these sensors can detect the onset N stress in many cases before it is visible to the human 

eye (Schepers et al., 2006). This is early enough to correct N deficiency without reducing 

yields (Samborski et al., 2009). For the ACS, the recommended in-season N application 

must be done between V8-V12 to properly address the sensor sensibility for N demand in 

corn (Martin et al., 2007). Using ACS, Solari et al (2008) found that vegetative stages 

around V11 and V13 are the best for predicting the N requirement for corn, and that it is 

possible to use these sensors to address different N rates on-the-go. 
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In an effort to refine the readings of ACS, Sui & Thomasson (2006) measured 

relationships between sensors and plant height in cotton. They used one ultrasonic sensor 

to measure plant height integrated with passive optical sensors. They concluded it is 

possible to use this integration of sensors to divide the N status into two categories 

deficiency and non-deficiency with 90% accuracy. In corn forage, Freeman et al. (2007) 

measured plant height using conventional measurement techniques and found strong 

relationships between plant height, biomass, yield, N uptake, and optical readings. They 

concluded that the integration of optical readings and plant height may be used to refine 

the midseason fertilizer N rates based on expected N removal and by-plant measurements 

at or before V10. Recently, Yin et al. (2011) showed that plant height can be used for in-

season prediction of corn yield. This prediction provides a physiological basis for the use 

of high-density plant height measurements to guide variable-rate fertilizer N applications 

within the field and to more accurately estimate crop yield. Individually or together, plant 

height and vegetation indices can be used to estimate N availability during the corn 

growing season; consequently their use represents an attractive option for in-season N 

management. 

 

Vegetation Indices for Crop Canopy Assessment 

 

Active canopy sensors measure the reflectance of the crop canopy in certain 

wavelengths. Using these vegetation indices (VI), the N fertilizer requirement can be 

calculated based on the estimated plant N status. Since the 1960’s, scientists have 

extracted and modeled vegetation biophysical variables using remotely sensed data from 
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these VIs. These are dimensionless, radiometric measures that indicate relative 

abundance and activity of green vegetation, including leaf-area-index (LAI), percentage 

green cover, chlorophyll content, green biomass, and absorbed photosynthetically active 

radiation (APAR) (Jensen, 2007). A vegetation index should: (i) maximize sensitivity to 

plant biophysical parameters; (ii) normalize or model external effects, such as sun angle, 

viewing angle, and the atmosphere for consistent spatial and temporal comparisons; (iii) 

normalize internal effects such as canopy background variations, including topography, 

soil variations, and differences in senesced or woody vegetation; and (iv) be coupled to 

some specific measurable biophysical parameter such as biomass, LAI, or APAR as part 

of the validation effort and quality control (Running et al., 1994). In general these indices 

are extremely efficient measurements that can be used to retrieve plant vigor, including N 

nutrition and crop water status. Green plant leaves typically exhibit very low reflectance 

and transmittance in the visible parts of the spectrum (400-700nm), due to strong 

absorptance by photosynthetic plant pigments (Chappelle et al., 1992). Leaves absorb 

mainly blue (~450nm) and red (~660nm) and reflect green (~550nm) wavelengths. By 

contrast, they reflect and transmit a high portion of the near infrared (NIR) region of the 

spectrum (~700-1400nm). Innumerous VIs are developed with various purposes, some 

functionally equivalent as well as some that can provide unique biophysical information 

(Qi et al., 1995; Zygielbaum et al., 2009). Most are based in the inverse relationship 

between red and NIR reflectance that are associated with healthy green vegetation. The 

most famous is the Normalized Difference Vegetation Index (NDVI) that uses the ratio of 

NIR and red to assess vegetation cover (Rouse et al., 1974). Others are more suitable for 

high LAI environments due to non-saturation of the red band, including Chlorophyll 
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Index based Indices (CI) (Gitelson et al., 2005) and others for chlorophyll assessment by 

orbital platforms such as the Meris Terrestrial Chlorophyll Index (MTCI) (Dash and 

Curran, 2004). The following conceptual model proposed by Gitelson et al. (2003, 2005) 

is important to understand and will be used for most indices in the following chapters: 

 

[R(λ1)
-1

 - R(λ2)
-1

] R(λ3) α pigment 

 

In this model, R(λ1)
-1

 is the inverse reflectance at a wavelength λ1 which is 

intended to be maximally sensitive to the pigment of interest; R(λ2)
-1

 is the inverse 

reflectance at a wavelength that is minimally sensitive to the pigment of interest; and 

R(λ3)
-1

 is the reflectance at a wavelength that is insensitive to the pigment. 

Each VI has its limitation and application, but all have in common the ability to 

non-destructively enhance the canopy response for some characteristic of interest in this 

case, for nitrogen and water management. 

 

A Brief History of the ACS Algorithms and Approaches Developed in Nebraska 

 

The first approach for calculating N recommendations based on an optical sensor 

resulted from a study using chlorophyll meters (Varvel et al., 2007). This study was 

conducted to develop a plant-based technique to detect and correct N deficiencies in-

season using a contact device that clipped the leaf and made readings of chlorophyll 

absorption using the red (660nm) and near infrared bands (940nm) (SPAD 502, Konica 

Minolta Sensing Inc., Osaka, Japan). Researchers found high linear correlations between 
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the sufficiency index (SI) and relative grain yield, showing that both responded similarly 

to N fertilizer application. This sensor normalization technique (SI) is the ratio of a 

sensed crop property to the same measurement from a known or standard crop 

(reference), and is described mathematically as SI = VI of a sensed crop / VI of the 

reference crop (Holland and Schepers, 2010). The reference crop in this case is a non-

limited N crop. Relationships between N rate and SI were described by quadratic models 

and a function was developed to describe the amount of N to maximize yield. In essence, 

the researchers used historical yield response functions to determine the N rate that 

maximized relative grain yield and then subtracted the N rate by the estimated plant N 

using the hand-held chlorophyll meter, and the difference was the N recommendation. 

The combined model is: SI = 0.8073 + 0.002(Nrate) – 0.0000056(Nrate)
2
, assuming R

2
 = 

0.70. 

With the advent of ACS technology that did not require contact with the leaf 

allowing on-the-go measurements of plant N status and application in real time Solari et 

al., (2006, 2008 and 2010) stepped forward to supply the first algorithm in Nebraska to 

use with this new generation of sensors. They developed an algorithm for ACS based on 

the linear relationship between ACS sensor SI and SPAD SI, employing the same 

quadratic equation determined from Varvel et al. (2007) and based on the good 

correlation between both sensors: N recommended = 317√0.97 − ��, where SI is the 

ACS sensor readings in real time. Even when based on chlorophyll meter data, the 

algorithm developed provided reasonable estimates of N recommendations for 

maximizing yields (Solari et al., 2010; Roberts, 2009; Roberts et al., 2010). 
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Finally, Holland and Schepers (2010) derived a variable rate N application model 

that is a mathematical procedure to describe the general shape of an N fertilizer response 

function (sensor index vs. N rate) and the relationship between N rate and in-season crop 

vegetation index data acquired with the use of sensors. The major difference from the 

previous algorithm is that the new algorithm allows the user to input parameters that can 

change the N recommendation. For example, given the N rate that should maximize yield 

for the specific site and previous experiences from the producer and if the possible N 

response and the sensor reading threshold are below some specific SI, the N 

recommended will be reduced. In general, the new algorithm offers more flexibility, 

since it has not embedded an N rate that maximizes yield as the previous algorithm. On 

the other hand this algorithm offers more sources for human error if the inputs are not 

properly selected by the user. The recent algorithm model is being validated and 

incorporated on sensors firmware. Continuous advances are being made to improve the 

utility of these ACS for in-season N application. The algorithm is: 

 

		�� = �	��� − 	��� − 	�� + 	����√ �1 − ���
∆���1 + 0.1��������� !"#$���� 

 

In this model, N rec is the N rate that should be applied in kg ha
-1

 ; Nopt is the economic 

optimum nitrogen rate (EONR) or the maximum N rate prescribed by producers; Npre is 

the N rate applied before sensing; Ncrd is the N credit for the previous season’s crop, 

nitrate in the water, or manure application; Ncomp is the N in excess of Nopt required by 

the crop under soil limiting conditions at a given growth stage; SI is the sufficiency 
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index; m is the back-off rate variable (0<m<100); and SI treshold is the back-off cut-on 

point. 

 

Influence of Detailed Topography in Crop N and Water Demand 

 

Another factor that can be used to fine-tune any algorithm or approach to variable 

N application is the influence of topography features in the N availability for the corn 

plant. Previous research has shown that slope is correlated with yield and nutrient 

availability. Plant roots absorb nutrients better at low slope; high water-holding capacity 

in these areas results in higher-yielding areas. However, apparent electrical conductivity 

(EC) could better explain the yield response than elevation features alone (Kitchen et al., 

2003). Other studies show that topographical features can result in high- and low-yielding 

areas, depending on rainfall in that year. High slope normally tends to diminish the 

infiltration rate and the soil water-holding capacity (Kaspar et al., 2003, Kravchenko et 

al., 2005). Numerous properties influence the suitability of soil as a medium for crop 

growth and yield. These include soil water-holding capacity, water infiltration rate, 

texture, structure, bulk density, organic matter, pH, fertility, soil depth, topography 

features, the presence of soil restrictive layers, and the quantity and distribution of crop 

residues. These properties are complex and vary spatially as well as temporally within 

fields (Kitchen et al., 2003). Use of Real Time Kinematic Global Positioning Systems 

(RTK GPS) to make detailed maps of the topography could provide a valuable layer of 

information for refining the N application and evaluating the crop water status. Several 
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variations of N response and corn yield using ACS can be found in the literature, but no 

investigations attempt to correlate sensor responses to detailed topographic features. 

 

Influence of Previous Crop and Irrigation Level in N Requirement for Corn 

 

Given changes resulting from the previous crop and the irrigation level in the 

system, can the N estimation by ACS be the same for different rotations and water levels? 

Long-term experiments evaluating the soybean nitrogen contribution to corn and 

sorghum in western Corn Belt rotations showed that corn in the rainfed and irrigated 

fields obtained around 65 kg N ha
-1

 year
-1

 from soybean in a two year rotation with 

soybean, and rainfed sorghum obtained 80 kg N ha
-1

 year
-1

 from soybean in a soybean-

sorghum rotation (Varvel and Wilhelm, 2003). Researchers concluded that these credits 

must be considered when N fertilizer recommendations are formulated otherwise, 

excessive N applications take place, increasing the N available for loss either through 

leaching or denitrification. 

Eck (1984) showed that because of the opportunity for better N management, the 

interactions between N rates and water level must be taken into consideration when 

assessing corn production. However, it is very difficult to separate those factors in 

practical conditions. Al-Kaisi & Yin (2003) showed that reducing water level by 20% 

(from 100% ET to 80% ET) had no effect on corn yield. 

Studies show that water can have more effect on plant reflectance than N stress 

(Elwadie et al., 2005). Schlemmer et al., (2005) found that chlorophyll meter readings 

were also affected by water treatments, but research is needed to assess the influence of 
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previous crop and different water levels and N supply in the vegetation indices key for 

the algorithms used for the on-the-go N application using ACS.  How do these VI 

calculated from ACS vary with different water levels and previous crops that contribute 

to indigenous N? Is there any way to optimize the crop sensing to separate N from water 

influence? Can canopy temperature help improve the ability to separate N and water? 
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RESEARCH OBJECTIVES 

 

The general objective of this research program was to develop in-season N 

management strategies to optimize the on-the-go N application in irrigated cornfields by 

the integration of plant-based canopy sensors. The specific objectives are described in the 

following chapters: 

Chapter 1 

Investigate the performance of various spectral indices for sensing the N status of corn, 

where spectral variability might be confounded by water-induced variations in crop 

reflectance. 

Chapter 2 

Develop an approach that relies on local soil conditions as well as on active canopy 

sensor measurements for real-time adjustment of N application rate; evaluate the 

correlations between localized plant status and soil attributes in variable landscapes. 

Chapter 3 

Determine the correlation between active optical reflectance crop canopy sensors 

assessments of N availability and ultrasonic sensor measurements of canopy height at 

several growth stages for corn; test the ability of both sensors to distinguish N-mediated 

differences in canopy development; and evaluate benefits of the integrated use of both 

sensors. 

Chapter 4 

Develop an N recommendation algorithm based on ultrasonic plant height measurements 

to be used for in-season and on-the-go variable rate N application; validate and compare 

the algorithm proposed with other approaches for in-season N fertilization. 
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Chapter 5 

Evaluate the crop water status using infrared thermometry integrated with optical and 

ultrasonic sensors considering detailed topographical features. 
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CHAPTER 1 

 

COMPARISON OF SPECTRAL VEGETATION INDICES DERIVED FROM 

ACTIVE CROP CANOPY SENSORS FOR CORN (Zea mays, L.) GROWN 

UNDER DIFFERENT CROP ROTATIONS AND IRRIGATION LEVELS 

 

ABSTRACT 

 

Much of the previous evaluation of active crop canopy sensors for in-season assessment 

of crop nitrogen (N) status has occurred in environments without water stress. The impact 

of concurrent water and N stress on the use of active crop canopy sensors for in-season N 

management is unknown. The objective of this study was to evaluate the performance of 

various spectral indices for sensing N status of corn, where spectral variability might be 

confounded by water-induced variations in crop reflectance. The study was conducted in 

2009 and 2010 with experimental treatments of irrigation level (100 and 70% ET), crop 

rotation (corn - corn or soybean-corn) and N fertilizer rate (0, 75, 150 and 225 kg N ha
-1

). 

Crop canopy reflectance was measured from V11 to R4 stage using two active sensors – 

a two band (880 and 590nm) and a three band (760, 720 and 670 nm). Among the 

indices, the vegetation index studied by Datt et al. (1999) (DATT) and Meris Terrestrial 

Chlorophyll Index (MTCI) were the least affected by water stress, with good ability to 

differentiate N rate with both crop rotations. The Chlorophyll Index using amber band 

(CI), Normalized Difference Vegetation Index using Red Edge band (NDVI_RE) and the 

Normalized Vegetation Index using the Red band (NDVI_Red) showed more variation 

due to water supply, and had only moderate ability to differentiate N rates. 
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Abbreviations List: ACS: active crop canopy sensors, CC: irrigated corn after corn; CS: irrigated corn 

after soybean; NSI:nitrogen sufficiency index; ET: evapotranspiration. NIR: near infrared; CI: chlorophyll 

index vegetation index using amber and NIR; CIRE: chlorophyll index vegetation index using red edge and 

NIR; DATT: vegetation index calculated using NIR, red edge and red bands published by Datt et al. 

(1999); MTCI: Meris terrestrial chlorophyll index; NDVI_RE: normalized difference vegetation index 

using the red edge band; NDVI_Red: normalized difference vegetation index using the red band. 

 

INTRODUCTION 

 

In-season nitrogen (N) management for corn using active crop canopy sensors 

(ACS) relies on the use of algorithms that can trigger on-the-go N fertilization in the field 

based on crop canopy reflectance. Optical sensing equipment that employs this approach 

is commercially available and these sensors rely on some version of a vegetation index to 

express crop reflectance (Shanahan et al., 2008; Eitel et al., 2008) and prescribe N rate 

application. 

There are different approaches and vegetation indices used to determine N rate 

based on these sensors, but the majority of algorithms use the N sufficiency index (NSI) 

approach previously proposed for chlorophyll meter readings (Varvel et al., 1997). For 

example: when the ratio between a targeted region in the field and a well-fertilized 

reference in the same field reaches a certain level,  N fertilizer is needed according to a 

function that describes the relationship between yield and NSI readings (Bausch and 

Duke, 1996). Some N rate recommendation algorithms utilize yield potential that is 

determined by growing degree days and an estimate of biomass at the day of sensing 
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(Raun et al., 2002). Several additional vegetation indices have been used to calculate N 

rate for corn and wheat using active canopy sensors, such as the Green Normalized 

Difference Vegetation Index (GNDVI) (Dellinger et al., 2008), and the Chlorophyll Index 

(CI) (Solari et al., 2008). 

Regardless of the approach used, an understanding of how these indices may be 

influenced by water stress and previous crop is needed. Previous work by Eitel et al. 

(2008) investigated the impact of water availability and N stress on leaf area index (LAI) 

in wheat using a multispectral radiometer and a chlorophyll meter. They showed that the 

ratio of the Modified Chlorophyll Absorption Ratio Index to the second Modified 

Triangular Vegetation Index (MCARI/MTVI2) is sensitive to N and less susceptible to 

variable LAI caused by water stress. Another example of interaction between water and 

N stress in corn using remote sensing was the work done by Clay et al. (2006), where 

broad band widths were used to calculate different indices (NDVI, GNDVI, NDWI 

(Normalized Difference Water Index) and NRI (N reflectance index), with the major 

conclusion being that water and N had additive effects on yield and optimum N rates 

(100 – 120 kg N ha
-1

) were similar across different water levels. There are other examples 

of indices used specifically to detect water stress (Zygelbaum et al., 2009), to determine 

chlorophyll content, and to estimate gross primary productivity (Lemaire et al, 2004; 

Inoue et al., 2008, Wu et al., 2009). All these indices were developed using spectral 

radiometers or other passive sensors. The same approaches can be used with active crop 

canopy sensors to calculate vegetation indices for in-season N management. However, 

the degree they are influenced by water stress and previous crop in corn production is 

unknown.  



23 

 

 

 

The objectives of this study were: (i) to compare the performance of various 

spectral indices for measuring N status in corn at different irrigation levels and crop 

rotations; (ii) determine the potential of these indices to differentiate N rate at different 

crop stages; (iii) compare the correlation of indices collected during vegetative growth 

stages with grain yield. 

 

MATERIAL AND METHODS 

 

Experimental Design and Site Description 

 

The experimental site was located at the University of Nebraska South Central 

Agricultural Laboratory (40.57012368 º N, -98.14329432 º W, 558 m above mean sea 

level, Map Datum WGS 84) near Clay Center during the 2009 and 2010 growing seasons. 

The soil at this site is predominantly Crete silt loam (fine, smectitic, mesic Pachic 

Argiustolls), 0-1% slope  and previously for 3 years in continuous corn. Experimental 

treatments consisted of two irrigation levels (70 and 100% of estimated 

evapotranspiration - ET), two crop rotations (corn after corn - CC and corn after soybean 

- CS), and four N rates (0, 75, 150 and 225 kg Nha
-1

). The experimental design was a 

randomized complete block split split plot, with irrigation level as the main plot, previous 

crop as the subplot, and fertilizer N rate as sub-subplots. The irrigation treatments were 

delivered using a linear-move sprinkler system that varied travel speed to change water 

application rate. Climatological data were recorded on-site for both growing seasons 

using an automated weather station. Planting dates, plant population and row spacing 
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were similar both years (Table 1). Soil sampling and analysis was done each spring to 

characterize soil fertility where the experiments were conducted (Table 2). Soil pH was 

determined according to Watson and Brown (1998); extractable P and K were determined 

by Mehlich I (Sims, 1989), organic matter was estimated by loss-on-ignition method 

(Nelson and Sommers, 1996) and the micronutrients by routine of certified laboratory 

procedures. The previous soybean crop was planted during the 2008 growing season to 

start the crop rotation. Crops were planted and managed using best management practices 

for high yielding corn, optimizing the supply of all crop nutrients other than N (Table 2). 

 

Crop Canopy Sensing 

 

Crop canopy reflectance was measured for corn during the following growth 

stages V11, V13, V15, R2, R3 and R4 (Abendroth et al., 2011) using two active canopy 

sensors – a two-band sensor (880 and 590 nm, Crop Circle 210), and a three band sensor 

(760, 720, and 670 nm, Crop Circle 470)  (Holland Scientific, Lincoln, Nebraska, USA). 

The platform used for sensor data acquisition consisted of a bicycle modified to support 

two optical sensors, a GeoXT GPS receiver (Trimble Navigation, Ltd., Sunnyvale, 

California, USA) and a netbook computer (Figure 1).  

The platform provided the ability to maintain a distance of at least 60 cm between 

the sensors and the top of the crop canopy when acquiring readings throughout the 

growing season and avoiding soil compaction near the row and additional damage that 

could occur if high clearance machinery were used. Each plot (9.14 x 6.09 m) consisted 

of 8 rows, and rows 3 and 6 were sensed at each growth stage with about 30 sensor 
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output mean values recorded per plot. Both optical sensors were mounted together to 

measure the crop reflectance at about the same target (sensor were mounted 0.3 m apart). 

In order to sense rows 3 and 6, two passes were made through each plot. Approximately 

12 readings from each sensor were averaged to record with each geographical location. 

With the typical speed traveled through plots, and one GPS location recorded per second, 

approximately 30 geographic locations were recorded for each plot. Sensors 

measurements were collected and integrated (averaged) using customized LabView 

software (National Instruments, Austin, Texas, USA), filtered using MathLab 

(Mathworks, Natick, Massachusetts, USA), Microsoft Excel and ArcGIS 9.3 (ESRI, 

Redlands, California, USA) to eliminate the plot-border effect and some GPS 

inaccuracies. Collected and filtered data were used for statistical data analysis (SAS 9.2) 

(SAS, Cary, North Carolina, USA). 

 

Vegetation Indices 

 

Six vegetation indices (CI, CIRE, DATT, MTCI, NDVI_RE and NDVI_Red) 

were evaluated in terms of their potential to differentiate N rates with both irrigation 

levels and crop rotations (Table 3). The criteria for index selection for N assessment was 

guided by previous successful use in cereal crops (CI and NDVI); possibility of use with 

satellite imagery (MTCI) and by the ranking proposed by Lemaire (2004), where the root 

mean square error (RMSE) was minimized and the agreement with the PROSPECT 

Model (Jacquemoud and Baret, 1990) was maximized for chlorophyll estimation (it was 

the case for the DATT index) 
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All vegetation index values were normalized (actual index value divided by the 

index value of the highest N rate) to facilitate comparison among indices and to perform 

statistical analysis. The normalization was cited in previous work as the Sufficiency 

Index (SI) and is used to minimize factors that can affect vegetation indices, including N 

rate, hybrid, stages of growth, and environmental conditions. (Schepers et al., 1992; 

Schepers, 1994; Varvel et al., 1997). 

 

Soil Moisture Measurement and Crop Yield Assessment 

 

 Soil moisture content was monitored hourly during the growing season  by means 

of Watermark soil moisture sensors (Irrometer Co, Riverside, California, USA) installed 

at 30, 61 and 91 cm depths  in  plots with 225 kg Nha
-1

 for the two different water levels 

(70 and 100 % ET) and crop rotations (CC and CS). For comparison between  irrigation 

levels, the soil matric potential was averaged by day for each depth. 

Grain yield for each plot was measured with a plot combine Gleaner K (2 rows) 

using the Harvest Master System (Juniper Systems Inc., Logan, Utah, USA) and 

corrected to an average grain moisture content of 15.5 g kg
-1

. 

 

Statistical Analyses 

 

To evaluate treatment effects on grain yield, the two years of data were analyzed by the 

PROC MIXED procedure of SAS for ANOVA and means separation using the Duncan’s 

Multiple Range Test (p<0.1), Year, irrigation levels, crop rotations, as well as 
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replications were considered random effects. The effects of treatments on vegetation 

indices also used repeated measures ANOVA (time-repeated measures analysis) with 

PROC MIXED since several growth stages were measured for each of the six vegetation 

indices evaluated both years, under different crop rotations, irrigation levels and N rates. 

Again, only two levels of irrigation were tested, Year was included as a random effect 

and was considered a replication of irrigation level in the statistical analysis. To test the 

ability of the vegetation indices to differentiate N rates under different rotations the 

Duncan Multiple Range Test (p<0.10) was used disregarding irrigation effects. The 

vegetation indices were tested for the effects of irrigation levels comparing the variance 

between the vegetation indices considering variation caused by two irrigation levels (70 

and 100% ET) using the Barlett’s test. The vegetation indices were ranked by Pairwise F 

test comparison from the least to the most affected by irrigation levels, considering the 

variation caused by irrigation levels for each index during 2 years. Lastly to measure the 

relationship between vegetation indices, chlorophyll meter and grain yield PROC GLM 

and MANOVA (Multivariate Analysis of Variance) were used to obtain partial 

correlations adjusting for irrigation levels and crop rotations. 

 

RESULTS AND DISCUSSION 

 

Rainfall and temperature history, along with application amounts for the 100% ET 

irrigation treatment, are shown in Figure 2 for both growing seasons. Overall climatic 

conditions were near normal for this location, although 2009 was slightly warmer and 

drier in the early season than the same period in 2010.  Consequently, irrigation was 
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initiated earlier in 2009 (around V10) than in 2010 (around V13) (Figure 2). The soil-

moisture content at V11 and V13 was  lower for  the 70% ET treatment compared to 

100% ET, even without the irrigation which was implemented in 2010 (Figure 3), likely 

due to irrigation limitation a imposed in the  previous season.  

 

Treatment Effects on Grain Yield 

 

Irrigation Level 

 

There was no effect of irrigation levels (70 and 100% ET) on corn grain yield, and 

neither of the two-way interactions of interest (Rotation*Irrigation and N*Irrigation) 

were significant. Al-Kaisi and Yin (2003), studying the effects of irrigation, plant 

population and N rate on corn yield, observed similar results where application of water 

at 80 % and 100 % ET had no difference in water extraction from the soil profile and also 

no yield advantage for 100% ET.  Such results suggest that reducing irrigation level (e.g., 

80 % ET) can save water with little  impact on grain yield. 

In 2009, grain yield for irrigation levels were significantly different, with the 

100% ET treatment yielding 591 kg ha
-1

 more than the 70% ET treatment. However, in 

2010 there were no statistically significant differences in grain yield with irrigation level,  

though the difference was still 487 kg ha
-1

. In 2009, the average grain yield was higher 

and optimized by irrigation. Yield differences due to water levels can vary due to several 

factors, such as irrigation timing. Payero et al. (2009) showed that corn yield with the 

same level of water supply can vary with different timing of irrigation application. 
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During both years, and by grouping water levels (disregarding the previous crop), 

the difference between  70 and 100 % ET treatment yields were 538 kg ha
-1

, with 10846 

and 11385 kg ha
-1

 for 70 and 100 % ET, respectively (Figure 4). For the CC rotation, 

yields were 9322 kg ha
-1

 and 9323 kg ha
-1

 for 70 and 100 % ET respectively, showing no 

yield advantage due to the higher irrigation level (Figure 5). For the CS rotation, yields 

were 12370 and 13447 kg ha
-1

 for 70 and 100 % ET with a difference of 1,077 kg ha
-1

 

(significant at p < 0.1, Duncan’s Multiple Range Test) (Figure 5).  

 

Previous Crop and Nitrogen Rate 

 

The N x Rotation interaction was statistically significant, indicating that yield 

responses to N were different between the two crop rotations (Table 4 and Figure 4).  

Average yield differences between crop rotations were considerable  (3585 kg ha
-

1
). This shows how legumes as a previous crop can improve crop productivity, with 

greater access to mineralized soil N due to the low C:N ratio of the soybean residue. In 

2009, at the 70 % ET irrigation level, yield differences between CC and CS were 2924 kg 

ha
-1

 (p < 0.01), with yields of  10763 kg ha
-1

and 13688 kg ha
-1

respectively. For the 100% 

ET irrigation level, the differences were similar (2,963 kg ha
-1

), but yield levels were 

higher (11334 and 14294 kg ha
-1

).  

All N fertilization rates significantly increased corn yield in the CC rotation, 

showing almost linear response to N. On the other hand, fertilizer N rate higher than 150 

kg N ha
-1

did not increase grain yield when the previous crop was soybean in 2009 

(Figure 4). 
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 For the CS rotation in 2010, there were higher yields with the 100% ET treatment 

compared to the 70% ET treatment, and greater yield response to N at lower N rates 

(Figure 5).  

 

Treatments Effects on Vegetation Indices 

 

Water Effects on Vegetation Indices 

 

The amount of water available to plants began to be limiting around V11 in 2009 

and past V13 in 2010, when  irrigation commenced and there were differences in soil-

moisture levels between irrigation treatments (Figures 2 and 3). Due to rainfall patterns, 

the effect of irrigation level on vegetation indices were evaluated at later growth stages 

than the time window recommended for N application. Treatments were evaluated when 

soil moisture levels were different between irrigation levels (V11and R4 growth stages in 

2009 and R4 in 2010).  Only spectral reflectance data collected at the V11-R4 growth 

stages were included in the analysis of variance (Table 5). The analysis of variance for 

vegetation indices indicated that during the period of V11 through R4, there were no 

incidences of statistically significant four- and three-way interactions of treatment effects 

on vegetation indices. Of primary interest then are the significant two-way interactions 

involving growth stage, previous crop and N rate. For example, the N*Rotation 

interaction was significant for all indices. The effect of irrigation level on vegetation 

indices varied between the two years, as expected. 
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Vegetation Index values were normalized (actual index value divided by the index 

value of the highest N rate) to facilitate comparison among indices (Figures 6 and 7).  

Before testing the response of vegetation indices to irrigation level, we evaluated 

the impacts of site characteristics (background soil fertility, historical management) on 

vegetation indices early in the growing season when there was no water stress. For both 

years, there was no influence of site characteristics (soil organic matter differences, soil 

texture, residual soil N,  residue) on canopy reflectance (data not shown), so we can 

assume that the variations in vegetation indices were influenced primarily by irrigation 

water level and fertilizer N rate. 

The Barlett’s Test showed significant differences due to the variance caused by 

irrigation levels on the six vegetation indices (again there were six, not two, variances 

being compared with Bartlett's)analyzing all vegetation indices together (degrees of 

freedom = 5; Chi square = 26.71; p < 0.05).Using a F test to separate pairwise variances 

the vegetation indices were ranked accordingly to the variance caused by irrigation level 

(Table 6). 

Among all indices tested, the DATT index was least influenced by irrigation level 

and showed the lowest mean square error and standard error (Table 6, Figures 6 and 7). 

This may be particularly important in environments where water stress is likely to be 

confounded with N stress, but its response to N rates was smaller during the window for 

in-season N management for both years compared to MTCI or CIRE. The DATT 

vegetation index was first validated for sensitivity to chlorophyll content in uncorrected 

as well as the scatter-corrected spectra, showing that this index can enhance the 
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chlorophyll absorption in reflectance by removing the interferences caused by variations 

in leaf scatter that can be affected by water stress and leaf and architecture (Datt, 1999).  

 The MTCI was the second least influenced by irrigation level, but it had a higher 

standard error for fertilizer N rate than the DATT index (Figures 6 and 7).  However, the 

N response was better in the sense of showing less saturation with an increase of N rate, 

and it displayed better distinguishing ability with regard to differences in N supply. The 

vegetation indices CI and CIRE showed good responses to N rates but they were the most 

affected by water level at V11 and R4 (Table 6, Figure 6 and 7). 

The NDVI_RE was the third best index in terms of identifying N stress 

independent of irrigation level, but it plateaued beyond 75 kg ha
-1

ha of fertilizer N in 

2009, limiting its utility for N fertilizer application and compromising its ability to 

differentiate N rates in that particular year. It is important to point out that the slope of 

response for N rates was smaller (as expected) when NDVI was used to estimate 

chlorophyll content or biomass due to saturation at high leaf area index (LAI) at those 

corn stages (Gitelson, et al, 1996). So, the expected saturation of the NDVI (Gitelson, 

2004) also occurred in this experiment at these growth stages (Figure 6K and  6L,  and 

7K and 7L). 

In general, we observed that corn plants under water stress (70% ET) had changes 

in leaf structure rather than LAI, but only at later stages (after VT). As reported earlier, 

impacts of water stress will vary with growth stage, but water stress at early growth 

stages will affect LAI the most (Çakir, 2004). Normally, in this region of the Great 

Plains, irrigation commences between V14 and VT growth stages, depending on stored 

soil water and precipitation. Consequently, irrigation effects on vegetation indices may 
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not be evident until after the VT growth stage (Figure 7). During vegetative stages, there 

were more pronounced effects of irrigation level only at (V11) in 2009, as it was a drier 

season than 2010. 

 

Ability of the Vegetation Indices to Differentiate N Rates 

 

Among the indices proposed for assessment of crop N status, CIRE, MTCI and 

NDVI_RE did not have a significant N*Stage interaction, indicating that these indices 

did  not require a specific growth stage within this window (V11 until R4) to differentiate 

N rates. All other N management indices need adjustments for specific growth stage to be 

used for managing N within the window studied. All indices had similar responses, but 

CI, CIRE and NDVI_Red had significant N*Rotation*Stage interactions, indicating that 

those indices may vary in their ability to differentiate the impact of N rate at these growth 

stages.  

In 2009 the CI, CIRE, DATT and MTCI indices could differentiate fertilizer rates 

of 0, 75 and 150 kg N ha
-1

 for the CC rotation at V11 until R6 (table 8), while the 

NDVI_RE index was only able to differentiate  0 kg ha
-1

 from the other N rates at the R6 

growth stage (all averaged over irrigation level). The NDVI_Red index could 

differentiate N rates at V13, R2 and R4. The DATT and MTCI indices could differentiate 

fertilizer rates of 0, 75 and 150 kg N ha
-1

 with the CS rotation at V15 (Table 7). The 

CIRE and NDVI_RE indices could only differentiate zero from the other N rates at 

vegetative stages betweenV11 and V15 with CS rotation. The CI, DATT and MTCI 
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indices were able to separate N rates after tasseling until R6 but NDVI_RE and 

NDVI_Red separated N rates only at R6 with CS rotation in 2009. 

In 2010, with the CC rotation, all indices could differentiate N rates from V7 until 

R3. The NDVI_Red could not differentiate 75 kg N ha
-1

 from 150 kg N ha
-1

 during R3, 

R4 and R6 (Table 8). With CS rotation, the CI, CIRE, MTCI and DATT indices could 

differentiate N rates during most of the vegetative growth stages. The NDVI_Red index 

could not differentiate N rates after V15. Except for R6 all indices could at least separate 

0 kg ha
-1

 form the orher N rates. Similar results were found in another long term CC 

experiment where a two band sensor (Crop Circle 210) was used to differentiate N rates 

in small plots, where in a growing season with high N response the sensor could 

differentiate most N rates (0, 75, 150 and 300 kg Nha
-1

), and in another growing season 

they could distinguish only 0 kg ha
-1

 from other N rates using CI (Shiratsuchi et al., 

2009). 

Among all indices tested, the MTCI and DATT indices were found to have the 

best ability to differentiate the effect of fertilizer N rate on crop canopy status, across 

different levels of irrigation and previous crop. For this reason, these indices were used to 

illustrate the difference in vegetation-index response with different previous crops 

(Figure 8). It is important to stress that MTCI and DATT were minimally affected by 

irrigation level and therefore could be better indices to sense for N variances in situations 

where N deficiency and water stress occurs simultaneously. 

In dry environments where irrigation is imposed and the water management is 

near optimal, the DATT and MTCI could perform better for site-specific N management 

than the other vegetation indices tested, because they showed better sensitivity to N rate 
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and less variability due to irrigation levels. If the previous crop was soybean in a rain fed 

environment, these indices are preferable preferred due to their ability to separate N rates 

with CS rotation.  

 

Relationships between Vegetation Indices and Grain Yield 

 

In 2009, at the V11, V13 and V15 growth stages, all vegetation indices showed a 

high  partial correlation with final grain yield (Figure 9) adjusting for water and rotation. 

The NDVI_RE, CIRE, MTCI and DATT indices showed high, and similar, correlations 

at all growth stages studied, even higher than the chlorophyll meter (SPAD). The 

NDVI_Red index had a lower correlation with final grain yield at V11 and V13 growth 

stages compared to other indices. All correlations showed the same trend of stronger 

relationships at later growth stages except for SPAD. Due to sampling procedures 

(amount and method) and practicality, the chlorophyll meters may be biased due to 

human error during data gathering. Chlorophyll meters may need a specific growth stage 

and should be sampled at the ear leaf (after silking) for best performance (Costa et al., 

2001), but they are less sensitive to variations in canopy structure that causes changes in 

reflectance.  

The same trend of increasing correlation between vegetation index and grain yield 

with growth stage was observed in 2010. All vegetation indices showed relatively high 

partial correlations with grain yield at V7, V9 and V11 growth stages (Figure 10). The 

NDVI_Red and SPAD had the lowest correlations, though still relatively high and 

significant. The CIRE, CI, MTCI and DATT indices had the highest correlation with 
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grain yields. The good associations between grain yield and these types of indices at  

early growth stages (V7, V9 and V11) bode well for the many applications of this 

technology to better meet crop N demand in-season, reducing N loss and protecting the 

environment. 

 

SUMMARY AND CONCLUSIONS 

 

This study investigated how crop canopy reflectance, measured by different vegetation 

indices (NSI), was influenced with different levels of irrigation, fertilizer N rate and crop 

rotation. We investigated the ability of these indices to differentiate fertilizer N rate under 

various conditions, and the correlation of indices collected during various growth stages 

with grain yield. Among the indices studied, the MTCI and DATT indices were the least 

affected by irrigation level, and by inference, water stress, with ability to differentiate 

fertilizer N rates with both continuous corn and corn following soybean. The CI, CIRE, 

NDVI_REe and NDVI_Red indices showed more variation due to irrigation level, and 

low ability to distinguish fertilizer N rate with corn following soybean. The ranking from 

the least affected by irrigation level to the most affected were DATT, MTCI, NDVI_RE, 

NDVI_Red, CIRE and CI. Comparing the vegetation indices for N differentiation, again 

DATT and MTCI had the best ability to separate N rates, so these two indices are more 

appropriate if low variance for water stress and high ability to distinguish N rates across 

crop rotations is needed. All vegetation indices had good correlation with final grain yield 

when sampled between V11 and V15, where MTCI and DATT again were stronger 

across years. The results suggest that careful attention should be given to how water 
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stress and previous crop can affect the ability of these vegetation indices to determine 

crop N status. 
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Figure 1. Platform for data acquisition (bicycle equipped with 2 optical sensors, DGPS, laptop computer 

and batteries. 
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Figure 2. Daily rainfall, irrigation and air temperatures for the 2009 and 2010 growing seasons at the South 

Central Agricultural Laboratory.  
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Figure 3. Soil matric potential (SMP) measured by Watermark sensors at V11, V13 and R4 growth stages 

at 61 cm soil depth. 
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Figure 4. Grain yield as influenced by  N rate,  croprotations and water levels during 2009 and 2010. Errors 

bars represent standard error. 

 

 

 
 

Figure 5. Grain yield as influenced by  N rate,  under different water levels with different crop rotation (CC 

and CS). Errors bars represent standard error. 
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Figure 6. Vegetation indices response to fertilizer N rate and irrigation level, at the V11 growth stage 

during 2009 and 2010 growing seasons. Error bars represent standard error. 
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Figure 7. Vegetation indices response to fertilizer N rate and irrigation level, at the R4 growth stage during 

2009 and 2010 growing seasons. Error bars represent standard error. 
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Figure 8. The effect of crop rotation  (CC and CS) and growth stage on crop canopy reflectance using two 

vegetation indices, MTCI and DATT, averaged across water level for 2009 and 2010. Errors bars represent 

standard error and letters the statistically significant differences according to Duncan’s Multiple Range Test 

(p<0.10). 
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Figure 9. Partial correlation coefficient values between vegetation indices and grain yield for 

three growth stages in 2009 accounting for irrigation levels and crop rotations. All correlations were 

significant with p < 0.01 

 

 
 

Figure 10. Partial correlation coefficient values between vegetation indices and grain yield for 

three growth stages in 2010 accounting for irrigation levels and crop rotations. All correlations were 

significant with p < 0.01 
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Table 1. Planting date and crop characteristics. 

 

 2009 2010 

Planting date May 6 April 29 

Hybrid Pioneer 33H29 Pioneer 1395XR 

Plant population 72,610 plants/ha 72,610 plants/ha 

Row Spacing 76.2 cm 76.2 cm 

 

 

Table 2. Soil test analysis results for the study sites in 2009 and 2010. 

 

Soil parameter 2009 2010 

 0-20 cm 0-20 cm 

Soil pH 6.6 6.6 

Organic matter (%) 3 3.3 

Nitrate - N (mg kg
-1

) 6.7 4.5 

Bray-1 P (mg kg
-1

) 25.5 24.3 

K (mg kg
-1

) 364 405 

CEC 13.3 15.3 

Fe (mg kg
-1

) 52 58.3 

S (mg kg
-1

) 6.6 8.2 

Mn (mg kg
-1

) 7.8 15.4 

Ca (mg kg
-1

) 1838 2156 

Mg (mg kg
-1

) 210 227 

Na (mg kg
-1

) 12 25 

 

 

Table 3. Vegetation index formulas and wavebands used in this study. 

Indices Wavebands* (nm) Formula Source 

CI  880, 590 CI= (R880/R590) – 1 Gitelson et al, 2005 

CIRE  760, 720 CIRE= (R760/R720) – 1 Gitelson et al, 2005 

DATT 760, 720, 670 DATT = (R760-R720)/(R760-R670) Datt et al, 1999 

NDVI_Red 760, 670 NDVI_Red = (R760-R670)/(R760+R670) Rouse et al, 1974 

NDVI_RE 760, 720 NDVI_RE= (R760-R720)/(R760+R720) Rouse et al, 1974 

MTCI 760, 720, 670 MTCI = (R760-R720)/(R720-R670) Dash & Curran, 2004 

* For our calculation, we used the bands 880 and 590nm (Crop Circle, Model 210 sensor), 760, 720, 670 

nm (Crop Circle, Model 470 sensor) because these were the wavebands collected by the respective sensors. 

 

 

Table 4. Analysis of variance of corn yield (2009 and 2010) for 70 and 100 % ET under different crop 

rotations (CC and CS). 

 

Source of Variation Num DF Den DF F value Pr > F 

Irrigation 1 9 2.19 0.1733 

Rotation 1 10 123.26 <.0001 

Rotation*Irrigation 1 10 2.78 0.1264 

N 3 60 106.43 <.0001 

N*Irrigation 3 60 1.28 0.2903 

N*Rotation 3 60 4.6 0.0058 

N*Rotation*Irrigation 3 60 0.26 0.8575 
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Table 5. Analysis of variance of six vegetation indices calculated from active canopy sensor 

reflectance at different irrigation levels (70 and 100% ET) and different crop rotations (CC and CS) 

between growth stages V11 and R4. 
 

Source of variation  
CI CIRE DATT MTCI 

NDVI 

RE 

NDVI 

Red 

Effect 

Num DF 

Pr > F 

 

Irrigation 1 0.179 0.2972 0.5847 0.5341 0.3894 0.4446 

Rotation 1 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

Rotation*Irrigation 1 0.104 0.0924 0.0755 0.0621 0.1373 0.5467 

N 3 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

N*Irrigation 3 0.749 0.6557 0.8788 0.8425 0.7532 0.899 

N*Rotation 3 <.0001 <.0001 0.0008 0.0041 <.0001 0.0011 

N*Rotation*Irrigation 3 0.9535 0.7933 0.8833 0.8268 0.8548 0.9711 

Stage 4 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

Stage*Irrigation 4 0.5524 0.6846 0.191 0.1626 0.4712 0.4473 

Stage*Rotation 4 <.0001 <.0001 0.3835 0.043 0.0008 <.0001 

Stage*Rotation*Irrigation 4 0.6904 0.836 0.469 0.5019 0.934 0.8897 

Stage*N 12 0.0038 0.1772 0.0974 0.3744 0.5884 0.0004 

Stage*N*Irrigation 12 0.9748 0.9997 0.9994 0.9999 0.9986 0.9985 

Stage*N*Rotation 12 0.0209 0.0271 0.7407 0.6584 0.0146 0.0009 

Stage*N*Rotation*Irrigation 12 0.9999 0.9979 0.9999 0.9998 0.9996 0.9783 

 

 

Table 6. Ranking of variation to irrigation levels analyzed during 2009 and 2010 growing seasons. 

Values followed by the same letter are not significantly different (p<0.10). 

 

Rank 

 

Vegetation Index Mean Squared Error F test 

p < 0.10 
    

Least affected    

1 DATT 0.00006199 c 

2 MTCI 0.00017699 b 

3 NDVI_RE 0.00036718 b 

4 NDVI_Red 0.00044026 b 

5 CIRE 0.00058541 ab 

6 CI 0.00163116 a 

Most affected    
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Table 7. Nitrogen Sufficiency Index for the vegetation indices during several growth stages and N 

rates under CS rotation. Means followed by the same letter are not significantly different (p<0.10). 

 
Corn - Soybean (CS) N rate 2009  2010 

NSI 

 

kg ha-1 V11 V13 V15 R2 R3 R4   V11 V13 V15 R2 R3 R4 

CI   0 0.99a 0.98a 0.92a 0.88c 0.84c 0.83c  0.75c 0.78c 0.91c 0.89b 0.85c 0.69b 

  75 1.02a 1.00a 0.96a 0.96b 0.93b 0.94b  0.92b 0.90b 1.01b 0.97a 0.93b 0.77a 

  150 1.03a 1.01a 0.98a 0.99a 0.97a 1.02a  0.97a 0.96a 1.18a 1.05a 1.00a 0.83a 

                

CIRE  0 0.97b 0.96b 0.91b 0.86c 0.84b 0.81c  0.74c 0.76c 0.92c 0.81c 0.80c 0.66c 

  75 1.02a 1.00a 0.98a 0.95b 0.95a 0.95b  0.91b 0.90b 1.00b 0.91b 0.90b 0.76b 

  150 1.02a 1.02a 1.00a 1.00a 0.98a 1.02a  0.96a 0.96a 1.08a 0.98a 0.96a 0.86a 

                

DATT  0 0.98b 0.98b 0.97c 0.95c 0.95c 0.93c  0.92c 0.91c 0.97c 0.92c 0.91c 0.85c 

  75 0.99a 0.99a 0.99b 0.98b 0.98b 0.99b  0.97b 0.97b 0.99b 0.96b 0.95b 0.90b 

  150 1.00a 1.00a 1.00a 1.00a 1.00a 1.01a  0.99a 0.99a 1.01a 0.99a 0.98a 0.97a 

                

MTCI   0 0.94b 0.94b 0.91c 0.85c 0.83c 0.80c  0.79c 0.76c 0.92c 0.79c 0.77c 0.68c 

  75 0.98a 0.98a 0.97b 0.94b 0.94b 0.96b  0.92b 0.90b 0.98b 0.90b 0.88b 0.78b 

  150 1.00a 1.00a 0.99a 0.99a 0.99a 1.02a  0.96a 0.96a 1.03a 0.96a 0.94a 0.92a 

                

NDVI_RE 0 0.98b 0.98b 0.95b 0.92c 0.90b 0.87b  0.84c 0.85c 0.95c 0.88c 0.87c 0.75c 

  75 1.01a 1.00a 0.99a 0.97b 0.97a 0.97a  0.95b 0.94b 1.00b 0.94b 0.94b 0.82b 

  150 1.01a 1.01a 1.00a 1.00a 0.99a 1.01a  0.98a 0.98a 1.04a 0.99a 0.97a 0.90a 

                

NDVI_Red 0 1.02a 1.01a 0.99b 0.99b 0.97b 0.95b  0.93b 0.96c 0.99b 0.98b 0.99a 0.90a 

  75 1.02a 1.01a 1.00a 1.00a 1.00ab 0.98b  0.98a 0.99b 1.01b 0.99b 1.00a 0.93a 

  150 1.02a 1.01a 1.00a 1.00a 0.99ab 1.00a  1.00a 1.00a 1.04a 1.01a 1.00a 0.93a 
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Table 8. Nitrogen Sufficiency Index for the vegetation indices during several growth stages and N 

rates under CC rotation. Index for the vegetation indices during several growth stages and N rates 

under CS rotation. Means followed by the same letter are not significantly different (p<0.10). 
 

Corn - Corn (CC) N rate 2009  2010 

NSI kg ha-1 V11 V13 V15 R2 R3 R4   V11 V13 V15 R2 R3 R4  

               

CI  0 0.68c 0.67c 0.66b 0.65c 0.65c 0.65c  0.50c 0.58c 0.61c 0.71c 0.75c 0.85b 

  75 0.89b 0.87b 0.86a 0.83b 0.81b 0.76b  0.67b 0.72b 0.72b 0.84b 0.85b 0.86b 

  150 0.97a 0.94a 0.92a 0.95a 0.91a 0.91a  0.84a 0.86a 1.02a 0.93a 0.95a 0.93a 

                

CIRE  0 0.73c 0.70c 0.63c 0.63c 0.58c 0.60c  0.46c 0.54c 0.60c 0.69c 0.69c 0.73b 

  75 0.90b 0.87b 0.83b 0.78b 0.77b 0.76b  0.66b 0.70b 0.73b 0.81b 0.82b 0.78b 

  150 0.98a 0.96a 0.94a 0.87a 0.90a 0.91a  0.85a 0.87a 1.00a 0.93a 0.92a 0.91a 

                

DATT  0 0.91c 0.89c 0.87c 0.85c 0.83c 0.82c  0.86c 0.85c 0.87c 0.88c 0.87c 0.88b 

  75 0.97b 0.96b 0.95b 0.94b 0.91b 0.90b  0.90b 0.90b 0.92b 0.92b 0.92b 0.89b 

  150 0.99a 0.99a 0.98a 0.98a 0.96a 0.96a  0.96a 0.96a 0.99a 0.97a 0.96a 0.96a 

                

MTCI  0 0.76c 0.72c 0.66c 0.63c 0.59c 0.59c  0.68c 0.66c 0.72c 0.73c 0.72c 0.75b 

  75 0.91b 0.88b 0.84b 0.82b 0.76b 0.75b  0.77b 0.76b 0.81b 0.81b 0.81b 0.78b 

  150 0.98a 0.96a 0.94a 0.94a 0.89a 0.90a  0.89a 0.89a 0.98a 0.91a 0.90a 0.91a 

                

NDVI_RE 0 0.89b 0.87b 0.83b 0.84b 0.80c 0.81a  0.58c 0.66c 0.71c 0.78c 0.77c 0.79b 

  75 0.98b 0.97b 0.95b 0.95b 0.94b 0.92a  0.76b 0.79b 0.81b 0.87b 0.88b 0.83b 

  150 1.01a 1.01a 1.01a 1.01a 0.99a 1.00a  0.90a 0.92a 1.00a 0.95a 0.95a 0.94a 

                

NDVI_Red 0 0.93b 0.92c 0.90b 0.92c 0.89b 0.89c  0.64c 0.78c 0.81c 0.91c 0.90b 0.92c 

  75 0.98a 0.97b 0.97a 0.97b 0.95a 0.94b  0.83b 0.89b 0.89b 0.97b 0.98a 0.95b 

  150 1.00a 0.99a 0.99a 1.00a 0.98a 0.98a  0.94a 0.96a 1.02a 1.00a 1.00a 0.98a 
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CHAPTER 2 

 

LOCAL REFERENCE: AN APPROACH FOR SITE-SPECIFIC NITROGEN 

FERTILIZATION USING ACTIVE CANOPY SENSORS 

 

ABSTRACT 

 

Active crop canopy sensors have been used to guide nitrogen (N) fertilization based on 

the status of crop with respect to a reference strip (N-rich). Localized reference strips that 

account for variable growing conditions can provide more accurate N fertilization need 

estimates than other methods that rely on averaged values of N-rich strips. The objectives 

of this study are: (i) to develop an approach that relies on local soil conditions as well as 

on active canopy sensor measurements for real-time adjustment of N application rate; (ii) 

to compare the method developed against other approaches in different field conditions 

and (iii) evaluate the correlations between localized plant status and soil attributes in 

variable landscapes. The experiment was conducted during 2009 and 2010 growing 

season in three different production fields each year. In each site, two experiments were 

conducted: (i) A set of replicated field-long strip treatments comparing the traditional 

University-recommended N method versus the sensor-based approaches with either 

average reference strip or the localized reference method, and (ii) 250 small plots with 0, 

75, 100, 150, 200 and 250 kg N/ha application rates were established covering different 

landscape positions and soil types. The small plots were arranged using a spatial design 
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to have equidistance between the centroids of the plots to interpolate sensor responses for 

different fertilizer N rates and simulate plant and soil conditions on sidedress N 

application and then compare different approaches across the variable landscape. 

Generally it was found that the Local approach could identify regions in the field where 

the plant status is a better predictor and potentially increase the N use efficiency, while 

maximizing grain yield and maintaining the partial factor productivity. 

 

Abbreviations List: EC: apparent soil electrical conductivity; RTK: real time kinematic GPS; NUE: 

nitrogen use efficiency; ACS: active optical crop canopy sensors; SI: sufficiency index; CI: chlorophyll 

index. 

 

INTRODUCTION 

 

The current nitrogen (N) management practices for corn production systems 

typically include significant quantities of N applied at field uniform rates. These 

conventional practices do not consider the spatial variability of the soil N supply, thus 

often resulting in low N use efficiency (NUE) (Shanahan, 2008). It was shown in 

previous studies that N fertilization needs can vary according to differences in soil, 

topographical features and weather influencing corn yield response to N fertilization 

(Franzen et al., 1999; Kaspar et al., 2003, Erskine et al., 2007). The soil N supply can 

very drastically in fields in a spatial and temporal way, making any soil prediction and 

mapping difficult even with a very detailed map (Shahandeh et al. 2005). Consequently 

the use of map-based approaches to determine the N rates for in-season site-specific N 

application is often ineffective. In this scenario, a plant based approach where the 
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measured canopy status can indicate the crop N needs in a reactive and spatially-variable 

way may be a better option, because it integrates the soil N supply and translates this into 

crop N need on-the-go. There are several commercial systems available that use crop 

canopy reflectance using active light sensors for N estimation in the plant. One advantage 

compared to conventional passive sensors is that these systems do not depend on sunlight 

because they have their own light source, enabling easier comparisons between 

measurements, allowing the farmer to work night and day. These active crop canopy 

sensors (ACS) have been used to guide N fertilization based on the status of crop with 

respect to a N-rich strip located in some part of the farmer’s field, and then all 

measurements were normalized against this reference where plant N is considered non-

limited. This approach uses an overall average number acquired from the ACS, but it is 

known that the well fertilized plots will respond differently in different areas of the field 

due to the spatial variability of soils. However, localized reference strips that account for 

variable growing conditions in the same location where the sensor measurement is being 

collected can provide more accurate fertilization need estimates than other methods that 

rely on an averaged value of N-rich strip. The objectives of this study are: (i) to develop 

an approach that relies on local plant status as well as on active canopy sensor 

measurements for real-time adjustment of N application rate; (ii) to compare the method 

developed against other approaches in different field conditions and (iii) evaluate the 

correlations between localized plant status and soil attributes in variable landscapes. 
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MATERIAL AND METHODS 

 

On Farm Research Fields 

 

The experiment was conducted during 2009 and 2010 growing seasons in three 

different production fields each year representing different soil types and agroecosystems 

across Nebraska (6 site years) (Figure 1). The producer fields were strategically located 

to better represent the variability of soils and sprinkler irrigated corn systems in the state, 

ranging from sandy to clay loam, high to low soil organic matter (SOM), and having 

differences in elevation and rainfall patterns. In terms of landscape, generally the relief 

varies from less than 3 meter for some sites (BR09, HU09) and 5 to 12 meters in others 

(RT09, BR10, HU10 and BL10), with substantial changes in topography. The BL10 field 

was the only production field owed by University of Nebraska and not by cooperating 

producers. It is located nearby Brule, Nebraska (West portion of the State) and it has a 

different elevation (500 meters higher than the other fields that are about 500 m above 

sea level). The weather pattern in this region is considerable dryer than the others located 

in Central Nebraska. The corn hybrids, plant population, cropping systems were chosen 

by the cooperating farmers (Table 1). They also managed the irrigation and general 

fertilization accordingly to common best management practices to avoid deficiencies 

other than N. The soils were predominantly silt and clay loam fields (HU09, RT09, 

HU10) and sandy fields (BR09, BR10, BL10) with gradients in topography and soil 

variability (Table 1 and 1a). 



59 

 

 

 

 

Equipments and Field Variability Characterization 

 

The crop, soil and landscape information collected to address the objectives were 

SOM, elevation, apparent soil electrical conductivity (EC) and crop canopy reflectance. 

All information were georeferenced to a common geographical coordinate system 

(Geographic using decimal degrees and map datum WGS84 or Universal Transverse 

Mercator (UTM), Spheroid GRS80, Zone 14N and map datum WGS84) using ArcGIS 

9.3 (ESRI, Redlands, CA). Soil sampling and active crop canopy sensors were positioned 

using a Global Navigation Satellite System (GNSS) receiver with differential correction 

from the Wide Area Augmentation System (WAAS). The Differential GNSS used was a 

Trimble GeoXT (Trimble Navigation, Ltd., Sunnyvale, CA) with sub meter accuracy. 

Detailed elevation and EC measurements were collected using Veris 3100 (Veris Tech 

Inc., Salinas, KS) coupled with a real-time kinematic GNSS (RTK) Trimble AgGPS 442 

(Trimble Navigation, Ltd., Sunnyvale, CA), that is able to receive Global Positioning 

System (GPS – operated by United States) and Global Navigation Satellite System 

(GLONASS – operated by Russia) signals; with circular error probability less than 1 

centimeter horizontal and 2.5 cm vertical using a local base station. The differential 

correction for the RTK system was done using a mobile base station installed in each 

field during the EC mapping. Measurements of EC have been used successfully to 

measure soil salinity, depth of soil horizons, cation exchange capacity, water content 

(Lesch et al., 1998; Kitchen et al., 2003; Sudduth et al., 2010), may be helpful in 

predicting N response for crops.  
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Soil sampling was done early Spring each year using directed soil sampling 

scheme for the fields based on soil types GIS layer from the Soil Survey Geographic 

Database (SSURGO) (Natural Resources Conservation Service, NRCS-USDA) and 

historical EC, or grain yield maps. The point density (2.5 acre grid size) was targeted to 

have the ability to interpolate the samples and generate a confident SOM map for each of 

the fields. A hand probe was used to collect soil samples from 0-20 cm for soil nutrient 

determination. 

Active crop canopy sensor readings were collected from each field during the 

side-dress N application around V11 and later at R4 using a high clearance machine and a 

modified bicycle platform to accommodate the sensors and GPS. The optical sensor was 

a Crop Circle Model ACS-210 (Holland Scientific, Inc., Lincoln, NE), that generates 

modulated light in the visible and near infrared (NIR) parts of the electromagnetic 

spectrum and measures canopy reflectance with visible (590nm) and NIR detectors 

(880nm). Careful attention was kept to acquire sensors readings 0.5 m above the crop 

canopy positioning the sensor over the corn row in V11 and also avoiding tassels during 

R4 growth stage.  

 

Nitrogen Recommendations Algorithm 

 

The sensor reflectance’s in the visible and NIR were used to calculate the 

Chlorophyll Index (CI) that is a vegetation index proposed by Gitelson et al. (2002, 2005) 

and is being widely used in irrigated corn production. The CI uses the following 

equation: 
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%� = 	 &'�()��* - 1 

Where NIR is the sensor reflectance at 880nm and VIS is the reflectance at 590nm. 

 

The Sensor-based algorithms tested in this study require that all the sensor 

readings outputted as CI have to be converted to a Sufficiency Index (SI). SI is a 

normalization procedure calculating the ratio of the real time sensor reading for the area 

being assessed to the sensor reading from a reference plot considered to be non-N limited 

(N-rich). Many studies have reported that a SI expression is better than an absolute 

reading for assessing crop N status, because it normalizes the difference between 

cultivars, canopy structure (i.e., growth stage and leaf architecture), and different fields 

and types of crop (Peterson et al., 1993; Hussain et al., 2000; Biggs et al., 2002; Debaeke 

et al., 2006; Holland and Schepers, 2010; Zhu et al., 2011). The SI used was calculated 

by:  

�� = %�_�,�-��
%�		_�.ℎ  

Where: CI_target is the CI being assessed in real time at the target of the sensor fingerprint and CI N_rich 

is the CI from the N-rich or a non-N limiting crop location.  

 

The algorithm used for corn N recommendations in this study was an active sensor 

algorithm based on a chlorophyll meter using the formula proposed by Solari et al., 2010: 

	�� = 317 ∗ √0.97 − �� 
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Where: N rec is the N rate recommended in kg ha
-1

 and SI is the sufficiency index calculated from a N rich 

reference strip value. 

 

Local and Average Approaches 

 

Local approach (Local) refers to the real-time and site-specific N fertilization 

method based on the SI calculated from a localized N-rich reference. In this study it was 

the reference strip closer than 6 meter. The N rate for the N-rich plot for this study in all 

fields was 250 kg N ha
-1

 (75 kg N ha
-1

 applied at planting and 175 kg N ha
-1

 applied at 

side-dress around V11 growth stage). 

Average approach (Average) refers to the real-time and site-specific N 

fertilization method based on the SI calculated from a reference strip or plot located in 

some place in the field, not necessarily close to the area that is being sensed. Currently it 

is the most commonly used approach in farmer’s fields.   

 

Experimental Treatments 

 

In each field, two sets of complimentary experiments were conducted to test the 

Local and the Average approaches: 

 

Experiment 1 - Field long strips 

 

In this experiment several field long strips across the center pivots were used to test 

different approaches: (i) Uniform N fertilization method from the traditional university 
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based algorithm recommendation (UNL), (ii) N-rich strip using the highest N rate to have 

a non-N limited treatment (Reference), (iii) Sensor Based Average approach using an CI 

average value that came from the N-rich strip (Average) and (iv) Sensor based Local 

approach using a localized CI that came from the closest N-rich reference (Local) (Figure 

2). Operationally, for all fields, all three replications of the Reference (250 kg N ha
-1

) and 

the Local strips were sensed first using a high clearance machine equipped with active 

canopy sensors. The sensor data was downloaded to a laptop PC in the field and ArcGIS 

was used to calculate the average value of CI for each of 6x15 m plots in the long strip 

for the reference and local strips (Table 6). In each of the 3 replications for the Local 

approach, the CI from each of the plots were divided by the neighbor N-rich plot, to 

calculate the localized SI that was used to variable rate fertilization after mapping. For 

the Average approach, average value from the 3 replicates was used to calculate the SI 

before the variable rate fertilization. 

The UNL algorithm was calculated using the formula: 

 

N rec = 35 + �1.2 ∗ 45� − �8 ∗ 	78� − �0.14 ∗ 45 ∗ 7:� − %;< 

 

Where: N rec is the N rate recommended in lb/acre; EY is the expected grain yield, NO3 is the soil nitrate 

content in ppm; OM is the organic matter in percent and CRD is other credits in lb/acre. The N rec was 

converted to kg N ha
-1

 and represented the total N applied in all replications. 

 

The final grain yield, N rates and Partial Factor Productivity (PFP) were measured 

as response variable. PFP is the ratio between grain yield divided by the amount of N per 

area used (Cassman et all., 1996; Olk et al., 1999). In this case it used yield in kg ha
-1

 and 
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N rate in kg N ha
-1

. The PFP is a good parameter to determine the Nitrogen use efficiency 

(NUE) and profitability. For the field long strips the yield data was recorded by a 

combine equipped with yield monitor using differential GNSS and then submitted to 

filtering process using the software Yield Editor (Sudduth and Drummond, 2007; USDA-

ARS, Columbia, MO). The filtered yield data was used to average grain yield points for 

each plot (6x15 m) inside each treatment strip. It averaged about 10-15 yield points for 

each plot depending on the combine speed. 

 

Experiment 2 – Small Plots 

 

For the second experiment a particular design of 250 small plots with 0, 75, 100, 

150, 200 and 250 kg N ha
-1

 application rates were established covering different 

landscape positions and soil types (Table 1a). The small plots were arranged using a 

spatial experimental design that utilizes equidistance between the centroids of the plots (6 

x 15 m) with the same N rate. This was done to interpolate sensor responses for different 

fertilizer N rates and to simulate crop N status from various side-dress N applications and 

compare different sensor-based approaches (Local and Average) across the landscape 

(Figure 2). This procedure allows flexibility to simulate different N rates that will be used 

to calculate N fertilizer rates for the Local and Average approaches and evaluate the grain 

yield and SI responses across the landscape. All small plots received 75 kg N ha
-1

 at 

planting and then the other rates were completed on side-dress (V11 growth stage). Later 

in the season (R4 growth stage) when the N rates had time to have effect on plots, they 

were sensed using ACS for simulations using different approaches. 
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Grain yield and CI for each N rate was modeled using semivariogram scaled to 

the sample variance. This allowed the semivariograms from different fields to be 

compared and a better model to be developed to interpolate the variables (CI and Yield) 

for each N rate. The CI and yield surfaces originating from the equidistant plot design 

were interpolated by kriging using the software GS+ (Gamma Design Software, 

Plainwell, Michigan - USA) giving a 1x 1 m spatial resolution and then exported as point 

text files for ArcGIS to make map surfaces in a raster format. Grain yield was determined 

by hand harvest for each of the small plots and then for each N rate a different yield map 

was generated. This allows one to calculate a yield response quadratic function for every 

pixel. The N rates calculated for the sensor-based algorithm were extracted from the 

raster map surface of SI at 75 kg N ha
-1

 (SI_75N) to simulate the same procedure for 

side-dress application that was done for the long strips (Experiment 1) where 75 kg N ha
-

1
 was applied at planting. The SI_75N was determined by map algebra dividing the CI 

map using 75 kg N ha
-1

 (CI_75N) by a CI map using 250 kg N ha
-1

 (CI_250N). This 

procedure was used to calculate a localized SI for every pixel inside the small plot area. 

Similarly SI for all the other rates 0, 150, and 200 kg N ha
-1

 were calculated to generate a 

SI quadratic function for each pixel. After creating the surface map of CI and Yield for 

each N rate, one transect was selected (39 to 49 points equidistant from 15 m) in the 

center of the small plot area in each field to adjust the yield and SI quadratic equations. 

The grain yield for each N rate was then calculated for the Local or Average approaches 

(Table 12-17). The yield response and SI quadratic equations were modeled only for the 

central replicate, assuming that the yield spatial variation is the same all over in the small 
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plot area. The final grain yield, N rates and Partial Factor Productivity (PFP) were 

measured as response variables for the Local and Average approach. 

For all fields and experiments, there were common layers of information (i.e. EC, 

RTK elevation, SOM), that were mapped using different resolutions. For example: The 

soil EC and RTK elevation mapped with the Veris 3100 were done before planting in the 

whole field using a different pass width, so to have EC values and elevation data for each 

plot. Interpolated map surfaces were created with a 1x1 m resolution to extract an 

averaged value for each plot. The same procedure was done for SOM analysis that was 

mapped in a 1 ha grid size, with a 1x1m resolution. Interpolated surface were used to 

average the value for each plot, bringing all layers of information’s (EC, RTK, SOM) for 

the same spatial resolution. 

 

Statistical Analysis 

 

Experiment 1 – Field Long Strips 

 

To evaluate treatment effects on grain yield, N rates and PFP, the six-site years 

were analyzed as randomized complete block design (RCBD) by the PROC MIXED 

procedure of SAS for ANOVA and means separation using the Duncan’s Multiple Range 

Test (p<0.05), with 3 replicates (each one representing one pass from one side to another 

in the center pivot divided in about 40 to 50 plots across the variable landscape). The 

replications and different producer’s fields were considered random effects.  
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Experiment 2 – Small Plots 

 

To compare the two approaches (Local and Average) three random transects were 

selected for each field with 39 points each to represent 3 replicates of the N rates 

calculated using the different approaches (Figure 3). The response variables (grain yield, 

N rate and PFP) were used for a RCBD using the same statistical analysis of the 

Experiment 1 for each producer field and between fields. Lastly, Spearman rank 

correlation coefficients were calculated between variables in the small plot area to study 

how the landscape spatial variability of soil attributes (EC, soil organic matter, RTK 

elevation and RTK relative elevation to the highest point in the field) influences CI, SI 

and grain yield in all six fields. 

 

RESULTS AND DISCUSSION 

 

The rainfall patterns and irrigation amounts are shown in Figure 4 for both 

growing seasons (2009 and 2010). All fields received between 150-330 mm additional 

irrigation applied by center pivots using the farmer’s irrigation schedule. Overall climatic 

conditions were slightly different between the two seasons where 2009 was warmer until 

VT growth stage than 2010, and irrigation was initiated earlier. Due to a warmer season 

in early Spring in 2009 there was a higher chance for better N mineralization and less 

immobilization in the beginning of the season improving the crop productivity that year 

compared to 2010. All fields in 2009 had higher yields compared to fields in 2010. The 

elevation varied from 516 to 1062 meters above sea level. Only  BL10 was in the 1000 m 
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range and the others fields were around 500 m. SOM varied from 5 to 34 g kg
-1

 and grain 

yields from 4.123 to 19.613 Mg ha
-1

 (Table 2). 

 

Experiment 1 – Field Long Strips 

 

Results from the analysis of variance (ANOVA) of grain yields indicated that the 

field BL10 was the only one that it did not have a significant effect between treatments 

(Table 3). This could be related to N leaching earlier in the growing season in the 

Reference and UNL treatments for this location where those treatments were imposed 

earlier than the others Sensor Based (Local and Average) that were side-dressed around 

V10-V11 growth stages. The soil type in this field could be prone to N loss by several 

pathways since course gravels are mixed with silt loam and sandy across the different soil 

types and the variable topography can enhance the possibility of N loss. If the N applied 

in the Reference (250 kg N ha
-1

) was used by the crop, one would expect differences 

between treatments to be significant, since lower side-dress N rates were applied on the 

other treatments. In general, it could be seen that the BL10 field had the lowest grain 

yield across years (~ 9 Mg ha
-1

) (Figure 5). On the other hand, the RT09 field showed 

significant indigenous N contribution to the grain yield. However, even with statistical 

significant for grain yield, it did not show differences for both sensor based approaches 

(Figure 5). Nitrogen rates and yield response to N for the Reference strip showed that 

higher yield generally is obtained with more N applied. Comparing the UNL 

recommendation approach with the Reference, 4 of 6 fields yielded more for Reference 

than for UNL (BR09, BR10, HU10 and BL10). Fields HU09 and RT09 did not show 
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differences in yield but the UNL recommendation used less N than Reference in all cases 

as expected. Comparing the Average and the Local approaches, the grain yield was 

similar in 4 of 6 fields (Figure 5). In fields BR09 and BR10 the results were opposite, 

showing significant higher yield for the Average approach in BR09 and significant higher 

yield for Local Approach in BR10. It is important to point out that the Average 

recommendation applied much more N than the Local approach for BR09. At BR10 the 

N rates were the same but higher yields were observed for the Local, indicating that this 

sensor based approach should be more beneficial. 

In terms of PFP, results from ANOVA indicated that the N application rates and 

grain yields using different approaches had an effect on PFP in all fields. As expected 

Reference had the lowest PFP observed across years, varying from 38 to 59 (Table 4), 

followed by UNL that varied from 41 to 81 kg grain (kg N applied)
-1

. PFP is sensitive 

when very low rates are applied and low rates are very common with sensor-based 

approaches. For this reason the extreme lows and no N application were excluded from 

the PFP analysis as done by Roberts et al. (2009) when comparing the UNL and 

Reference approaches with the Sensor based Local and Average approaches, otherwise 

there always would be an advantage for the sensor-based approaches. The criteria for PFP 

outlier’s exclusion for the sensor based approaches were: (i) values lower than the 

averaged PFP for the Reference (PFP ~ 30) and (ii) values higher than PFP ~ 300, that 

represents applications of about 50 kg N ha
-1

 to produce 15000 kg grain ha
-1

, which can 

happen frequently when sensors are being used. Generally the PFP Average and Local 

were similar, but Local was superior on fields BR09 and HU09 with a PFP advantage of 
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9 and 15 kg grain (kg N applied)
-1

 respectively. Overall, the grain yield and N rates were 

not significantly different, but in terms of PFP there was advantage for Local (Table 5). 

Results from ANOVA for CI indicated that the plant N status sensed by active 

sensors were significantly different in all fields (Table 3). The CI index on the Reference 

varied from 3.22 to 4.88, giving SI values from 0.77 to 1.05 for all treatments in the time 

of sensing (side dress application) at V11 growth stage (Table 6). One explanation for 

higher yields with the Average approach over the Local approach is that the SI in the 

Local strips were 1.05, meaning that on average the CI in the Local strips were higher 

than the Average strips, consequently lower N rates were applied to the Local strips, as 

observed, yielding less than the Average approach (Table 6). On the other field were 

Local was superior than Average (BR10) the SI at side-dress was higher for the Local 

than for the Average, but the N rates were not different, but the Local yielded 

considerable more (~1.3 Mg ha
-1

). 

 

Experiment 2 – Small Plots 

 

Geostatistical Analysis 

 

Adjusting the semivariograms scaled to sample variance using the GS+ software, it was 

observed that semivariance increased linearly with distance for CI and Yield at some N 

rates. This was probably due to trends in the data. When the scaled to sample 

semivariance ratio is superior to 1 indicates that the variance increasing with distance 

between measurements is higher than the average semivariance in the lag range for each 
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field. For dense point data collection such as those collected (CI and yield data), 

semivariances higher than the average for the whole field make no sense with the kriging 

interpolation procedure. For this reason it was decided to standardized the model to 

Spherical. This represents a linear model with short ranges and plateaus when the 

experimental range (Ao) is reached. The range for each field was considered when the 

scaled semivariance reached 1, or Sill value (Co+C) equaled 1, when using the model and 

criteria for range determination, the parameters that changed from field to field and 

between N rates, were the intercept (Co) and the range (Ao). The models showed that the 

range for CI increases as N rate increase, and they varied from 45 – 360 m, depending on 

the field (Tables 18 and 19). Generally the fields in 2009 showed lower ranges for lower 

N rates compared to 2010, representing a less uniform field in short distances. The same 

trend was observed with grain yield with ranges varying from 50-350 m. Again, this is an 

indication that when there is low N supply in the soil, there are more variability in CI and 

grain yield, as expected. However, for some fields, HU09 and RT09, there were smaller 

ranges for the highest N rates suggesting that high and low yields can be found close 

together. This could be explained by high plant stand failure on those high N plots or 

spatial variability between plots that is often observed in fields. Overall, the ranges for CI 

and Yield across N rates were 184 and 172 m, respectively. This finding give some basis 

for future plot design to avoid points far from 30% of the range distance to generate 

representative sampling for comparisons, as proposed by Isaaks and Srivastava (1989). 
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Localized Yield and SI Response Equations 

 

Using the central transect (with about 39 – 49 points depending on the field) from the 3 

replications in each field it was decided to adjust the Yield considering only the quadratic 

model, assuming that this model could fit the yield and SI response in all parts of the 

field. Between the 538 quadratic equations generated, only a few did not fit or had low R
2
 

(Tables 12 – 17). Generally the equations fit the data well, with high R
2
 and reasonable 

good Yield and SI predictions when the N rate was zero. There are some outliers that 

were excluded when the analysis for the Local and Average approaches were done using 

simulated grain yield calculated from the N rate determined by the sensor based 

algorithm. One example is when the 0 kg N ha
-1

 resulted in grain yields much below the 

average for 40 kg N ha
-1

, which is unreal in most agricultural fields. All these equations 

where replaced by the average equation for the specific field. One good use for these 

equations could be the simulation of Yield and SI response for different N rates generated 

from different sensor based algorithms. These equations came from small plots that 

received 75 kg N ha
-1

 at planting and the supplement 25, 75, 100, 125 and 175 kg N ha
-1

 

at side-dress, assuming that minimal N was lost before time of sensing. The only 

drawback is that the CI values were collected at later stages of corn (R4) in order to be 

able to sense the crop after response to N. As such, they may not represent the same 

differences as the small plots sensed from V11 until VT (when side-dress N occurs). Si 

was used to model the equations and it was expected that normalization would reduce the 

effect of growth stage as reported by Holland and Schepers (2010). 
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Treatment Effect on Grain Yield and PFP 

 

Analysis of variance for grain yield indicates that all fields had significant 

treatment effect on grain yield for the small plots (Table 7). Even though the BL10 field 

had similar yield between treatments, the Reference and/or UNL yielded more than the 

sensor based approaches, justifying this significance (Figure 6). Different results were 

obtained compared with the Long Strips treatments, where in the BL10 there were no 

treatment effects. Another indication that N was lost from the Reference strips from time 

of application to time of sensing for the Experiment 1 is that the Reference for the Local 

plots (250 kg N ha
-1

) in Experiment 2 yielded more than the sensor based treatments. 

Comparing the grain yield between treatments UNL and Reference, the RT09 and BL10 

fields did not have differences, but in both cases UNL had much less N applied (30-50 kg 

N ha
-1

) as expected because Reference had excess N applied. UNL yielded more than 

both of the sensor based treatments for all fields but used considerable more N. Between 

the sensor based treatments (Local and Average), the Local had higher yields in 4 of 6 

fields, but also had higher N applied. The RT09 field had the highest yield of all fields 

but again did not have differences between sensor approaches and between UNL and 

Reference, confirming the results on the field long strips. The HU09 field also had the 

same results for sensor based approaches but the Reference approach yielded more than 

the UNL treatments (Figure 6). 

 In terms of PFP, the Reference treatments had the lowest, followed by the UNL 

approach that range from 48.8 to 100 kg grain (kg N applied)
-1

 (Table 8). Comparing the 
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sensor based approaches, the Average had higher PFP than Local in 5 of 6 fields, but the 

differences were around 12 kg grain (kg N applied)
-1

. In the RT09 field the Local 

approach was superior to the Average by 49 kg grain (kg N applied)
-1

, probably due to 

the high indigenous N in this field. Combining all fields, the grain yields were the same 

between the sensor-based approaches, but the Local had more N applied, but not enough 

to have higher PFP, showing that Local and Average were similar in terms of profitability 

(Table 9). The UNL had 36% less PFP than the sensor based approaches, showing 

disadvantages in terms of NUE. 

 It is interesting to note that the method of the yield prediction based on quadratic 

equations from yield and SI with N rates interpolated from surfaces did not have issues as 

encountered in the field long strips (where for the BR09 field the CI in the Local strip at 

time of sensing was higher than the reference strips, causing low N application in the 

Local, that resulted in lower yields), because they use the same SI for both approaches 

(Table 10), enabling a fair comparison between sensor based approaches considering the 

same spatial variability for Yield and SI response. These equations covered a broad range 

of soil types, climate conditions, crop management (previous crop, plant population, 

hybrids) and could be used to simulate yield and SI response for several other algorithms 

available to the public (Tables 12-17). Another advantage of using spatial response 

equations is that it is not required to have a check plot (0 kg N ha
-1

) to adjust an equation 

and then obtain a SI(0) or a Yield(0) from the equation if there is N response in the field.  
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Correlation of ACS with Detailed Soil Attributes 

 

Analyzing landscape variability of soil attributes (EC, soil organic matter, RTK 

elevation) in the 6 fields at the small plot level generally low correlations were found 

between final grain yield (Y_250N) and soil attributes (Table 11). This maybe due to the 

high variability encountered in each of the fields (Table 2). The highest correlations were 

found for ECdp and  Y_250N (0.53) and Y_0N (0.50). RTK elevation showed low 

correlation with grain yield (- 0.36 ) and where the elevation was normalized to the 

highest point for each field (RTK_rel) the correlations were not significant across fields. 

These results did not confirm the findings of Kaspar et al. (2003) where corn yield was 

negatively correlated with relative elevation, slope and curvature in dryer seasons. This 

may be due to combining two different seasons in our study (one dryer than the other, but 

both did not have excess of water, and that is uncommon where the experiments were 

conducted).  Soil organic matter was high correlated with ECsh, but both had low 

correlation with final grain yield. On the other hand, SI in the check plot (SI_0N) had 

high correlations with Y_75N and Y_250N, 0.70 and 0.67 respectively, indicating that 

sensor readings can estimate better grain yield than soil attributes (Table 11).  

  Overall, it was identified that the spatial variability between fields and the rank of 

importance for soil attributes on grain yield varied from field to field, as also observed by 

Roberts (2010), where only for fine-textured soils with eroded slopes. The management 

zone delineation based on soil attributes integrated with the same sensor algorithm using 

the Average approach resulted in N savings around (40 – 120 kg N ha
-1

). For course 
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textured fields and high N demand, the current sensor based N application algorithm may 

require further calibration. But as shown in the previous results for the small plots areas 

the Local Approach using a localized reference can integrate all plant N demand and 

improve the ability of the sensor based approach if the same algorithm is used. 

Comparing the Average and Local Approaches it was observed in general that the 

Local approach could identify regions in the field where the CI is higher and potentially 

increase the yield in these regions. This was observed in field BR10, but more N was 

required (Figure 7). This greater use by sensor recommendation was also observed by 

Roberts et al. (2010), when comparing the N rates prescribed with the use of ACS and the 

farmer’s N rates. However, in general the results support sensor-based N applications for 

environmental benefits. Evaluating the N rates applied using the Local approach minus 

the N rate using Average approach (L-A_N) showed high correlations between these 

regions (potentially high yielding sites) with CI_0N, CI_75N and CI_250N, indicating 

that the Local approach could identify high yielding sites across the landscape (Table 11). 

Recently a new variable rate N application model has been published (Holland 

and Schepers, 2010):  

		�� = �	��� − 	��� − 	�� + 	����√ �1 − ���
∆���1 + 0.1��������� !"#$���� 

 

Where: N rec is the N rate that should be applied in kg ha
-1

 ; Nopt is the economic optimum nitrogen rate 

(EONR) or the maximum N rate prescribed by producers; Npre is the N rate applied before sensing; Ncrd is 

the N credit for the previous season’s crop, nitrate in the water or manure application, Ncomp is the N in 

excess of Nopt required by the crop under soil limiting conditions at a given growth stage; SI is the 

sufficiency index; m is the back-off rate variable (0<m<100); and SItreshold is the back-off cut-on point. 
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In this algorithm framework, the SI response is an input (they used one parameter 

called ∆ SI, that is the SI where N rate is zero and this influences the N rates prescribed 

(Figure 8). The other inputs (Nopt, Npre, Ncrd, Ncomp and threshold SI value) also 

change the N rec, sometimes for the same SI there were differences as great as 85 kg N 

ha
-1

 for the Nrec (Figures 8-10). 

The algorithm accounts for variation in SI for calculation of N rate, and is 

consistent with our results on the small plot areas, where high negative correlation was 

found between ∆ SI calculated from the SI response equations with CI_0N, CI_75N, 

SI_0N and SI_75N (Figure 11). This indicates the possibility for estimation of a “Spatial 

∆ SI” for using on-the-go in conjunction with the Local approach. In the same way others 

inputs in the algorithm (total N sources accordingly to historical N response in the field 

and SI threshold) can also be used spatially using the Local Approach. This shows the 

probability of using a more flexible algorithm, such as Holland and Schepers (2010) in 

conjunction with the virtual reference approach (Holland and Schepers, 2011), in 

estimating a local reference CI without the need of N-rich plot. Using this approach in 

conjunction with spatial information’s about the N rate that maximize yield, ∆ SI, and 

threshold values for SI, will enhance the advantage of the Local approach against the 

Average approach, without the need of previous soil maps or management zones 

delineation. 
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SUMMARY AND CONCLUSIONS 

 

This study evaluated: (i) the use of a localized N-rich reference strip (Local 

Approach) that accounts for variable growing conditions compared to an approach that 

account for averaged values of a given plot disregarding any spatial variability (Average); 

(ii) the comparison of sensor approaches with the conventional uniform N application 

(UNL); and (iii) how landscape soil spatial variability can influence the Local Approach. 

The study was conducted in two experiments: Experiment 1 – Field long strips: where 

long strips with different approaches under farmers conditions were evaluated; 

Experiment 2- Small Plots: using a spatial design to generate layers of different N 

application rates and simulate the same treatments of Experiment 1. 

In the field long strips, mixed results were observed in 4 of 6 fields. The Local 

and Average approaches performed similar in terms of yield and only in one field was the 

Local approach superior compared to the Average approach. In one field where the 

Average approach yielded more than the Local it was found that a higher averaged CI in 

the Local strip at time of sensing reduced considerably the N rate applied compared to the 

Average approach. In terms of PFP the Average and Local approaches were similar in 4 

of 6 fields, but Local was superior on the other 2 fields. In the Small plot experiments the 

spatial variability of CI and Yield were analyzed using semivariograms scaled to sample 

variance. It was found that the plots had spatial dependence with smaller ranges for the 

smaller N rates when Yield or CI were evaluated. This finding show that the spatial 

resolution used in the study was assured by the spatial dependence and that experiments 

of this nature can be designed for similar purposes. Surface raster maps of Yield and CI 
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were generated and SI and Yield equations with N rates were calculated using a transect 

in each field. This generated a valuable data base for algorithm testing and simulation of 

site-specific N application where yield potential and soil conditions change with the 

landscape. In this simulation study the Local approach yielded considerable more in 4 of 

6 fields compared to Average approach, but applied more N on most of the fields. 

Overall, the Local approach had the same PFP as the Average approach, followed by 

UNL and Reference strip. It was found that the Local approach could identify regions in 

the field where the plant status was better at time of sensing (CI is higher) and potentially 

higher yields on those regions. Analyzing how the landscape RTK elevation and soil 

attributes influenced the sensor readings, showed that low correlations were obtained and 

that a plant-based sensor approach can more likely do a better job of accounting for yield 

spatial variability. Finally, the Local Sensor Based approach could maximize grain yield 

and have the same PFP of the Average Sensor Based Approach, showing potential for a 

better NUE. 
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Figure 1. Localization of the different experimental fields during 2009 and 2010 growing 

seasons. 
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Figure 2. Experimental design for the Field Long Strips (Experiment 1) and Small Plots 

(Experiment 2), where a spatial design were adjusted for data interpolation. Example of 

the BR09 field.  
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Figure 3. Randomization of the Experiment 2 (Small Plots) inside the area where the 

spatial design was imposed.  Example of the BR09 field.  
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Figure 4. Rainfall and irrigation amount during the growing season for all producer’s 

fields. 
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Figure 5. Average grain yield and N applied resulted from the treatments at the Field 

Long Strips. Least significant difference (LSD) was calculated for treatment within each 

field. Treatment mean groupings are indicated for yield (uppercase letters) and N rate 

(lowercase letters) for each field. Error bars indicate standard error for each treatment. 
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Figure 6. Average grain yield and N applied resulted from the treatments at the Small 

Plots. Least significant difference (LSD) was calculated for treatment within each field. 

Treatment mean groupings are indicated for yield (uppercase letters) and N rate 

(lowercase letters) for each field. Error bars indicate standard error for each treatment. 
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Figure 7. Transect for the BR10 field showing the spatial variation of grain yield when 

different approaches (Local and Average) were imposed to calculate N rates. Yield 

Reference is the final yield obtained in the N-rich strip (250 kg n ha
-1

). CI_250N_Local is 

the CI for each point of the transect when 250 kg N ha
-1

 was applied and 

CI_250N_Average Value is the average for the whole transect. 
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Figure 8. Effect of the N rate prescription changing at various SI when two different 

values of Delta SI (∆ SI).are used. 

 

 

 
Figure 9. Effect of the N rate precription changing at various SI when two different 

values of nitrogen rate that maximizes the yield.are used. 
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Figure 10. Effect of the N rate precription changing at various SI when two different 

values of SI treshold are used. 

 

 

 

 
Figure 11. Correlation between the ∆ SI and chlorophyll index using 75 kg N ha

-1
 

(CI_75N) for the BR09 field. 
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Table 1. Previous crop, row spacing, N rates used in the small plots area, crop system and 

predominant soil series at experimental fields conducted during 2009 and 2010.  
Site Previous Crop Corn Hybrid N rates (kg ha-1) Crop System Soil Series 

BR09 Soybeans Pioneer 32T84 75, 100, 150, 200, 250 No tillage Ipage Fine Sand 

HU09 Corn Dekalb 65-63VT3 75, 100, 150, 200, 250 Strip Till Hastings Silt Loam 

RT09 Soybeans Pioneer 32B11 75, 100, 150, 200, 250 No tillage Hord Silt Loam 

BR10 Soybeans Pioneer 33D47 0,75,150,200,250 No tillage Libory Fine Sand 

HU10 Corn (Popcorn) Excel 5995YGVT3 0,75,150,200,250 No tillage Hastings Clay Loam 

BL10 Corn Dekalb DKC5259 0,75,150,200,250 No tillage Satanta Loam 

 

Table 1a. Detailed soil information with the percent of area that was covered with 

different soil taxonomic class in each field (% Area) and slope. 

 
Field Series Slope % Area Taxonomic Class 

BR09 Novina sandy loam 1 to 3% 19.30 Coarse-loamy, mixed, superactive, mesic Fluvaquentic Haplustolls 

 Thurman loamy fine sand 0 to 2% 22.30 Sandy, mixed, mesic Udorthentic Haplustolls 

 Thurman loamy fine sand 2 to 6% 13.40 Sandy, mixed, mesic Udorthentic Haplustolls 

 Ipage loamy fine sand 0 to 3% 45.20 Mixed, mesic Oxyaquic Ustipsamments 

     

HU09 Hastings silt loam 0 to 1% 55.70 Fine, smectitic, mesic Udic Argiustolls 

 Hastings silt loam 1 to 3% 22.50 Fine, smectitic, mesic Udic Argiustolls 

 Hastings silty clay loam 3 to 7% 21.70 Fine, smectitic, mesic Udic Argiustolls 

     

RT09 Uly silt loam 3 to 6% 1.20 Fine-silty, mixed, superactive, mesic Typic Haplustolls 

 Hord silt loam 1 to 3% 11.00 Fine-silty, mixed, superactive, mesic Cumulic Haplustolls 

 Hastings silt loam 0 to 1% 17.50 Fine, smectitic, mesic Udic Argiustolls 

 Thurman fine sandy loam 2 to 11% 22.10 Sandy, mixed, mesic Udorthentic Haplustolls 

 Hord silt loam 1 to 3%  48.10 Fine-silty, mixed, superactive, mesic Cumulic Haplustolls 

     

BR10 Libory loamy fine sand 0 to 3% 49.40 Sandy over loamy, mixed, superactive, mesic Oxyaquic Haplustolls  

 Valentine fine sand 3 to 9% 26.20 Mixed, mesic Typic Ustipsamments 

 Valentine fine sand 9 to 24% 24.40 Mixed, mesic Typic Ustipsamments 

     

HU10 Hastings silt loam 1 to 3% 34.00 Fine, smectitic, mesic Udic Argiustolls 

 Hastings silt loam 3 to 7% 22.50 Fine, smectitic, mesic Udic Argiustolls 

 Hastings silty clay loam 7 to 11% 43.50 Fine, smectitic, mesic Udic Argiustolls 

     

BL10 Bankard loamy sand 1 to 3% 14.80 Sandy, mixed, mesic Ustic Torrifluvents 

 Bayard very fine sandy loam 1 to 3% 23.70 Coarse-loamy, mixed, superactive, mesic Torriorthentic Haplustolls 

 Satanta loam 3 to 6% 41.80 Fine-loamy, mixed, superactive, mesic Aridic Argiustolls  

 Satanta-Dix complex 3 to 9% 19.70 Fine-loamy, mixed, superactive, mesic Aridic Argiustolls  
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Table 2. Descriptive statistics for yield, CI, SI, RTK Elevation, RT_ rel, EC and SOM 

across all sites in the small plots transects. 

 
Descriptive Statistics      

Variable N Mean Std Dev Median Minimum Maximum 

Yield_0N (kg ha
-1

) 264 9938 4146 9797 4123 19439 

Yield_75N (kg ha
-1

) 264 11137 3979 10777 3419 18283 

Yield_250N (kg ha
-1

) 264 14497 2913 14537 8476 19613 

CI_0N 264 2.44 0.40 2.40 1.52 3.98 

CI_75n 264 2.59 0.38 2.58 1.60 3.75 

CI_250n 264 3.26 0.48 3.13 2.44 4.50 

SI_0N 264 0.75 0.11 0.75 0.54 1.20 

SI_75n 264 0.80 0.08 0.80 0.55 1.02 

Elevation (m) 264 633 190 563 516 1062 

EC_shallow (mS m
-1

) 264 3.98 3.32 3.77 0.38 12.46 

EC_deep (mS m
-1

) 264 27.96 26.21 11.18 1.06 74.96 

SOM (g kg
-1

) 264 22.1 9.5 26.4 5.0 34.3 

RTK_rel  264 0.99 0.00 0.99 0.98 1.00 

 

 

Table 3. Analysis of variance results for grain yield, partial factor productivity (PFP) in 

kg grain (kg N applied
-1

) and chlorophyll index using 75 kg N ha
-1

 at time of sensing 

across all fields for the long strips treatments. 

 
Field     Yield (kg ha

-1
)  PFP 

 
CI 

 Rep Num df Den DF F Value Pr > F F Value Pr > F F Value Pr > F 

BR09 2 3 534 66.32 <.0001 23.94 <.0001 84.95 <.0001 

HU09 2 3 666 135.29 <.0001 141.05 <.0001 149.03 <.0001 

RT09 2 3 462 3.57 0.0142 39.86 <.0001 13.21 <.0001 

BR10 2 3 594 9.4 <.0001 10.69 <.0001 13.21 <.0001 

HU10 2 3 594 19.35 <.0001 216.8 <.0001 44.59 <.0001 

BL10 2 3 510 1.74 0.1584 74.81 <.0001 14.94 <.0001 

 

 

Table 4. Mean separation grouping for average partial factor productivity (PFP) in kg 

grain (kg N applied
-1

) in each field for the long strips treatments (LSD, α=0.05). 

 
PFP BR09 HU09 RT09 BR10 HU10 BL10 

Local 78.4a 119.2a 100.9a 59.6a 105.2a 70.6a 

Average 69.8b 104.4b 100.4a 56.2a 109.5a 69.2a 

UNL 62.9c 80.0c 81.6b 48.9b 66.1b 41.5b 

Reference 55.3c 59.9d 57.9c 45.9b 51.4c 38.3b 
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Table 5. Mean separation grouping for average grain yield, N rate and partial factor 

productivity (PFP) across all fields for the long strips treatments (LSD, α=0.05). 
PFP Grain Yield 

Mg ha
-1 

N rate 

kg ha
-1 

PFP 

kg grain(kg N)
-1 

Local 12.031c 133.9c 89.8a 

Average 12.018c 140.6c 85.4b 

UNL 12.537b 199.9b 63.7c 

Reference 12.917a 250.0a 51.6d 

 

Table 6. Average sensor data (SI and CI) for each field using the localized and averaged 

reference approaches for the long strips. 

 
Field Long Strips   

 SI_Local SI_Average CI_ref 

BR09 1.05 0.83 4.01 

HU09 1.00 0.92 4.88 

RT09 0.91 0.87 4.81 

BR10 0.80 0.77 3.52 

HU10 0.95 0.95 4.16 

BL10 0.92 0.96 3.22 

 

Table 7. Analysis of variance results for grain yield and partial factor productivity across 

all fields for the small -plots treatments. 

 
Field    Yield  PFP 

 Rep df Trt df F Value Pr > F F Value Pr > F 

BR09 2 3 159.39 <0.0001 118.7 <0.0001 

HU09 2 3 51.53 <0.0001 63.05 <0.0001 

RT09 2 3 15.46 <0.0001 35.98 <0.0001 

BR10 2 3 149.22 <0.0001 76.14 <0.0001 

HU10 2 3 1249.15 <0.0001 298.22 <0.0001 

BL10 2 3 12.89 <0.0001 37.84 <0.0001 

 

Table 8. Mean separation grouping for average partial factor productivity (PFP) in kg 

grain (kg N applied
-1

) in each field for the small plots treatments (LSD, α=0.05). 

 
PFP BR09 HU09 RT09 BR10 HU10 BL10 

Local 102.8b 132.1a 197.5a 61.9b 110.3b 71.5b 

Average 112.7a 133.8a 148.4b 65.0a 133.5a 92.7a 

UNL 77.2c 87.9b 100.3c 52.7c 70.7c 48.8c 

Reference 33.7d 67.3c 72.1d 48.9d 59.0d 42.8c 
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Table 9. Mean separation grouping for average grain yield, N rate and partial factor 

productivity (PFP) across all fields for the small plots treatments (LSD, α=0.05). 

 
PFP Grain Yield 

Mg ha
-1 

N rate 

kg ha
-1 

PFP 

kg grain(kgN)
-1 

Local 12.762c 112.14d 113.8c 

Average 12.513c 109.4c 114.3c 

UNL 14.327b 199.8b 72.9b 

Reference 14.878a 250.0a 59.5a 

 

Table 10. Average sensor data (SI and CI) for each field using the localized and averaged 

reference approaches for the small plots. 

 
Field Small Plots   

 SI_Local SI_Average CI_ref 

BR09 0.77 0.77 2.80 

HU09 0.82 0.82 3.01 

RT09 0.87 0.87 3.33 

BR10 0.71 0.71 3.55 

HU10 0.87 0.87 2.97 

BL10 0.76 0.76 3.87 
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Table 11. Spearman rank correlation between grain yield (Y), chlorophyll index (CI), sufficiency index (SI), Delta SI (∆ SI) 

and GPS RTK elevation (RTK), Relative RTK elevation (RTK_rel), apparent soil electrical conductivity (EC) at shallow 

(ECsh) and deep (ECdp), soil organic matter (SOM) and the difference between N rates prescribed for the Local minus the 

Average (L-A_N) across all sites in the small plots transects. The BL10 field ECdp measurements were discarded due to issues 

in the data collection. 
 

 Yield_0N Y_75N Y_250N CI_0N CI_75N CI_250N SI_0N SI_75N RTK ECsh ECdp SOM RTK_rel ∆ SI L–

A_N 

Y_0N 1.00               

Y_75N 0.94*** 1.00              

Y_250N 0.91*** 0.89*** 1.00             

CI_0N 0.32*** 0.33*** 0.19*** 1.00            

CI_75N 0.09 0.13 -0.06 0.80*** 1.00           

CI_250N -0.30*** -0.27*** -0.38*** 0.56*** 0.67*** 1.00          

SI_0N 0.73*** 0.70*** 0.67*** 0.47*** 0.14*** -0.41*** 1.00         

SI_75N 0.50*** 0.53*** 0.42*** 0.29*** 0.38*** -0.39*** 0.71*** 1.00        

RTK  -0.12* -0.12** -0.30*** 0.27*** 0.52*** 0.30*** -0.08 0.32*** 1.00       

ECsh 0.34*** 0.32*** 0.25*** 0.19*** 0.37*** -0.14** 0.36*** 0.68*** 0.61*** 1.00      

ECdp 0.50*** 0.44*** 0.53*** 0.11* 0.12** -0.37*** 0.56*** 0.67*** 0.14*** 0.80*** 1.00     

SOM 0.42*** 0.41*** 0.30*** 0.45*** 0.57*** 0.08 0.45*** 0.68*** 0.58*** 0.77*** 0.67*** 1.00    

RTK_rel -0.08 -0.09 -0.06 -0.23*** -0.39*** -0.26*** -0.02 -0.16** -0.20** -0.38*** -0.31*** -0.46*** 1.00   

∆ SI -0.35*** -0.30*** -0.28*** -0.74*** -0.52*** -0.19*** -0.64*** -0.50*** -0.32*** -0.45*** -0.50*** -0.63*** -0.19** 1.00  

L–A_N 0.11* 0.11* 0.08 0.54*** 0.53*** 0.62*** -0.03 -0.10 0.11* 0.15** 0.14** 0.21*** 0.11* -

0.37*** 

1.00 

 

*Statistical significance at p<0.10 

**Statistical significance at p<0.05 

***Statistical significance at p<0.001 
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Table 12.Yield (kg ha
-1

) and Sufficiency Index (SI) predicted equations to evaluate the N 

response (kg ha
-1

) for the transect made in the small plots area at the BR09. 

 
Long Lat ID Yield Response Equation R2 SI response Equation R2 

-97.99215123 41.27476437 1 Yield = -0.3415N2 + 145N + 463 R² = 0.963  SI = -5E-06N2 + 0.0034N + 0.4726 R² = 0.9826  

-97.99196077 41.27476437 2 Yield = -0.3415N2 + 199N + 478.05 R² = 0.9456  SI = -3E-06N2 + 0.0025N + 0.5397 R² = 0.9808  

-97.99178441 41.27476437 3 Yield = 0.0001N2 + 32.982N + 9685.4 R² = 0.9028  SI = -4E-07N2 + 0.0018N + 0.5682 R² = 0.9926  

-97.99160099 41.27475026 4 Yield = 0.007N2 + 28.519N + 10194 R² = 0.9208  SI = 5E-06N2 - 2E-05N + 0.7225 R² = 0.997  

-97.99141758 41.2747432 5 Yield = -0.0298N2 + 40.13N + 9109.3 R² = 0.9931  SI = 8E-06N2 - 0.0014N + 0.8569 R² = 0.8677  

-97.99123416 41.2747432 6 Yield = 0.0852N2 - 9.0342N + 13910 R² = 0.9485  SI = 4E-06N2 + 1E-04N + 0.761 R² = 0.7854  

-97.9910578 41.27475026 7 Yield = 0.1705N2 - 43.858N + 17469 R² = 0.9411  SI = 2E-07N2 + 0.0014N + 0.6382 R² = 0.9451  

-97.99088144 41.27475731 8 Yield = 0.0547N2 - 0.8378N + 13801 R² = 0.7935  SI = -5E-07N2 + 0.0018N + 0.597 R² = 0.9907  

-97.99070508 41.27475731 9 Yield = -0.1111N2 + 58.279N + 8661.2 R² = 0.8309  SI = -3E-06N2 + 0.0029N + 0.4795 R² = 0.9544  

-97.99051461 41.27475731 10 Yield = -0.1874N2 + 89.247N + 5684.8 R² = 0.7931  SI = -3E-06N2 + 0.0028N + 0.475 R² = 0.9666  

-97.9903312 41.2747432 11 Yield = -0.1009N2 + 60.332N + 7874.4 R² = 0.8599  SI = 6E-06N2 - 0.0006N + 0.7918 R² = 0.9401  

-97.99015484 41.27475026 12 Yield = -0.0647N2 + 44.534N + 9258.8 R² = 0.9894  SI = 8E-06N2 - 0.0016N + 0.8863 R² = 0.7309  

-97.98996437 41.27475026 13 Yield = -0.0866N2 + 55.147N + 7911.9 R² = 0.9799  SI = -3E-07N2 + 0.0017N + 0.5988 R² = 0.9629  

-97.98976685 41.27475026 14 Yield = -0.3415N2 + 135.99N + 470 R² = 0.9714  SI = -6E-06N2 + 0.0039N + 0.4377 R² = 0.983  

-97.9896046 41.27475026 15 Yield = -0.3415N2 + 115.99N + 400 R² = 0.9862  SI = -7E-06N2 + 0.0041N + 0.4374 R² = 0.9187  

-97.98941413 41.27475026 16 Yield = -0.3415N2 + 145N + 375 R² = 0.9969  SI = -1E-05N2 + 0.005N + 0.402 R² = 0.9515  

-97.98923777 41.27475731 17 Yield = -0.3415N2 + 145.99N + 495 R² = 0.9798  SI = -1E-05N2 + 0.0058N + 0.3484 R² = 0.992  

-97.98906846 41.27476437 18 Yield = -0.2544N2 + 109.23N + 4190.5 R² = 0.9608  SI = -1E-05N2 + 0.0056N + 0.3663 R² = 0.984  

-97.98887799 41.27476437 19 Yield = -0.1674N2 + 78.762N + 6672.9 R² = 0.963  SI = -1E-05N2 + 0.0054N + 0.4156 R² = 0.9883  

-97.98870163 41.27476437 20 Yield = -0.1482N2 + 70.515N + 7528.3 R² = 0.9861  SI = -1E-05N2 + 0.0045N + 0.5048 R² = 0.9295  

-97.98851117 41.27476437 21 Yield = -0.2444N2 + 104.62N + 4778.7 R² = 1  SI = -1E-05N2 + 0.0052N + 0.477 R² = 0.8841  

-97.98834186 41.27475731 22 Yield = -0.1672N2 + 88.239N + 5291.9 R² = 0.9923  SI = -1E-05N2 + 0.0051N + 0.4625 R² = 0.9285  

-97.98815845 41.27476437 23 Yield = -0.0135N2 + 41.026N + 8740.1 R² = 0.9828  SI = -7E-06N2 + 0.0036N + 0.5609 R² = 0.9376  

-97.9879962 41.27476437 24 Yield = -0.0825N2 + 61.066N + 7533.9 R² = 0.9878  SI = -7E-06N2 + 0.0035N + 0.5517 R² = 0.9959  

-97.98780573 41.27476437 25 Yield = -0.3415N2 + 125N + 380 R² = 0.941  SI = -9E-06N2 + 0.0044N + 0.4543 R² = 0.9978  

-97.98760115 41.27476437 26 Yield = -0.3415N2 + 141N + 478.05 R² = 0.9724  SI = -7E-06N2 + 0.0038N + 0.5128 R² = 0.9249  

-97.98743184 41.27476437 27 Yield = -0.1069N2 + 63.162N + 7784.9 R² = 0.9795  SI = -5E-06N2 + 0.0029N + 0.6029 R² = 0.8056  

-97.98724137 41.27476437 28 Yield = 0.0074N2 + 21.905N + 11105 R² = 0.7353  SI = -4E-06N2 + 0.0023N + 0.6656 R² = 0.7345  

-97.98706502 41.27476437 29 Yield = -0.0083N2 + 30.666N + 9753.1 R² = 0.7719  SI = -5E-06N2 + 0.0027N + 0.6343 R² = 0.8562  

-97.98686749 41.27476437 30 Yield = -0.1218N2 + 73.077N + 5984.7 R² = 0.9506  SI = -6E-06N2 + 0.0035N + 0.525 R² = 0.9012  

-97.98669819 41.27476437 31 Yield = -0.1644N2 + 83.641N + 5638.9 R² = 0.9981  SI = -7E-06N2 + 0.0039N + 0.4582 R² = 0.9511  

-97.98652888 41.27476437 32 Yield = -0.2632N2 + 107.45N + 4745.9 R² = 0.8656  SI = -8E-06N2 + 0.0046N + 0.3872 R² = 0.9623  

-97.98634547 41.27475026 33 Yield = -0.3276N2 + 125.51N + 3533.8 R² = 0.8916  SI = -7E-06N2 + 0.0041N + 0.414 R² = 0.9371  

-97.986155 41.27475026 34 Yield = -0.2476N2 + 107.81N + 3804 R² = 0.9934  SI = -8E-06N2 + 0.0042N + 0.4527 R² = 0.9343  

-97.98595747 41.27475026 35 Yield = -0.1775N2 + 87.181N + 5101.2 R² = 0.9935  SI = -7E-06N2 + 0.0039N + 0.499 R² = 0.921  

-97.98576701 41.27475026 36 Yield = -0.1204N2 + 66.113N + 7059.8 R² = 0.991  SI = -8E-06N2 + 0.004N + 0.5436 R² = 0.8767  

-97.98560476 41.27475026 37 Yield = -0.0422N2 + 43.247N + 8491.4 R² = 0.9937  SI = -7E-06N2 + 0.0035N + 0.5763 R² = 0.8382  

-97.98542134 41.27475026 38 Yield = -0.0688N2 + 58.145N + 6750.7 R² = 0.9876  SI = -5E-06N2 + 0.0032N + 0.5378 R² = 0.9645  
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-97.98523793 41.27475026 39 Yield = -0.1158N2 + 75.712N + 5144.7 R² = 0.9879  SI = -5E-06N2 + 0.0032N + 0.5064 R² = 0.9919  

-97.98504746 41.2747432 40 Yield = -0.1311N2 + 75.287N + 5735.8 R² = 0.9866  SI = -6E-06N2 + 0.0036N + 0.5003 R² = 0.9844  

-97.9848711 41.2747432 41 Yield = -0.0842N2 + 51.194N + 8455 R² = 0.9908  SI = -7E-06N2 + 0.0036N + 0.5863 R² = 0.7815  

-97.98470179 41.2747432 42 Yield = -0.0189N2 + 29.777N + 10165 R² = 0.9887  SI = -5E-06N2 + 0.0028N + 0.6209 R² = 0.8075  

-97.98451132 41.2747432 43 Yield = -0.0103N2 + 30.503N + 9707.1 R² = 0.9954  SI = -5E-06N2 + 0.0033N + 0.5426 R² = 0.9242  

-97.98433496 41.27473615 44 Yield = -0.1572N2 + 82.942N + 5111.6 R² = 0.9959  SI = -1E-05N2 + 0.006N + 0.3752 R² = 0.9522  

 Average Equation  Yield = -0.1309N2 + 71.447N + 6748 R² = 0.995  SI = -5E-06N2 + 0.0032N + 0.5397 R² = 0.947  
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Table 13. Yield (kg ha
-1

) and Sufficiency Index (SI) predicted equations to evaluate the N 

response (kg ha
-1

) for the transect made in the small plots area at the HU09. 

 
Long Lat ID Yield Response Equation R2 SI response Equation R2 

-98.16755961 40.8416722 1 Yield = -0.0355N2 + 11.326N + 15958 R² = 0.0491  SI = -6E-07N2 + 0.0009N + 0.8125 R² = 0.9938  

-98.1673843 40.84167698 2 Yield = -0.036N2 + 21.168N + 14360 R² = 0.9132  SI = 3E-06N2 - 0.0004N + 0.9135 R² = 0.9759  

-98.16720519 40.84166661 3 Yield = -0.0543N2 + 32.371N + 13113 R² = 0.9997  SI = 7E-06N2 - 0.0023N + 1.1089 R² = 0.4758  

-98.16702995 40.84166535 4 Yield = -0.0666N2 + 37.969N + 12569 R² = 0.9986  SI = 1E-06N2 - 0.0004N + 1.0158 R² = 0.1029  

-98.16684261 40.84167609 5 Yield = -0.0434N2 + 30.912N + 13137 R² = 0.965  SI = -6E-06N2 + 0.0026N + 0.7513 R² = 0.8925  

-98.16665937 40.8416778 6 Yield = -0.0145N2 + 19.333N + 14368 R² = 0.8534  SI = -3E-06N2 + 0.0018N + 0.7384 R² = 0.9505  

-98.16647624 40.84167042 7 Yield = 0.0004N2 + 11.385N + 15332 R² = 0.8134  SI = 3E-07N2 + 0.0009N + 0.7555 R² = 0.9494  

-98.16629307 40.84166607 8 Yield = -0.0768N2 + 31.932N + 14079 R² = 0.9457  SI = 3E-06N2 + 0.0003N + 0.726 R² = 0.8961  

-98.16612572 40.84167091 9 Yield = -0.1549N2 + 58.002N + 11920 R² = 0.9799  SI = 3E-06N2 - 0.0003N + 0.8554 R² = 0.9646  

-98.16593455 40.84166953 10 Yield = -0.1463N2 + 61.232N + 11130 R² = 0.9015  SI = -5E-07N2 + 0.0007N + 0.8671 R² = 0.9928  

-98.16575931 40.84166827 11 Yield = -0.0719N2 + 35.818N + 13069 R² = 0.8808  SI = -2E-07N2 + 0.001N + 0.7711 R² = 0.9575  

-98.16558407 40.841667 12 Yield = -0.0706N2 + 35.531N + 12865 R² = 0.9887  SI = 4E-06N2 - 0.0003N + 0.8364 R² = 0.964  

-98.16541278 40.84166878 13 Yield = -0.128N2 + 59.518N + 10391 R² = 0.9948  SI = 7E-06N2 - 0.0016N + 0.9298 R² = 0.9852  

-98.16522161 40.8416674 14 Yield = -0.1957N2 + 84.903N + 8106.6 R² = 0.9963  SI = 4E-06N2 - 0.0008N + 0.9306 R² = 0.9983  

-98.16505028 40.84167221 15 Yield = -0.1985N2 + 86.874N + 7872.6 R² = 0.9929  SI = -3E-06N2 + 0.0017N + 0.7885 R² = 0.9505  

-98.16487496 40.84167699 16 Yield = -0.0056N2 + 19.221N + 13033 R² = 0.7799  SI = 4E-07N2 + 0.0007N + 0.791 R² = 0.9795  

-98.16468781 40.84167261 17 Yield = 0.1125N2 - 23.096N + 16570 R² = 0.6243  SI = 1E-05N2 - 0.0029N + 0.9528 R² = 0.996  

-98.16451652 40.8416744 18 Yield = 0.0928N2 - 18.812N + 16519 R² = 0.4961  SI = 1E-05N2 - 0.0035N + 0.98 R² = 0.9911  

-98.16432519 40.84168511 19 Yield = 0.0731N2 - 18.526N + 17235 R² = 0.1592  SI = 4E-06N2 - 0.0005N + 0.8678 R² = 0.9861  

-98.16414203 40.84168076 20 Yield = 0.0462N2 - 4.7174N + 15604 R² = 0.3342  SI = -8E-06N2 + 0.0036N + 0.638 R² = 0.764  

-98.16393891 40.84167929 21 Yield = -0.0046N2 + 26.182N + 11283 R² = 0.8013  SI = -1E-05N2 + 0.0049N + 0.4565 R² = 0.8323  

-98.1637796 40.84167813 22 Yield = 0.0025N2 + 30.844N + 9767 R² = 0.8784  SI = -9E-06N2 + 0.0044N + 0.4051 R² = 0.8694  

-98.16359636 40.84167983 23 Yield = -0.1109N2 + 53.681N + 10013 R² = 0.9282  SI = -7E-06N2 + 0.004N + 0.3962 R² = 0.9124  

-98.1634251 40.84167859 24 Yield = 0.0025N2 + 30.844N + 9500 R² = 0.9825  SI = -1E-05N2 + 0.0065N + 0.2815 R² = 0.8794  

-98.16324588 40.84167729 25 Yield = -0.1109N2 + 53.681N + 10013 R² = 0.9855  SI = -2E-05N2 + 0.0094N + 0.17 R² = 0.9173  

-98.16304663 40.84168491 26 Yield = -0.0169N2 + 13.749N + 13619 R² = 0.5221  SI = -1E-05N2 + 0.0064N + 0.3242 R² = 0.9486  

-98.16287147 40.84167759 27 Yield = -0.0169N2 + 13.749N + 13300 R² = 0.6454  SI = 6E-06N2 - 0.0006N + 0.7274 R² = 0.8015  

-98.16268819 40.84168231 28 Yield = -0.0169N2 + 13.749N + 13360 R² = 0.7178  SI = 1E-05N2 - 0.0038N + 1.0219 R² = 0.9955  

-98.16251681 40.84169014 29 Yield = 0.0159N2 + 11.382N + 12580 R² = 0.7122  SI = 7E-06N2 - 0.0014N + 0.9671 R² = 0.6  

-98.16232955 40.84169483 30 Yield = -0.1109N2 + 53.681N + 10013 R² = 0.61  SI = -1E-05N2 + 0.0043N + 0.558 R² = 0.976  

-98.16214631 40.84169653 31 Yield = -0.1603N2 + 77.347N + 7340.6 R² = 0.8144  SI = -1E-05N2 + 0.0062N + 0.3306 R² = 0.9424  

-98.16198302 40.84169534 32 Yield = -0.0943N2 + 61.796N + 7635.9 R² = 0.9361  SI = -5E-06N2 + 0.0032N + 0.4897 R² = 0.9806  

-98.16182378 40.84168814 33 Yield = -0.1053N2 + 66.545N + 7251.2 R² = 0.9157  SI = 3E-06N2 + 0.0002N + 0.7826 R² = 0.9508  

-98.16159677 40.84168649 34 Yield = 0.0025N2 + 30.844N + 9785 R² = 0.654  SI = -8E-06N2 + 0.003N + 0.752 R² = 0.6163  

-98.16144531 40.84169446 35 Yield = 0.0025N2 + 30.844N + 9767 R² = 0.6252  SI = -2E-05N2 + 0.0069N + 0.5134 R² = 0.8134  

-98.16125422 40.84168702 36 Yield = -0.0947N2 + 43.126N + 10424 R² = 0.5013  SI = -9E-06N2 + 0.0038N + 0.6432 R² = 0.8581  

-98.16108281 40.84169787 37 Yield = -0.0046N2 + 26.182N + 11283 R² = 0.8666  SI = 9E-06N2 - 0.0016N + 0.8663 R² = 0.9965  

-98.16089574 40.84168744 38 Yield = -0.0046N2 + 26.182N + 10280 R² = 0.8042  SI = 1E-05N2 - 0.0035N + 0.9495 R² = 0.9981  
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-98.1607205 40.84168616 39 Yield = -0.0046N2 + 26.182N + 11083 R² = 0.7415  SI = 8E-06N2 - 0.0014N + 0.8783 R² = 0.9832  

 Average Equation  Yield = -0.0504N2 + 32.604N + 11988 R² = 0.8969  SI = -1E-06N2 + 0.0013N + 0.7319 R² = 0.979  
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Table 14. Yield (kg ha
-1

) and Sufficiency Index (SI) predicted equations to evaluate the N 

response (kg ha
-1

) for the transect made in the small plots area at the RT09. 

 
Long Lat ID Yield Response Equation R2 SI response Equation R2 

-98.2478725 40.89312812 1 Yield = -0.0434N2 + 3.8922N + 18953 R² = 0.7322  SI = 4E-05N2 - 0.012N + 1.6501 R² = 0.8334  

-98.24787406 40.89299096 2 Yield = 0.0321N2 - 12.588N + 19464 R² = 0.2487  SI = 2E-05N2 - 0.0062N + 1.2102 R² = 0.9948  

-98.24787553 40.89286066 3 Yield = 0.0599N2 - 14.239N + 18892 R² = 0.7676  SI = 1E-05N2 - 0.0025N + 0.9422 R² = 0.9135  

-98.24787708 40.8927235 4 Yield = -0.0139N2 + 10.088N + 16919 R² = 0.7364  SI = 2E-05N2 - 0.0051N + 1.1706 R² = 0.9452  

-98.24787879 40.89257262 5 Yield = -0.1096N2 + 39.927N + 14722 R² = 0.8407  SI = 3E-05N2 - 0.0086N + 1.4661 R² = 0.9631  

-98.24788946 40.89242866 6 Yield = -0.1398N2 + 45.631N + 14636 R² = 0.6755  SI = 2E-05N2 - 0.0064N + 1.305 R² = 0.9949  

-98.24789094 40.89229836 7 Yield = -0.0935N2 + 32.481N + 15509 R² = 0.5277  SI = 6E-06N2 - 0.0013N + 0.9427 R² = 0.8793  

-98.24788338 40.892168 8 Yield = -0.1146N2 + 45.81N + 13981 R² = 0.9654  SI = 1E-06N2 + 0.0003N + 0.8484 R² = 0.891  

-98.24789404 40.89202404 9 Yield = -0.2415N2 + 91.951N + 10117 R² = 0.9321  SI = 8E-06N2 - 0.0024N + 1.0724 R² = 0.8421  

-98.24787744 40.89189362 10 Yield = -0.3781N2 + 140.31N + 6145.7 R² = 0.8828  SI = 1E-05N2 - 0.0047N + 1.2367 R² = 0.7079  

-98.24789179 40.8917442 11 Yield = -0.3302N2 + 120.41N + 8034.8 R² = 0.9195  SI = 1E-05N2 - 0.0031N + 1.0972 R² = 0.695  

-98.24788745 40.89161688 12 Yield = -0.1807N2 + 68.729N + 12264 R² = 0.9151  SI = -1E-06N2 + 0.0013N + 0.7459 R² = 0.9721  

-98.24788325 40.89147639 13 Yield = -0.1195N2 + 50.633N + 13456 R² = 0.837  SI = -1E-05N2 + 0.0052N + 0.4944 R² = 0.9206  

-98.24789774 40.89134111 14 Yield = -0.156N2 + 60.244N + 12972 R² = 0.8511  SI = -8E-06N2 + 0.0029N + 0.7639 R² = 0.9796  

-98.24788813 40.89120902 15 Yield = -0.1819N2 + 65.618N + 12759 R² = 0.8361  SI = 6E-06N2 - 0.0019N + 1.1148 R² = 0.2518  

-98.24789706 40.89107423 16 Yield = -0.1482N2 + 50.456N + 14223 R² = 0.766  SI = 7E-06N2 - 0.0019N + 1.0691 R² = 0.2402  

-98.24789495 40.89093375 17 Yield = -0.0911N2 + 32.825N + 15468 R² = 0.619  SI = -2E-06N2 + 0.0015N + 0.796 R² = 0.3601  

-98.24788911 40.89079606 18 Yield = -0.0886N2 + 36.71N + 14735 R² = 0.8409  SI = -8E-06N2 + 0.0034N + 0.7101 R² = 0.2514  

-98.24789427 40.89066687 19 Yield = -0.1038N2 + 42.511N + 14186 R² = 0.8339  SI = 1E-06N2 - 0.0006N + 1.1156 R² = 0.0549  

-98.24790327 40.89052647 20 Yield = -0.1012N2 + 43.212N + 13992 R² = 0.8354  SI = 2E-05N2 - 0.0087N + 1.6701 R² = 0.6084  

-98.24790109 40.89039161 21 Yield = -0.0921N2 + 41.823N + 13875 R² = 0.9038  SI = 3E-05N2 - 0.0088N + 1.5074 R² = 0.588  

-98.24791002 40.89025683 22 Yield = -0.0125N2 + 14.482N + 15861 R² = 0.8426  SI = 1E-05N2 - 0.0022N + 0.9299 R² = 0.7258  

-98.24790797 40.89011073 23 Yield = 0.0747N2 - 19.13N + 18647 R² = 0.4181  SI = -1E-05N2 + 0.006N + 0.3766 R² = 0.8474  

-98.24789843 40.88997302 24 Yield = 0.0192N2 + 0.2825N + 16905 R² = 0.5078  SI = -2E-05N2 + 0.0062N + 0.5502 R² = 0.9696  

-98.24789246 40.88984656 25 Yield = -0.0643N2 + 34.601N + 13554 R² = 0.9778  SI = 1E-06N2 - 0.0005N + 1.0096 R² = 0.0112  

-98.24789405 40.88970611 26 Yield = -0.0427N2 + 31.292N + 13234 R² = 0.9853  SI = 1E-05N2 - 0.0027N + 0.9235 R² = 0.9214  

-98.24789564 40.88956566 27 Yield = 0.0621N2 + 2.3858N + 14787 R² = 0.9763  SI = -4E-07N2 + 0.0025N + 0.4472 R² = 0.8758  

-98.24788596 40.88943918 28 Yield = 0.0596N2 + 7.4965N + 13889 R² = 0.9817  SI = -2E-05N2 + 0.0096N - 0.008 R² = 0.7945  

-98.24789493 40.88930158 29 Yield = -0.085N2 + 51.187N + 10699 R² = 0.9929  SI = -3E-05N2 + 0.0129N - 0.0811 R² = 0.9091  

-98.24790019 40.88916397 30 Yield = -0.2012N2 + 87.275N + 7992.8 R² = 0.996  SI = -1E-05N2 + 0.0058N + 0.3581 R² = 0.8747  

-98.2478907 40.88902063 31 Yield = -0.2782N2 + 116.57N + 5426.4 R² = 0.9859  SI = -2E-06N2 + 0.0027N + 0.4125 R² = 0.9248  

-98.24788473 40.88889418 32 Yield = -0.3198N2 + 131.06N + 4094.1 R² = 0.9678  SI = -1E-05N2 + 0.0071N + 0.0968 R² = 0.9895  

-98.24788626 40.88875934 33 Yield = -0.3061N2 + 123.54N + 4853.8 R² = 0.9849  SI = -3E-05N2 + 0.0125N - 0.1431 R² = 0.8139  

-98.24788045 40.88861884 34 Yield = -0.2776N2 + 110.35N + 6226 R² = 0.9971  SI = -3E-05N2 + 0.0096N + 0.2268 R² = 0.8386  

-98.2478932 40.88847285 35 Yield = -0.2075N2 + 87.208N + 8178.5 R² = 0.9934  SI = 9E-06N2 - 0.0022N + 0.9719 R² = 0.5689  

-98.24788034 40.8883014 36 Yield = -0.063N2 + 43.754N + 11436 R² = 0.9591  SI = 2E-05N2 - 0.0065N + 1.0961 R² = 0.7918  

-98.24789661 40.88817228 37 Yield = 0.0496N2 + 5.9774N + 14547 R² = 0.9085  SI = 2E-05N2 - 0.0043N + 0.9243 R² = 0.9551  

-98.24789421 40.88805709 38 Yield = 0.1084N2 - 21.621N + 17376 R² = 0.6496  SI = 1E-05N2 - 0.0028N + 0.9127 R² = 0.9423  
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-98.24790339 40.88789983 39 Yield = 0.0285N2 - 8.1816N + 17368 R² = 0.0113  SI = 1E-05N2 - 0.0035N + 1.1131 R² = 0.5123  

 Average Equation  Yield = -0.1049N2 + 46.025N + 13087 R² = 0.9599  SI = -4E-06N2 + 0.0002N + 0.8473 R² = 0.9409  
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Table 15. Yield (kg ha
-1

) and Sufficiency Index (SI) predicted equations to evaluate the N 

response (kg ha
-1

) for the transect made in the small plots area at the BR10. 

 
Long Lat ID Yield Response Equation R2 SI response Equation R2 

-98.03985575 41.24391477 1 Yield = -0.0162N2 + 36.122N + 4225.8 R² = 0.9158  SI = 8E-07N2 + 0.0011N + 0.6806 R² = 0.9742  

-98.03967141 41.24391928 2 Yield = -0.0173N2 + 36.873N + 4205.7 R² = 0.9132  SI = 1E-07N2 + 0.0014N + 0.6779 R² = 0.9365  

-98.03947916 41.24391768 3 Yield = -0.0217N2 + 38.932N + 4155 R² = 0.9016  SI = -7E-07N2 + 0.0016N + 0.6769 R² = 0.8846  

-98.03930302 41.24391016 4 Yield = -0.0284N2 + 40.71N + 4120.5 R² = 0.8891  SI = -1E-06N2 + 0.0018N + 0.6754 R² = 0.8668  

-98.03911085 41.24390251 5 Yield = -0.0319N2 + 40.349N + 4142.3 R² = 0.8922  SI = -1E-06N2 + 0.0019N + 0.6661 R² = 0.8982  

-98.03893453 41.24390709 6 Yield = -0.0367N2 + 40.368N + 4156.5 R² = 0.8913  SI = -2E-06N2 + 0.0019N + 0.6612 R² = 0.9359  

-98.03875839 41.24389957 7 Yield = -0.045N2 + 41.953N + 4012.5 R² = 0.878  SI = -1E-06N2 + 0.0018N + 0.6643 R² = 0.939  

-98.03857414 41.24389803 8 Yield = -0.0465N2 + 42.356N + 4120.9 R² = 0.8743  SI = -2E-06N2 + 0.0018N + 0.6636 R² = 0.9325  

-98.038398 41.24389051 9 Yield = -0.0466N2 + 41.815N + 4130.5 R² = 0.8821  SI = -1E-06N2 + 0.0017N + 0.6637 R² = 0.9257  

-98.03822168 41.24389509 10 Yield = -0.0432N2 + 41.302N + 3791.8 R² = 0.8978  SI = -1E-06N2 + 0.0017N + 0.6644 R² = 0.918  

-98.03802556 41.2438918 11 Yield = -0.0366N2 + 39.415N + 3782.6 R² = 0.9077  SI = -2E-06N2 + 0.002N + 0.6535 R² = 0.9126  

-98.03784483 41.2438998 12 Yield = -0.0461N2 + 42.336N + 3733.6 R² = 0.8958  SI = -3E-06N2 + 0.0022N + 0.6443 R² = 0.8904  

-98.03766631 41.2438999 13 Yield = -0.0461N2 + 43.369N + 3766.7 R² = 0.8991  SI = -3E-06N2 + 0.0024N + 0.6352 R² = 0.8922  

-98.03748577 41.24389522 14 Yield = -0.0447N2 + 44.226N + 3823.6 R² = 0.8893  SI = -2E-06N2 + 0.0022N + 0.6181 R² = 0.9027  

-98.03730942 41.24389057 15 Yield = -0.0455N2 + 45.591N + 3725.6 R² = 0.8871  SI = -3E-06N2 + 0.0023N + 0.6074 R² = 0.9029  

-98.03712472 41.24388269 16 Yield = -0.0429N2 + 45.457N + 3680.8 R² = 0.8895  SI = -3E-06N2 + 0.0023N + 0.6035 R² = 0.9131  

-98.03694401 41.2438891 17 Yield = -0.0403N2 + 45.065N + 3715.5 R² = 0.888  SI = -2E-06N2 + 0.0022N + 0.5979 R² = 0.9123  

-98.03674662 41.24388745 18 Yield = -0.037N2 + 44.354N + 3684.1 R² = 0.8833  SI = -2E-06N2 + 0.0023N + 0.5945 R² = 0.8969  

-98.03658285 41.24388449 19 Yield = -0.0307N2 + 42.204N + 3734.6 R² = 0.902  SI = -2E-06N2 + 0.0023N + 0.5908 R² = 0.9177  

-98.0364128 41.2438799 20 Yield = -0.0247N2 + 39.193N + 3657.2 R² = 0.9202  SI = -2E-06N2 + 0.0023N + 0.5867 R² = 0.9276  

-98.03622171 41.2438783 21 Yield = -0.013N2 + 34.78N + 3659.1 R² = 0.9302  SI = -2E-06N2 + 0.0023N + 0.58 R² = 0.9445  

-98.03602639 41.24387825 22 Yield = -0.0054N2 + 31.175N + 3781.5 R² = 0.9168  SI = -2E-06N2 + 0.0022N + 0.573 R² = 0.9565  

-98.03585217 41.24387204 23 Yield = -0.0111N2 + 31.862N + 3811.2 R² = 0.9054  SI = -2E-06N2 + 0.0023N + 0.5684 R² = 0.9694  

-98.0356716 41.24386894 24 Yield = -0.008N2 + 30.492N + 3925.4 R² = 0.8939  SI = -1E-06N2 + 0.0021N + 0.5674 R² = 0.9683  

-98.03548051 41.24386734 25 Yield = -0.003N2 + 30.134N + 3765.1 R² = 0.8965  SI = -2E-07N2 + 0.0017N + 0.5773 R² = 0.9407  

-98.03532301 41.24386602 26 Yield = -0.0169N2 + 33.502N + 3764.8 R² = 0.9476  SI = -3E-07N2 + 0.0017N + 0.584 R² = 0.9294  

-98.03512763 41.24387072 27 Yield = -0.0175N2 + 34.501N + 3762.3 R² = 0.9534  SI = 9E-08N2 + 0.0016N + 0.5986 R² = 0.9278  

-98.03495543 41.24386928 28 Yield = -0.0284N2 + 37.555N + 4002.9 R² = 0.9646  SI = -1E-06N2 + 0.0018N + 0.6111 R² = 0.942  

-98.03476644 41.2438677 29 Yield = -0.0249N2 + 38.312N + 4022.2 R² = 0.9489  SI = -1E-06N2 + 0.002N + 0.6067 R² = 0.9403  

-98.03459224 41.24385989 30 Yield = -0.0287N2 + 40.035N + 4297.9 R² = 0.95  SI = -2E-06N2 + 0.002N + 0.6101 R² = 0.9599  

-98.03442002 41.24386004 31 Yield = -0.0365N2 + 42.969N + 4246.8 R² = 0.9521  SI = -1E-06N2 + 0.002N + 0.6033 R² = 0.9689  

-98.03422055 41.24385678 32 Yield = -0.0359N2 + 42.982N + 4500.3 R² = 0.9555  SI = -1E-06N2 + 0.002N + 0.6201 R² = 0.9651  

-98.03401896 41.24385509 33 Yield = -0.0372N2 + 42.792N + 4797.5 R² = 0.952  SI = -2E-06N2 + 0.002N + 0.639 R² = 0.9352  

-98.03383837 41.24385357 34 Yield = -0.03N2 + 40.691N + 5012.2 R² = 0.9584  SI = -2E-06N2 + 0.002N + 0.6498 R² = 0.9263  

-98.033662 41.24385051 35 Yield = -0.0292N2 + 40.956N + 5030.2 R² = 0.959  SI = -2E-06N2 + 0.002N + 0.658 R² = 0.8949  

-98.03349608 41.2438507 36 Yield = -0.0375N2 + 44.172N + 4743.5 R² = 0.9506  SI = -2E-06N2 + 0.002N + 0.6717 R² = 0.8623  

-98.03332177 41.24385082 37 Yield = -0.0359N2 + 42.972N + 4994.6 R² = 0.9398  SI = -2E-06N2 + 0.0019N + 0.6929 R² = 0.8322  

-98.0331306 41.24385397 38 Yield = -0.0322N2 + 41.993N + 5147.4 R² = 0.9113  SI = -2E-06N2 + 0.0019N + 0.6958 R² = 0.8444  
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-98.03295213 41.24385089 39 Yield = -0.0354N2 + 42.682N + 5119.3 R² = 0.9051  SI = -2E-06N2 + 0.0019N + 0.6922 R² = 0.8666  

-98.03276786 41.2438317 40 Yield = -0.0259N2 + 40.767N + 5025.4 R² = 0.8764  SI = -2E-06N2 + 0.0021N + 0.6765 R² = 0.8599  

-98.03257413 41.24383998 41 Yield = -0.0518N2 + 45.051N + 4925.4 R² = 0.853  SI = -3E-06N2 + 0.0023N + 0.6642 R² = 0.8906  

-98.03241011 41.24383613 42 Yield = -0.0499N2 + 44.329N + 4761 R² = 0.8432  SI = -3E-06N2 + 0.0023N + 0.6482 R² = 0.8828  

-98.03223289 41.24383712 43 Yield = -0.0602N2 + 45.789N + 4812 R² = 0.8505  SI = -4E-06N2 + 0.0025N + 0.6361 R² = 0.8892  

-98.03206239 41.24382825 44 Yield = -0.0636N2 + 47.096N + 4543.2 R² = 0.8426  SI = -5E-06N2 + 0.0029N + 0.6213 R² = 0.8865  

-98.03187204 41.24382913 45 Yield = -0.0765N2 + 48.875N + 4527.2 R² = 0.8263  SI = -5E-06N2 + 0.0029N + 0.6246 R² = 0.8837  

-98.03168509 41.2438226 46 Yield = -0.0908N2 + 50.817N + 4510.9 R² = 0.8068  SI = -5E-06N2 + 0.0029N + 0.6311 R² = 0.8812  

-98.03149147 41.24382345 47 Yield = -0.0925N2 + 50.586N + 4523.2 R² = 0.8064  SI = -5E-06N2 + 0.0028N + 0.6442 R² = 0.8711  

-98.03132741 41.24382207 48 Yield = -0.0839N2 + 49.018N + 4545.5 R² = 0.8202  SI = -5E-06N2 + 0.0027N + 0.6582 R² = 0.8506  

-98.03113711 41.24382047 49 Yield = -0.0776N2 + 48.424N + 4544.9 R² = 0.8278  SI = -4E-06N2 + 0.0026N + 0.6775 R² = 0.8205  

 Average Equation  Yield = -0.0381N2 + 41.373N + 4234.1 R² = 0.9069  SI = -2E-06N2 + 0.0021N + 0.6348 R² = 0.9238  
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Table 16. Yield (kg ha
-1

) and Sufficiency Index (SI) predicted equations to evaluate the N 

response (kg ha
-1

) for the transect made in the small plots area at the HU10. 

 
Long Lat ID Yield Response Equation R2 SI response Equation R2 

-98.23484555 40.81271388 1 Yield = -0.0999N2 + 51.952N + 6930.7 R² = 0.9915  SI = -7E-06N2 + 0.0027N + 0.7652 R² = 0.8292  

-98.23464984 40.81271258 2 Yield = -0.0923N2 + 50.585N + 6981.2 R² = 0.991  SI = -8E-06N2 + 0.0031N + 0.7469 R² = 0.9748  

-98.23447761 40.81271144 3 Yield = -0.0911N2 + 50.247N + 7016.2 R² = 0.9907  SI = -9E-06N2 + 0.0034N + 0.7358 R² = 0.9507  

-98.23429763 40.8127043 4 Yield = -0.0917N2 + 50.248N + 7033 R² = 0.9898  SI = -9E-06N2 + 0.0035N + 0.7403 R² = 0.9071  

-98.23410975 40.81270305 5 Yield = -0.0948N2 + 50.666N + 7038.6 R² = 0.9886  SI = -8E-06N2 + 0.003N + 0.7314 R² = 0.9695  

-98.23392956 40.81271375 6 Yield = -0.1052N2 + 52.192N + 7036.5 R² = 0.988  SI = -8E-06N2 + 0.0032N + 0.7258 R² = 0.9588  

-98.23374957 40.81270661 7 Yield = -0.0883N2 + 46.865N + 7478.8 R² = 0.9831  SI = -9E-06N2 + 0.0036N + 0.7125 R² = 0.8938  

-98.23358518 40.81270551 8 Yield = -0.0777N2 + 44.634N + 7554.1 R² = 0.973  SI = -9E-06N2 + 0.0036N + 0.7231 R² = 0.8943  

-98.23339737 40.81269832 9 Yield = -0.077N2 + 44.338N + 7575.4 R² = 0.9726  SI = -7E-06N2 + 0.0028N + 0.7413 R² = 0.9597  

-98.23321731 40.81269712 10 Yield = -0.0747N2 + 43.674N + 7616.9 R² = 0.9674  SI = -5E-06N2 + 0.0022N + 0.7329 R² = 0.8607  

-98.23302943 40.81269587 11 Yield = -0.0699N2 + 42.446N + 7673.6 R² = 0.9675  SI = -6E-06N2 + 0.0025N + 0.709 R² = 0.9929  

-98.23285721 40.81269473 12 Yield = -0.05N2 + 35.51N + 8220.8 R² = 0.9613  SI = -7E-06N2 + 0.0029N + 0.7 R² = 0.9631  

-98.23267716 40.81269353 13 Yield = -0.0447N2 + 33.8N + 8271.7 R² = 0.949  SI = -5E-06N2 + 0.0024N + 0.7284 R² = 0.9994  

-98.23248152 40.81268628 14 Yield = -0.0581N2 + 37.777N + 8169.1 R² = 0.9342  SI = -3E-06N2 + 0.0017N + 0.7599 R² = 0.8567  

-98.23231719 40.81267924 15 Yield = -0.0417N2 + 33.706N + 8280 R² = 0.9407  SI = -3E-06N2 + 0.0016N + 0.7715 R² = 0.9929  

-98.2321291 40.81269583 16 Yield = -0.0359N2 + 33.619N + 8287.9 R² = 0.9376  SI = -3E-06N2 + 0.0016N + 0.7767 R² = 0.9575  

-98.23194919 40.81268274 17 Yield = -0.0167N2 + 27.284N + 8809.9 R² = 0.9138  SI = -3E-06N2 + 0.0018N + 0.7677 R² = 0.8869  

-98.23175348 40.81268144 18 Yield = -0.0099N2 + 26.16N + 8961.3 R² = 0.9339  SI = -4E-06N2 + 0.0018N + 0.7894 R² = 0.935  

-98.23158126 40.81268029 19 Yield = -0.0293N2 + 32.2N + 8623.9 R² = 0.9416  SI = -3E-06N2 + 0.0015N + 0.7985 R² = 0.9634  

-98.23140903 40.81267914 20 Yield = -0.0216N2 + 28.374N + 9085.1 R² = 0.9371  SI = -2E-06N2 + 0.0013N + 0.7824 R² = 0.9637  

-98.23122898 40.81267794 21 Yield = -0.0159N2 + 25.689N + 9355.2 R² = 0.9185  SI = -2E-06N2 + 0.0014N + 0.7902 R² = 0.966  

-98.23105676 40.81267679 22 Yield = -0.0581N2 + 37.777N + 8169.1 R² = 0.9317  SI = -3E-06N2 + 0.0017N + 0.789 R² = 0.9038  

-98.23086105 40.81267549 23 Yield = -0.0417N2 + 33.706N + 8280 R² = 0.92  SI = -3E-06N2 + 0.0016N + 0.8054 R² = 0.9031  

-98.23067317 40.81267424 24 Yield = -0.0359N2 + 33.619N + 8287.9 R² = 0.9317  SI = -2E-06N2 + 0.0012N + 0.8227 R² = 0.6717  

-98.23049312 40.81267304 25 Yield = -0.0167N2 + 27.284N + 8809.9 R² = 0.8443  SI = -3E-06N2 + 0.0015N + 0.8272 R² = 0.8387  

-98.23032872 40.81267194 26 Yield = -0.0099N2 + 26.16N + 8961.3 R² = 0.8396  SI = -4E-06N2 + 0.0018N + 0.8202 R² = 0.8306  

-98.23014084 40.81267069 27 Yield = -0.0293N2 + 32.2N + 8623.9 R² = 0.7491  SI = -6E-06N2 + 0.0022N + 0.8245 R² = 0.7987  

-98.22996079 40.81266949 28 Yield = -0.0216N2 + 28.374N + 9085.1 R² = 0.7659  SI = -6E-06N2 + 0.0024N + 0.806 R² = 0.808  

-98.22979646 40.81266244 29 Yield = -0.0159N2 + 25.689N + 9355.2 R² = 0.8256  SI = -6E-06N2 + 0.0024N + 0.8101 R² = 0.8392  

-98.22960075 40.81266113 30 Yield = -0.0361N2 + 25.617N + 9610.7 R² = 0.8111  SI = -4E-06N2 + 0.0016N + 0.8096 R² = 0.7653  

-98.22941287 40.81265988 31 Yield = -0.0276N2 + 23.351N + 9714.7 R² = 0.7717  SI = -3E-06N2 + 0.0016N + 0.7996 R² = 0.9096  

-98.22924065 40.81265873 32 Yield = -0.0308N2 + 22.781N + 9888.4 R² = 0.7273  SI = -4E-06N2 + 0.0019N + 0.7949 R² = 0.9329  

-98.22905277 40.81265747 33 Yield = -0.027N2 + 22.272N + 9999.6 R² = 0.7129  SI = -3E-06N2 + 0.0016N + 0.801 R² = 0.9439  

-98.2288962 40.81265643 34 Yield = -0.0596N2 + 32.146N + 9545.6 R² = 0.7804  SI = -2E-06N2 + 0.0012N + 0.8099 R² = 0.8876  

-98.22868497 40.81264312 35 Yield = -0.0117N2 + 23.488N + 9770.4 R² = 0.8987  SI = -2E-07N2 + 0.0008N + 0.8067 R² = 0.9309  

-98.22852058 40.81264202 36 Yield = -0.0059N2 + 21.749N + 9843.6 R² = 0.8909  SI = -5E-07N2 + 0.001N + 0.8017 R² = 0.974  

-98.22832487 40.81264071 37 Yield = 0.0325N2 + 11.216N + 10247 R² = 0.8729  SI = -3E-06N2 + 0.0019N + 0.7769 R² = 0.5875  

-98.22813699 40.81263945 38 Yield = 0.037N2 + 11.49N + 10119 R² = 0.8898  SI = -4E-06N2 + 0.0022N + 0.7609 R² = 0.5918  



107 

 

 

 

-98.22795694 40.81263825 39 Yield = 0.0197N2 + 17.956N + 9516.9 R² = 0.9268  SI = -1E-06N2 + 0.0012N + 0.7846 R² = 0.976  

-98.22778471 40.8126371 40 Yield = 0.0577N2 + 9.9789N + 9227.6 R² = 0.9092  SI = -2E-06N2 + 0.0013N + 0.7936 R² = 0.9805  

-98.22758894 40.81264173 41 Yield = 0.024N2 + 20.269N + 8771.3 R² = 0.8924  SI = -2E-06N2 + 0.0014N + 0.7729 R² = 0.9466  

-98.22743237 40.81264069 42 Yield = 0.0459N2 + 14.336N + 8840.4 R² = 0.8415  SI = -2E-06N2 + 0.0015N + 0.7585 R² = 0.9557  

-98.22723666 40.81263937 43 Yield = 0.0463N2 + 15.439N + 8619.7 R² = 0.8455  SI = -3E-06N2 + 0.0018N + 0.7536 R² = 0.9558  

-98.22706444 40.81263822 44 Yield = 0.0261N2 + 23.208N + 7949 R² = 0.8693  SI = -3E-06N2 + 0.0016N + 0.7444 R² = 0.9403  

-98.22689221 40.81263707 45 Yield = 0.0195N2 + 25.043N + 7801.9 R² = 0.8626  SI = -4E-06N2 + 0.0021N + 0.7384 R² = 0.938  

-98.22671216 40.81263586 46 Yield = 0.0167N2 + 26.025N + 7732.1 R² = 0.8659  SI = -4E-06N2 + 0.0023N + 0.727 R² = 0.8784  

-98.22651645 40.81263455 47 Yield = 0.0125N2 + 26.881N + 7768.2 R² = 0.8753  SI = -3E-06N2 + 0.002N + 0.7342 R² = 0.9322  

-98.2263364 40.81263334 48 Yield = 0.0011N2 + 29.073N + 7763.8 R² = 0.8731  SI = -4E-06N2 + 0.0021N + 0.7586 R² = 0.8889  

-98.22614845 40.81263803 49 Yield = -0.01N2 + 31.376N + 7728.6 R² = 0.8702  SI = -4E-06N2 + 0.002N + 0.7864 R² = 0.8581  

 Average Equation  Yield = -0.0279N2 + 29.95N + 8674.4 R² = 0.9507  SI = -4E-06N2 + 0.002N + 0.7704 R² = 0.9566  
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Table 17. Yield (kg ha
-1

) and Sufficiency Index (SI) predicted equations to evaluate the N 

response (kg ha
-1

) for the transect made in the small plots area at the BL10. 

 
Long Lat ID Yield Response Equation R2 SI response Equation R2 

-101.965521 41.02846617 1 Yield = -0.0877N2 + 28.689N + 6263 R² = 0.6205  SI = -6E-07N2 + 0.001N + 0.7977 R² = 0.8978  

-101.9653304 41.02846617 2 Yield = -0.1092N2 + 37.115N + 7185.1 R² = 0.6582  SI = 3E-07N2 + 0.0009N + 0.7683 R² = 0.9278  

-101.9651399 41.02846617 3 Yield = -0.0945N2 + 37.829N + 7353 R² = 0.9249  SI = -7E-07N2 + 0.0013N + 0.72 R² = 0.9724  

-101.9649652 41.02847411 4 Yield = -0.1059N2 + 42.505N + 7610.6 R² = 0.9351  SI = -2E-06N2 + 0.0018N + 0.6924 R² = 0.9954  

-101.9647984 41.02847411 5 Yield = -0.1128N2 + 44.678N + 8046.6 R² = 0.8949  SI = -3E-06N2 + 0.0021N + 0.6804 R² = 0.9846  

-101.9646079 41.02847411 6 Yield = -0.0864N2 + 40.68N + 7926.7 R² = 0.9874  SI = -3E-06N2 + 0.0021N + 0.6802 R² = 0.9939  

-101.9644332 41.02845823 7 Yield = -0.0529N2 + 34.815N + 7369.7 R² = 0.9929  SI = -5E-06N2 + 0.0028N + 0.6269 R² = 0.9245  

-101.9642426 41.02848205 8 Yield = -0.0111N2 + 25.773N + 6743.3 R² = 0.8891  SI = -8E-06N2 + 0.0041N + 0.5195 R² = 0.9305  

-101.9640679 41.02847411 9 Yield = 0.0021N2 + 22.415N + 6406.7 R² = 0.8378  SI = -1E-05N2 + 0.0046N + 0.509 R² = 0.9471  

-101.9639012 41.02847411 10 Yield = -0.0611N2 + 33.383N + 6928.1 R² = 0.9917  SI = -8E-06N2 + 0.0037N + 0.6033 R² = 0.9675  

-101.9637186 41.02847411 11 Yield = -0.097N2 + 40.495N + 7079.4 R² = 0.9508  SI = -3E-06N2 + 0.0023N + 0.645 R² = 0.9933  

-101.963536 41.02848205 12 Yield = -0.0928N2 + 40.197N + 6877.9 R² = 0.9851  SI = -2E-06N2 + 0.0019N + 0.6417 R² = 0.9957  

-101.9633454 41.02847411 13 Yield = -0.1278N2 + 48N + 6715.3 R² = 0.9389  SI = -3E-06N2 + 0.002N + 0.6739 R² = 0.9974  

-101.9631787 41.02848205 14 Yield = -0.1004N2 + 43.149N + 6093.5 R² = 0.9935  SI = -2E-06N2 + 0.0019N + 0.6516 R² = 0.9956  

-101.9629802 41.02846617 15 Yield = -0.0556N2 + 34.72N + 5462.8 R² = 0.9349  SI = -2E-06N2 + 0.0024N + 0.5712 R² = 0.9884  

-101.9628055 41.02846617 16 Yield = -0.0447N2 + 33.175N + 4970.6 R² = 0.9353  SI = -6E-06N2 + 0.0034N + 0.5475 R² = 0.9571  

-101.9626229 41.02846617 17 Yield = -0.0842N2 + 41.239N + 4685.8 R² = 0.9928  SI = -1E-05N2 + 0.0045N + 0.5388 R² = 0.9276  

-101.9624561 41.02847411 18 Yield = -0.0951N2 + 42.707N + 4585.2 R² = 0.9739  SI = -2E-05N2 + 0.006N + 0.5236 R² = 0.8852  

-101.9622655 41.02847411 19 Yield = -0.0448N2 + 32.097N + 3979.5 R² = 0.9227  SI = -2E-05N2 + 0.0079N + 0.5066 R² = 0.7557  

-101.9620829 41.02847411 20 Yield = 0.0136N2 + 20.167N + 3480.6 R² = 0.8023  SI = -2E-05N2 + 0.0079N + 0.4667 R² = 0.6727  

-101.9618844 41.02846617 21 Yield = 0.019N2 + 18.829N + 3630.7 R² = 0.8175  SI = -1E-05N2 + 0.0061N + 0.4397 R² = 0.7034  

-101.9616939 41.02846617 22 Yield = -0.0002N2 + 22.367N + 4188.8 R² = 0.8409  SI = -8E-06N2 + 0.0045N + 0.4823 R² = 0.725  

-101.9615271 41.02846617 23 Yield = -0.0195N2 + 25.634N + 5054.7 R² = 0.8746  SI = -3E-06N2 + 0.003N + 0.5241 R² = 0.8282  

-101.9613524 41.02846617 24 Yield = -0.0861N2 + 39.65N + 6091.4 R² = 0.9948  SI = -6E-07N2 + 0.002N + 0.5458 R² = 0.9914  

-101.9611619 41.02847411 25 Yield = -0.1318N2 + 49.91N + 6852.6 R² = 0.9425  SI = -2E-07N2 + 0.0016N + 0.5901 R² = 0.971  

-101.9609872 41.02847411 26 Yield = -0.1365N2 + 51.376N + 7166.5 R² = 0.9846  SI = -5E-07N2 + 0.0016N + 0.6176 R² = 0.9841  

-101.9608125 41.02847411 27 Yield = -0.1525N2 + 54.606N + 7390.5 R² = 0.9797  SI = -1E-06N2 + 0.0017N + 0.6231 R² = 0.9764  

-101.9606219 41.02847411 28 Yield = -0.1594N2 + 54.143N + 7760.7 R² = 0.9756  SI = -1E-06N2 + 0.0017N + 0.6494 R² = 0.9725  

-101.9604552 41.02847411 29 Yield = -0.1482N2 + 51.181N + 7640.7 R² = 0.9913  SI = -5E-06N2 + 0.0025N + 0.6551 R² = 0.9787  

-101.9602726 41.02848205 30 Yield = -0.1236N2 + 45.96N + 7074 R² = 0.9885  SI = -9E-06N2 + 0.0036N + 0.6473 R² = 0.9992  

-101.96009 41.02848205 31 Yield = -0.0588N2 + 32.133N + 6237.9 R² = 0.7792  SI = -1E-05N2 + 0.0047N + 0.685 R² = 0.8372  

-101.9598994 41.02846617 32 Yield = -0.0181N2 + 21.573N + 5735.9 R² = 0.6114  SI = -9E-06N2 + 0.0039N + 0.6441 R² = 0.6792  

-101.9597247 41.02846617 33 Yield = -0.0167N2 + 19.97N + 5779.8 R² = 0.6484  SI = -6E-06N2 + 0.0032N + 0.6228 R² = 0.7253  

-101.9595262 41.02848205 34 Yield = -0.0339N2 + 23.202N + 6020.5 R² = 0.8101  SI = -1E-05N2 + 0.005N + 0.6989 R² = 0.7725  

-101.9593595 41.02848205 35 Yield = -0.0472N2 + 27.451N + 6030.1 R² = 0.9018  SI = -1E-05N2 + 0.005N + 0.6864 R² = 0.8197  

-101.9591848 41.02848205 36 Yield = -0.0503N2 + 29.577N + 6124.1 R² = 0.9129  SI = -7E-06N2 + 0.0032N + 0.6556 R² = 0.8301  

-101.9590101 41.02846617 37 Yield = -0.0423N2 + 27.937N + 6439.7 R² = 0.871  SI = -3E-06N2 + 0.0022N + 0.6762 R² = 0.8239  

-101.9588275 41.02846617 38 Yield = -0.0523N2 + 29.374N + 7132.8 R² = 0.9254  SI = -2E-06N2 + 0.0019N + 0.6838 R² = 0.9107  
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-101.9586449 41.02846617 39 Yield = -0.0956N2 + 38.019N + 7887 R² = 0.9776  SI = -2E-06N2 + 0.0018N + 0.686 R² = 0.9989  

-101.9584464 41.02845823 40 Yield = -0.0806N2 + 34.93N + 8028 R² = 0.9927  SI = -1E-06N2 + 0.0016N + 0.6804 R² = 0.9989  

-101.9582717 41.02846617 41 Yield = -0.0548N2 + 29.547N + 8019.5 R² = 0.9677  SI = 1E-07N2 + 0.0013N + 0.6801 R² = 0.9857  

-101.9581049 41.02846617 42 Yield = -0.0408N2 + 25.921N + 8173.5 R² = 0.9028  SI = 3E-07N2 + 0.0012N + 0.6956 R² = 0.9714  

-101.9579144 41.02847411 43 Yield = -0.0646N2 + 29.207N + 8664.1 R² = 0.9442  SI = -2E-06N2 + 0.0016N + 0.7474 R² = 0.9832  

-101.9577397 41.02847411 44 Yield = -0.1098N2 + 37.475N + 9055.6 R² = 0.9828  SI = -7E-06N2 + 0.0025N + 0.8102 R² = 0.9598  

 Average Equation  Yield = -0.0717N2 + 35.086N + 6544.2 R² = 0.9878  SI = -6E-06N2 + 0.003N + 0.6316 R² = 0.934  
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Table 18. Semivariograms used to interpolate the chlorophyll index (CI) and grain yield 

(Y) surfaces at different N rates for the 2009 fields. The semivariograms were scaled to 

sample variance.  

 
Field CI and Yield Model Co Co+C Ao r2 RSS 

BR09 CI_75N Spherical  0.2200 1.00 45.00 0.69 0.26300 

 CI_100N Spherical  0.2000 1.00 78.00 0.80 0.15000 

 CI_150N Spherical  0.0024 1.00 200.00 0.71 3.50000 

 CI_200N Spherical  0.0027 1.00 120.80 0.76 0.00007 

 CI_250N Spherical  0.0004 1.00 248.00 0.98 0.00002 

 Y_75N Spherical  0.3000 1.00 80.00 0.48 0.71000 

 Y_100N Spherical  0.2000 1.00 90.00 0.47 0.75500 

 Y_150N Spherical  0.0011 1.00 150.00 0.74 8.48000 

 Y_200N Spherical  0.0020 1.00 119.30 0.66 0.82000 

 Y_250N Spherical  0.0011 1.00 150.00 0.83 2.48000 

HU09 CI_75N Spherical  0.2200 1.00 85.00 0.47 2.17000 

 CI_100N Spherical  0.2800 1.00 200.00 0.63 0.79000 

 CI_150N Spherical  0.0019 1.00 300.00 0.90 0.52200 

 CI_200N Spherical  0.2498 1.00 110.00 0.68 2.54000 

 CI_250N Spherical  0.1500 1.00 156.00 0.74 1.23000 

 Y_75N Spherical  0.0015 1.00 52.50 0.54 0.78000 

 Y_100N Spherical  0.0007 1.00 70.90 0.68 9.88000 

 Y_150N Spherical  0.0006 1.00 300.00 0.85 0.39000 

 Y_200N Spherical  0.0002 1.00 320.00 0.85 0.38000 

 Y_250N Spherical  0.0009 1.00 235.00 0.87 2.04000 

RT09 CI_75N Spherical  0.0376 1.00 220.00 0.97 0.03330 

 CI_100N Spherical  0.0007 1.00 300.00 0.88 0.77000 

 CI_150N Spherical  0.0022 1.00 320.00 0.85 1.54000 

 CI_200N Spherical  0.3230 1.00 200.00 0.58 0.92000 

 CI_250N Spherical  0.2400 1.00 367.00 0.67 0.10000 

 Y_75N Spherical  0.0027 1.00 126.00 0.94 0.14700 

 Y_100N Spherical  0.0007 1.00 300.00 0.92 0.89700 

 Y_150N Spherical  0.0012 1.00 220.00 0.83 2.35000 

 Y_200N Spherical  0.0005 1.00 300.00 0.83 1.23000 

 Y_250N Spherical  0.1500 1.00 78.00 0.43 0.66000 
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Table 19. Semivariograms used to interpolate the chlorophyll index (CI) and grain yield 

(Y) surfaces at different N rates for the 2010 fields. The semivariograms were scaled to 

sample variance.  

 
Field CI and Yield Model Co Co+C Ao r2 RSS 

BR10 CI_0N Spherical  0.0018 1.00 170.00 0.90 1.69000 

 CI_75N Spherical  0.0024 1.00 180.00 0.90 0.95000 

 CI_150N Spherical  0.0014 1.00 250.00 0.99 0.18000 

 CI_200N Spherical  0.0008 1.00 204.50 0.98 0.19600 

 CI_250N Spherical  0.0023 1.00 213.40 0.98 0.21500 

 Y_0N Spherical  0.0039 1.00 250.00 0.89 1.28000 

 Y_75N Spherical  0.0024 1.00 156.00 0.90 1.23000 

 Y_150N Spherical  0.0027 1.00 224.00 0.85 2.06000 

 Y_200N Spherical  0.0009 1.00 120.00 0.92 1.95000 

 Y_250N Spherical  0.0020 1.00 156.00 0.90 1.81000 

HU10 CI_0N Spherical  0.0035 1.00 250.00 0.88 1.25000 

 CI_75N Spherical  0.0010 1.00 170.00 0.91 0.68000 

 CI_150N Spherical  0.0008 1.00 120.00 0.87 2.85000 

 CI_200N Spherical  0.0001 1.00 185.00 0.90 0.90000 

 CI_250N Spherical  0.0007 1.00 196.20 0.90 0.33100 

 Y_0N Spherical  0.0008 1.00 300.00 0.91 1.07000 

 Y_75N Spherical  0.0013 1.00 200.00 0.98 0.43400 

 Y_150N Spherical  0.0054 1.00 150.00 0.78 3.53000 

 Y_200N Spherical  0.0015 1.00 350.00 0.95 0.32000 

 Y_250N Spherical  0.0031 1.00 100.00 0.79 4.43000 

BL10 CI_0N Spherical  0.1804 1.00 100.00 0.65 3.09000 

 CI_75N Spherical  0.0033 1.00 119.60 0.77 2.60000 

 CI_150N Spherical  0.0023 1.00 150.00 0.85 6.44000 

 CI_200N Spherical  0.0006 1.00 165.60 0.96 1.10000 

 CI_250N Spherical  0.0040 1.00 104.10 0.63 3.15000 

 Y_0N Spherical  0.0007 1.00 150.00 0.97 1.23000 

 Y_75N Spherical  0.0020 1.00 98.70 0.72 1.74000 

 Y_150N Spherical  0.0006 1.00 122.80 0.86 1.17000 

 Y_200N Spherical  0.0008 1.00 99.60 0.68 1.14500 

 Y_250N Spherical  0.0007 1.00 109.90 0.76 0.91800 
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CHAPTER 3 

 

INTEGRATION OF ULTRASONIC AND OPTICAL REFLECTANCE SENSORS 

TO ESTIMATE THE IN-SEASON NITROGEN AVAILABILITY FOR CORN 

 

ABSTRACT 

 

Different approaches for in-season N management based on sensors are being used and 

different arrangements and apparatus can be used. Optical reflectance crop canopy 

sensors (ACS) are being used with success for N estimation and on-the-go N fertilization. 

Recently, some studies indicate that plant height could be used to estimate yield potential 

and probably indicate the plant N status. In this scenario the objectives of this research 

were to: (i) determine the correlation between ACS assessments of N availability and 

ultrasonic sensor measurements of canopy height at several growth stages for corn 

receiving varying amounts of N fertilization, (ii) test the ability of both sensors to 

distinguish N-mediated differences in canopy development and (iii) evaluate benefits of 

the integrated use of both sensors. This experiment was conducted with varying N rates 

in two small plots experiments and at six farmer’s fields during 2008, 2009 and 2010. 

Plant height, crop canopy reflectance (NIR and visible portions of the spectrum) and 

geographic position using a DGPS receiver were recorded during different phenological 

stages. Results showed that there were strong relationships between plant height (H) and 

chlorophyll index (CI), with correlation coefficients ranging from 0.24 to 0.98. Higher 

levels of correlations were observed at V10 through V15 growth stages. Both sensors 
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were able to separate different N rates from V8 to V15 in 2008 and 2010 but they didn’t 

have the same ability for 2009, where only at V13 both sensors could separate N rates. 

The integration of optical and ultrasonic sensors increased the ability to predict N 

fertilization rates and grain yield compared to each one in separate. 

 

Abbreviations List: H: plant height measured by ultrasonic distance sensors; CI: chlorophyll index; NSI: 

nitrogen sufficiency index derived from the calculation of a vegetation index; HSI: plant height sufficiency 

index using the sufficiency index concept for plant height measurement using ultrasonic sensors.  

 

INTRODUCTION 

 

Since early 1950s, increased food production was a priority in agricultural areas 

around the World, the largest increase in the use of agricultural inputs was for N fertilizer 

due to the largest impact on yield as compared to other nutrients. Adding the fact that 

nowadays the population is increasing exponentially and more food will be needed in a 

couple of decades, consequently the need for N will increase and more efficient ways to 

apply N fertilizer is needed. It was reported that the N use efficiency (NUE) worldwide 

has remained at a stagnant 33% (Raun and Johnson, 1999). So, it is clear that all 

agricultural techniques that lead to increase the NUE should be in priority for researchers, 

farmers and extension educators. The major causes for low NUE are poor synchrony 

between soil N supply and crop demand, uniform application rates of fertilizer N to 

spatially-variable agricultural fields and failure to account for temporally variable 

influences on crop N needs (Shanahan et al., 2008). Procedures to determine N content in 

soil directly would be adequate if they could take place immediately before each 
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fertilization. However, this is normally not economically feasible due to the temporal 

changes of N content caused by several transformations among different forms of N.  

Therefore, the use of active optical reflectance crop canopy sensor (ACS) to assess corn 

canopy N status to guide spatially variable in-season N applications has been proposed as 

a means for improving NUE and decreasing environmental waste (Solari et al., 2008).  

Previous studies have shown that canopy chlorophyll content is correlated to 

biophysical parameters such as leaf area index and plant height (Freeman et al, 2007; 

Jones et al., 2007). Sui & Thomasson (2006) noted that both crop spectral reflectance 

(measured using ACS) and plant height (measured using ultrasonic plant height sensor) 

were correlated with crop N status. Recently, Yin et al. (2011) showed that plant height 

could be used for in-season prediction of corn yield and this prediction provides a 

physiological basis for the use of high-density plant height measurements to guide 

variable-rate fertilizer N applications within the field and to more accurately estimate 

crop yield. Since plant height and vegetation indices, either individually or together, can 

be used to estimate N availability during the corn growing season, their use represent an 

attractive option for in-season N management. Several vegetation indices have been 

proposed for N management using ACS (NDVI - Raun et al., 2005; GNDVI - Dellinger 

et al., 2008; Chlorophyll Index – Solari et al., 2008) but the integration of these indices 

with other measurements even with the use of passive sensors (Temperature – Babar et 

al., 2006; plant height – Jones et al., 2007) is recent and rare in the literature. Some 

limitations have been reported for the use of optical sensors. For example, at reproductive 

stages of corn the ability of the optical sensor to detect canopy variation could be limited 

by the presence of tassels (Solari et al., 2008); leaves sampled at different growth stages 
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using chlorophyll meters (Zhang et al., 2007) can cause variations in the readings; high N 

rate at planting in high clay content soils can lead to enough N being supplied to the crop 

until the time of sensing (Turner and Jund, 1991) and plant chlorophyll content can also 

be influenced by herbicides (Reeves et al., 1993). 

Different approaches for in-season N management based on sensors are being 

used and different arrangements and apparatus can be used. ACS are being used with 

success for N estimation and on-the-go N fertilization. Recently, some studies indicate 

that plant height could be used to estimate yield potential and probably indicate the plant 

N status. In this scenario the objectives of this research were to: (i) determine the 

correlation between active optical reflectance crop canopy sensor assessments of N 

availability and ultrasonic sensor measurements of canopy height at several growth stages 

for corn receiving varying amounts of N fertilization, (ii) test the ability of both sensors 

to distinguish N-mediated differences in canopy development and (iii) evaluate benefits 

of the integrated use of both sensors. 

 

MATERIAL AND METHODS 

 

A replicated small plot experiment was conducted in two irrigated experimental 

sites located at the South Central Agricultural Laboratory (SCAL) of the University of 

Nebraska at Clay Center (BN and MS sites). The BN study is a long-term N experiment 

conducted since 1986 with different N rates and the MS site represented the same 

experiment mounted in 2008. The other sites were on-farm research plots laid on 7 center 
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pivot-irrigated sites on cooperating farmers (HU08, HU09, HU10, BR09, BR10, RT09, 

BL10) during 2008, 2009 and 2010 (Table 1) (Figure 1). 

The platform used for sensor data collection at several growth stages of corn was 

a bicycle modified to support an optical sensor (Crop Circle, model ACS-210, measuring 

wavelengths of 590 and 880 nm) (Holland Scientific, Lincoln, Nebraska, USA), an 

ultrasonic distance sensor (Senix model TS30S1) (Senix, Bristol, Virginia, USA), a GPS 

receiver (Trimble GeoXT) (Trimble Navigation, Ltd., Sunnyvale, California, USA) and a 

laptop computer. A distance of at least 60 cm was maintained between sensors and the 

top of the crop canopy throughout the season. In the BN and MS sites, plant height and 

canopy reflectance were recorded during several phenological stages (Table 1). The 

Chlorophyll Index (CI) (Gitelson, 2003) was calculated from spectral reflectance data. CI 

= (NIR/VIS) – 1, where NIR is near infrared at 880 nm and VIS is the visible band at 590 

nm. Because of sidedress N application at the V10 growth stage in the farmers’ fields in 

2009, crop sensing was done at later stages (VT and R4) (Table 1). The N application in 

the farmer’s field was done using a high clearance machine equipped with valve control 

and mapping capabilities and using plot fertilizer spreader at SCAL. 

Different experiments with various N rates were sensed in experimental station 

(SCAL) and farmer’s fields (Figure 2). The on-farm research experiments consisted of 

250 small plots of 6 by 15 m across the center pivots with various N rates. The data 

collected by optical and ultrasonic sensors were filtered using MatLab (The MathWorks, 

Inc., Natick, Massachusetts, USA) software and later processed and analyzed using 

ArcGIS (ESRI, Redlands, California, USA). The experimental sites at SCAL were 

harvested with  plot combine Gleaner K (2 rows) using the Harvest Master System 
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(Juniper Systems Inc., Logan, Utah, USA) and in the farmers field all 250 plots in each 

site were hand harvested (2 center rows of 3.5 m length), then all data were adjusted to an 

fixed grain moisture content of 155 g kg
-1

. 

 

Statistical Analysis 

 

Pearson correlation coefficients were used to evaluate the relationships between 

sensor measurements, N rates and grain yield. Treatment mean separation was done for 

the plots using Duncan Multiple Range Test using a p<0.05. Multiple linear regression 

analysis using minimizing Akaike’s Information Criteria (AIC) (Akaike, 1973) and other 

heuristic models (Forward, backward and stepwise regression procedures) were 

performed to evaluate the integration of sensors and to determine the best model for N 

rates and yield prediction. The model is described by the general equation: 

y=β0 + β1NSI + β2HSI + β3NSI*HSI 

Where: NSI is the nitrogen sufficiency index, HSI is the plant height sufficiency index 

and NSI*HSI is the multiplication of NSI and HSI. 

All statistical analysis and graphics were done using SAS (SAS Institute, Inc., 

Cary, North Carolina, USA) and Sigma Plot (Systat Software, Inc., San Jose, California, 

USA) software. 

RESULTS AND DISCUSSION 

 

Generally, all years had good growing conditions in all sites, but the rain pattern 

varied significantly for the 2009 growing season with about half of the total precipitation 
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for 2008 and 2010 and higher temperatures. The 2008 growing season had more rain, 

which was well distributed, and there was little need for irrigation. The 2009 had higher 

temperature and less precipitation in the beginning. The 2010 growing season repeated 

the pattern of 2008 but with less precipitation during mid-season (about 80 days after 

planting) (Figure 1 and 2). The irrigation commenced earlier in 2009 compared to 2008 

and 2010 and in general all sites received about 127 to 300 mm of irrigation water. 

The grain yield response for the N rates was higher during 2008 and 2010 as 

compared to 2009, which showed little response to N across BN09, BR09, and RT09 

sites (Figure 4). The corn grain yield for all N rates was considerable higher for 2009 

mainly due to a greater level of mineralization caused by higher temperature in the 

beginning of the season and less N leaching due a relatively low rainfall during mid-

season.  

For the BN site in 2008, CI (averaged over N rates) increased steadily to the V8 

growth stage then tended to plateau. The same pattern occurred for 2010 but with plateau 

around V13 (Figure 2). In 2009, CI increased until V10, and then declined slightly. These 

results suggest that CI generally is maximized around V8 or V10. The trend in plant 

height (H) was linear from V6 until V13. The integrated measure of CI*H had a linear 

response of increasing as the growth stages progresses (Figure 5). The oscillation of CI 

values from V8 until V15 can be problematic and unpredictable limiting its application 

for yield or N prediction, especially considering spatially inconsistent crop maturity 

stage. On the other hand, the linear response of plant height during these stages can be 

easily modeled and make good yield and N prediction functions. For example, if a 

vegetation index decreases after certain growth stage the NDVI divided by growing 
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degree days proposed by Raun et al. (2005) cannot be used as a reliable predictor of grain 

yield for corn, unless if plant height measurements are integrated with the optical 

measurements. CI*H showed that combine the better response of CI in the beginning 

with the linearity and consistent increase of plant height in the end of the vegetative stage 

(Figure 5). 

 

Correlation between Optical and Ultrasonic Sensors and Their Ability to Separate 

N Rates 

 

For the SCAL sites (BN and MS), there were significant correlations between CI 

and H in all years from V10 until V15 (Figure 6). CI and H were also strongly correlated 

with N rate and grain yield  between V10 and V15 growth stages (Figures 7 and 8). The 

correlations between HxN and CIxN were similar in 2008 and 2010, but did differ 

considerably for 2009 (Figure 7), suggesting that the soil N supply was greater early in 

the season during 2009 as compared to 2008 and 2010. The declining in correlation 

between H and N or yield at V15 could be due to lower quality of measurements by 

ultrasonic sensor used at a later growth stages (high and difficult to control distance 

above ground and lower apparent area of the top of crop required for an ultrasonic 

proximity measurements). Therefore, more noise was observed when filtering ultrasonic 

sensor data starting at V15 until maturity. The declining in correlations between CI and N 

or yield at these growth stages was not observed. 

For the producer fields (Table 2), correlations between CI and H were relatively 

high for vegetative stages, but lower in reproductive stages, another reason other than 
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noise in the ultrasonic sensor data is the ability of plants under lower N rates reach the 

same height of high N rates at later stages. The relationship between either CI or H and N 

rate varied with the year and site, For most site-years, both CI and H were related to N 

rate as well as grain yield, but for a couple of site-years (HU10, BR09, BR10 and BL10), 

CI was stronger correlated with N rate and Yield than H. In the HU08 site H was stronger 

correlated with N and yield than CI. Also, H had stronger correlation with N at RT09 site 

during R4.  

To illustrate the spatial correlation between CI and H one of the three farmers 

fields mapped during 2010 growing season on a bulk area (uniform N application by the 

farmer) around the experimental plots is illustrated in Figure 9. The field was mapped 

using the prototype system (software and hardware) developed for variable rate N based 

on CI or H. 

In 2008 and 2010 both sensors were able to distinguish N rates beginning at V8 

(Figures 9 and 10); the term CI*H did have similar results (Figure 11). The sensors were 

able to separate different N rates at V8, V10 and V13 growth stages in 2008 and 2010. 

However, in 2009 sensors were only able to distinguish 0 lb/ac from the other rates at 

V10, V11 and V15 growth stages. In 2009 only during V13 both sensors were able to 

separate N rates (Figure 9 and 10). 

For the BN and MS sites during 3 years, CI increased with growth stage until V8 

(Figure 4). The Nitrogen Sufficiency Index or relative index (NSI = CI for a specific N 

rate/reference CI, here = 300 kgN/ha) showed the same trend of N separation as CI. Plant 

height (H) increased continuously during the period of sensor measurements. When a 

vegetation index was used in conjunction with reference area of non limited N supply, the 
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differences between hybrids, soil, and other environmental conditions are normalized and 

the relationship is made stronger (Blackmer et al., 1996; Varvel et.al., 1997; Daughtry 

at.al., 2000; Shanahan et al., 2001; Solari et al, 2008). 

Normalized plant height (to the 300 kgN/ha rate), Height Sufficiency Index (HSI) 

showed the same trend as NSI. In 2008 and 2010 both sensors were able to separate 0 

from 75, 75 from 150 and 150 from 300 kgN/ha at V8, V10 and V13 growth stages using 

actual sensor readings. Normalized H (HSI) didn’t show the same ability to separate N 

rates as the actual value of H measured by the ultrasonic sensor.  

At the BN and MS site in 2009, CI increased until approximately V8 or 10 

respectively and then declined (Figure 4). Plant height again increased continuously. 

Sensors were not able to separate 75 from 150 kg/ha and 150 from 300 kgN/ha in 2009, 

using either actual sensor or normalized values. Generally NSI and CI were able to 

separate only 0 kgN/ha from other N rates at V10-V15 growth stages, using an LSD test 

with p < 0.05. HSI was also able to separate 0 lb/ac from other N rates only at V10.  

 

Evaluating the Integration of Optical and Ultrasonic Sensors 

 

Evaluating the different sensors measurements (optical and ultrasonic) and the 

product of measurements, it was observed that the integration of CI and H (CI*H) 

resulted in similar results in terms of correlation with N rates or yield and the ability to 

distinguish N rates compared to CI or H individually. 

The results for the multiple regression analysis using N rates and yield as 

dependent variable and CI, H and CI*H normalized by the reference plot (NSI, HSI and 
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CIHSI)  as independent variables, indicated that the best model for either N or relative 

grain yield prediction included the integration of the optical (NSI) and the (HSI) 

ultrasonic. 

Analyzing the integration in terms of N rate prediction, the backward regression 

resulted in the equation: N rate (kg N ha
-1

) = -32.401182 + 405.42778NSI -367.82161 + 

205.59746CIHSI with a RMSE of 64 kg N ha
-1

. The stepwise and forward regression 

resulted in the equation N rate = -148.58725 + 592.077774NSI – 234.43655HSI. All 

methods used a p<0.10 for inclusion or exclusion of the variable from the model. The 

minimized AIC method resulted in the equation:   N rate = 358.606 NSI – 405.981 HSI + 

258.456 CIHSI with the same RMSE of 64 kg N ha
-1

, but lower AIC compared to the 

others. The ranking of the top 14 models by AIC for N rate prediction is illustrated in 

Table 3. The models for NSI and HSI alone, with a reasonable RMSE and R
2
 were in 12 

and 13
th

 place, showing that the integration can improve the prediction of N rate.  

Analyzing optical and ultrasonic sensors in terms of relative grain yield prediction 

the results also indicated that integration was more beneficial than either optical or 

ultrasonic alone, as obtained also for N rates. The heuristic methods (forward, backward 

and stepwise regressions) resulted in the same equation RY = -0.15489 + 1.17123NSI – 

0.19787 HSI with a RMSE of 0.12. For relative yield the product of CI*H was not 

included in the best model. 

Conciliating all the methods used for model selection related previously, the best 

model for N rates estimation is described by the equation: N rate = 358.606 NSI – 

405.981 HSI + 258.456 CIHSI with a RMSE of 64 kg N ha
-1

 (Table 3). The model that 

best describe relative grain yield was: RY = -0.15489 + 1.17123 NSI – 0.19787 HSI, with 
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a RMSE of 0.12 or plus and minus 12 % of the relative yield predicted by the model 

(Table 4). 

This results corroborate with Jones et.al (2007) where NDVI x biomass provided 

the best estimate of chlorophyll content in spinach, and Freeman et al. (2007) where 

NDVI x Plant Height improved the prediction of grain yield potential in forage corn and 

concluded that can be used to refine mid-season fertilizer N rates based on expected N 

removal. Plant height can have a physiological basis to predict and estimate grain yield 

potential and if used properly certainly can also improve the INSEY approach proposed 

by Raun et al. (2005). 

During these 3 years, in general, CI and H have similar ability to separate N rates. 

H continuously increase unlike CI, which plateaus or even declines at the end of 

vegetative stage. 

The strong correlations between CI (optical sensors) and H (ultrasonic plant 

height sensor) showed that either sensor can be used to site-specific N management 

where N is the major limited nutrient. The integration of sensors was beneficial compared 

to the use of optical or ultrasonic alone. 

More studies should be done with plant height sensors to control variable N 

application specially for crops that plant height can be a good indicator of yield potential 

and the reference high N strip is not always a good approach because the over application 

of N can induce excessive growth that will not affect the yield as for example for cotton, 

wheat, forage corn, and sugarcane. Another good application of the plant height approach 

could be in the subsistence/low income and small farms where the acquisition and use of 
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sensors is not viable economically and no sensor/equipment is needed to measure plant 

height using traditional measuring procedures. 

 

SUMMARY AND CONCLUSIONS 

 

The goal of this research was to evaluate the integration of an ultrasonic plant 

height sensor with an active light crop canopy sensor, to indirectly measure chlorophyll 

content of the canopy and estimate grain yield and N, allowing variable N rate 

application during the growing season.  From V10 until V13 growth stages, plant height 

and CI were strongly correlated and both had the same ability to differentiate N rates. The 

integration of CI and H increased the ability for N rate or grain yield predictions. The 

differentiation of N rates by the use of optical and /or ultrasonic sensors were effective 

only after V7 growth stage. More studies are needed to investigate if only plant height 

could be used to predict yield potential or N requirement in the context of spatially 

variable environments. 
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Figure 1. Experimental site locations 
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Figure 2. Daily rainfall (precipitation, mm) and temperature (ºC) for 2008, 2009 and 2010 

growing seasons at SCAL. 
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Figure 3. Daily rainfall (precipitation, mm) and temperature (ºC) for 2008, 2009 and 2010 

growing seasons at on-farm research sites. 
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Figure 4. Grain yield response for N rates applied at experimental sites 
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Figure 5. CI and H averaged across N rates for the BN small plots at SCAL during 2008, 2009 

and 2010. 
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Figure 6. Pearson correlation coefficients (r) between chlorophyll index (CI) and plant height (H) 

for the BN and MS small plots at SCAL. 
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Figure 7. Pearson correlation coefficients (r) between CI, H and CI*H with N rate and yield at 

different growth stages for the BN Study. 
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Figure 8. Pearson correlation coefficients (r) between CI, H and CI*H with N rate and yield at 

different growth stages for the MS Study.  
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Figure 9. Plant Height and Chlorophyll Index maps generated from ultrasonic and active canopy 

sensors at one farmer field (BR10) in 2010 growing season. 
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Figure 10. Chlorophyll Index (CI) and Nitrogen Sufficiency Index (NSI) by growth stage for 

different N rates, at SCAL, BN08, BN09 and BN10. NSI is the normalized CI relative to the 300 

kg/ha N rate. Error bars represent Duncan LSD with p < 0.05. 

  



138 

 

 

 

 

Figure 11. Plant Height (H) and Height Sufficiency Index (HSI) by growth stage for different N 

rates, at BN08, BN09 and BN10. HSI is the normalized H relative to the 300 kg/ha N rate. Error 

bars represent Duncan LSD with p < 0.05. 

  



139 

 

 

 

 

Figure 12. Chlorophyll Index (CI) integrated with Plant Height (H) (CI*H), and CI*H Sufficiency 

Index (CI*H_SI) by growth stage for different N rates, BN08,  BN09 and BN10. CI*H_SI is the 

normalized CI*H relative to the 300 kg/ha N rate. Error bars represent Duncan LSD with p < 

0.05. 
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Table 1. Corn phenological stages, N rates, Crop System and Predominant Soil Series at 

experimental sites conducted during 2008, 2009 and 2010. BN and MS are plots at 

experimental station (SCAL) and HU, BR, RT and BL are different farmer's fields. BN 

and MS had 3 replications and the farmers fields varied from 8 to 10 replications. 

Site Growth Stages N rates (kg/ha) Crop System Soil Series 

BN08 V4,5,6,8,10,11,13,15 0,75,150,300 No tillage Crete Silt Loam 

BN09 V6,8,10,11,13,15 0,75,150,300 No tillage Crete Silt Loam 

BN10 V8,10,11,13,15 0,75,150,300 No tillage Crete Silt Loam 

MS09 V5,6,8,10,13,15 0,75,150,225 Strip Till Crete Silt Loam 

MS10 V6,8,10,13,15 0,75,150,225 Strip Till Crete Silt Loam 

HU08 V8,10,13 0,75,150,225 Strip Till Hastings Silt Loam 

BR09 V15, R4 75, 100, 150, 200, 250 No tillage Ipage Fine Sand 

HU09 V15, R4 75, 100, 150, 200, 250 Strip Till Hastings Silt Loam 

RT09 V15, R4 75, 100, 150, 200, 250 No tillage Hord Silt Loam 

BR10 V15, R4 0,75,150,200,250 No tillage Libory Fine Sand 

HU10 V15, R4 0,75,150,200,250 No tillage Hastings Clay Loam 

BL10 V15, R4 0,75,150,200,250 No tillage Satanta Loam 

 

Table 2. Pearson correlation coefficients (r) between sensors readings for different on-

farm research experimental sites. 

 
Site/Year Stage CIxH CIxN HxN (CI*H)xN CIxYield HxYield (CI*H)xYield 

HU 08 V8 0.82 0.14NS 0.18 0.16 0.18 0.29 0.21 

 V10 0.91 0.32 0.34 0.32 0.46 0.49 0.47 

 V13 0.73 0.35 0.23 0.33 0.37 0.11NS 0.28 

         

HU 09 V15 0.84 0.02NS 0.01NS 0.03NS 0.02NS 0.08NS 0.10NS 

 R4 0.92 0.11NS 0.01NS 0.11NS 0.05NS -0.01NS 0.07NS 

         

HU 10 V15 0.67 0.42 0.27 0.40 0.35 0.17 0.32 

 R4 0.27 0.62 0.13 0.41 0.57 0.17 0.41 

         

BR 09 V15 0.72 0.30 0.04NS 0.25 0.32 0.07NS 0.29 

 R4 0.54 0.65 0.14 0.61 0.49 0.36 0.50 

         

BR 10 V15 0.87 0.31 0.24 0.27 0.51 0.42 0.47 

 R4 0.66 0.66 0.41 0.50 0.81 0.55 0.66 

         

RT 09 V15 0.98 -0.02NS -0.01NS -0.03 NS -0.01NS -0.01NS -0.01NS 

 R4 0.43NS 0.16 NS 0.94 0.87 0.08NS 0.01NS 0.09NS 

         

BL 10 V15 0.87 0.18 0.13 0.17 0.06NS 0.14 0.03NS 

 R4 0.72 0.65 0.23 0.50 0.68 0.54 0.68 

NS – non significant at p < 0.05 
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Table 3. Prediction models ranking using AIC criteria for N rate using normalized chlorophyll index - CI 

(NSI), normalized plant height - H (HSI) and the product of CI * H normalized (CIHSI). CI was measured 

by active optical canopy sensors and H measured by ultrasonic sensors. RMSE – root mean squared error; 

SSE – sum of squared error, RSQ – R squared; AIC – Akaike’s Information Criteria.  

Ranking RMSE Intercept NSI HSI CIHSI SSE RSQ AIC 

1 64.8075 . 358.606 -405.981 258.456 957603.9 0.84773 1930.18 

2 64.9272 -32.402 405.428 -367.822 205.597 956926.5 0.62982 1932.01 

3 65.1036 -148.587 592.078 -234.437 . 966374.6 0.62616 1932.28 

4 66.0797 181.048 . -562.869 592.713 995568.2 0.61487 1939.16 

5 66.4969 -286.724 690.574 . -198.837 1008178 0.60999 1942.07 

6 67.3583 -205.89 409.718 . . 1039006 0.59807 1947.02 

7 68.8007 . . -197.689 402.31 1083980 0.82763 1956.81 

8 70.8265 . 660.509 -461.462 . 1148756 0.81733 1970.22 

9 71.995 -73.244 . . 270.164 1186972 0.54083 1977.78 

10 75.166 . -130.896 . 320.583 1293833 0.79426 1997.69 

11 76.6137 . . . 184.185 1350021 0.78533 2005.51 

12 83.3514 . 170.503 . . 1597916 0.74591 2044.45 

13 83.2015 -206.862 . 380.815 . 1585252 0.38675 2044.62 

14 92.2079 . . 153.442 . 1955528 0.68904 2091.11 

 

Table 4. Prediction models ranking using AIC criteria for grain yield using normalized chlorophyll index - 

CI (NSI), normalized plant height - H (HSI) and the product of CI * H normalized (CIHSI). CI was 

measured by active optical canopy sensors and H measured by ultrasonic sensors. RMSE – root mean 

squared error; SSE – sum of squared error, RSQ – R squared; AIC – Akaike’s Information Criteria. 

Ranking RMSE Intercept NSI HSI CIHSI SSE RSQ AIC 

1 0.12176 -0.15489 1.17123 -0.19787 . 3.38032 0.73924 -969.847 

2 0.12178 . 0.93583 -0.37816 0.26259 3.38119 0.96699 -969.788 

3 0.12242 -0.20326 1.01731 . . 3.43206 0.73525 -968.338 

4 0.12196 -0.08321 1.05608 -0.28016 0.12684 3.37672 0.73952 -968.093 

5 0.12223 -0.27693 1.27326 . -0.18121 3.40646 0.73722 -968.068 

6 0.12501 . 1.24256 -0.43453 . 3.57851 0.96507 -958.686 

7 0.12633 0.47279 . -0.78823 1.13522 3.63892 0.71929 -952.819 

8 0.12664 . 0.47987 . 0.32046 3.67292 0.96414 -952.671 

9 0.13149 . 0.78115 . . 3.97677 0.96118 -936.31 

10 0.1324 0.11668 . . 0.68353 4.01427 0.69034 -932.142 

11 0.1361 . . 0.1654 0.638 4.24183 0.95859 -919.405 

12 0.13875 . . . 0.8205 4.42807 0.95677 -911.479 

13 0.15917 -0.27017 . 1.0192 . 5.80207 0.55242 -847.051 

14 0.16725 . . 0.72224 . 6.43367 0.93719 -825.182 
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CHAPTER 4 

 

NITROGEN RECOMMENDATION ALGORITHM FOR CORN BASED ON 

PLANT HEIGHT MEASURED BY ULTRASONIC DISTANCE SENSORS 

 

ABSTRACT 

 

The use of optical reflectance sensors (ACS) for on-the-go and site-specific application of 

nitrogen (N) in crops can improve nitrogen use efficiency (NUE), while improving grain 

yield response or reducing the amount of N applied in corn fields considering spatial 

variability. The objectives of this study were to: (i) develop an N recommendation 

algorithm based on ultrasonic plant height measurements to be used for in-season and on-

the-go variable rate N application and (ii) validate and compare the algorithm proposed 

with other approaches for in-season N fertilization. To address objectives, ultrasonic 

plant height measurements were collected in two separate study sites during 2008, 2009 

and 2010 growing season near Clay Center, NE. Plant height was measured at V10, V13 

and V15 growth stages on plots that received 0, 75, 150, 225 and 300 kg N ha
-1

, and final 

yield was measured. The algorithm was developed based on the relationship between 

relative grain yield, plant height and N rates. Since different N rates maximized yield 

when soybeans or corn were the previous crop, two different equations were generated to 

calculate the N recommendation for corn considering corn (CC) or soybeans (CS) as 

previous crop. The CC N recommendation (Nrec) equation is Nrec = -2424HSI
2
 + 3350HSI 
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– 906 and the CS equation is Nrec = -2052HSI
2
 + 2735HSI – 624. The first validation 

using a previous algorithm developed only with one year of data collection in CC in 2008 

showed that adjustments had to be done to account for different previous crop since low 

N rates were applied compared to other treatments and consequently lower yields were 

obtained where the previous crop was soybean. 

 

Abbreviations List: CC: corn after corn; CS: corn after soybeans; NSI: nitrogen sufficiency index derived 

from the sufficiency index calculation using a vegetative index; HSI: plant height sufficiency index derived 

from ultrasonic distance sensors; SB: sensor-based approach; AN: as needed approach. 

 

INTRODUCTION 

 

Currently, there are different options for in-season N prescription for corn fields. 

For example: side-dress applications based on crop history and N sources (Gagnon and 

Ziadi, 2010), side-dress application based on timing determined by chlorophyll meters 

(Scharf et al., 2006; Ruiz Diaz et al., 2008) and ultimately the use of on-the-go systems 

that use active optical reflectance sensors (ACS) that sense and apply N fertilizer in real 

time. The use of active crop canopy sensors for on-the-go and site-specific application of 

nitrogen (N) in crops can improve nitrogen use efficiency (NUE) compared to traditional 

uniform application, improving grain yield and reducing the amount of N applied 

considering spatial variability. Previous work has shown that these ACS can be used to 

estimate plant N status and prescribe N rates on-the-go with accuracy (Raun et al., 2005, 

2007; Teal et al., 2006; Freeman et al., 2007 and Tubana et al., 2008, Dellinger et al, 

2008).  Chapter 3 we found that high correlations exist between these ACS and plant 
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height measured by ultrasonic distance sensors. Yin et al. (2011) found that plant height 

can be used to predict corn yield under major corn production systems. This entire 

context encourages the use of plant height as an option for an on-the-go sensor based 

system for N management. Normally, ACS require in their equations the sufficiency 

index approach (SI) to prescribe N; that is to normalize the sensor measurement by a non-

limited N plant under a plot that receive enough N (N-rich) to not limit yield potential. 

This normalization reduces the effect of different cultivars, growth stages, crop history 

and soil conditions on sensor measurements. One limitation for the SI approach are crops 

such as cotton and sugarcane where excessive application of N can cause high vegetative 

growth that does not translate into yield, and the reflectance from these plots does not 

represent a good reference for the use of SI. On those situations plant height or its 

integration with optical sensors (Chapter 3) could be a better option. If plant height is a 

key indicator of plant growth and is linked to N nutrition during vegetative development 

of corn, the use of ultrasonic distance sensors to measure plant height at high spatial 

resolution to prescribe in-season N rates can be done. For optical sensors various 

algorithms and equations are available to translate crop reflectance into N rates (Dellinger 

et al., 2007; Solari et al., 2010; Holland and Schepers, 2010; Kitchen et al., 2010), but for 

plant height there is a need to generate one algorithm that can be used to prescribe N rates 

using ultrasonic sensors. The objectives of this study were to: (i) develop an N 

recommendation algorithm based on ultrasonic plant height measurements to be used for 

in season and on-the-go variable rate N application and (ii) validate and compare the 

algorithm proposed with other approaches for in-season N fertilization.  
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MATERIAL AND METHODS 

 

This study was conducted at two experimental sites irrigated with a linear-move 

sprinkler system and located at the South Central Agricultural Laboratory (SCAL) of the 

University of Nebraska at Clay Center (BN and MS sites). The predominant soil at those 

sites are Crete silt loam (fine, smectitic, mesic Pachic Argiustolls), 0-1% slope. The BN 

site is a long-term experiment (since 1986) where different N rates, application time, use 

of a nitrification inhibitor and tillage methods are being evaluated. The MS site was 

designed in 2008 to initiate a soybean-corn rotation in one field where continuous corn 

had previously been grown. 

To address the objectives, ultrasonic plant height measurements were collected 

using a bicycle modified to carry ultrasonic distance sensors. For the 2008 and 2009 

growing seasons one ultrasonic sensor was mounted in the platform and for 2010, two 

sensors were mounted to collect a denser dataset. The sensors (Senix model TS30S1, 

Bristol, Virginia, USA) were integrated with a differentially corrected global positioning 

system (DGPS – Trimble GeoXT, Trimble Navigation Ltd., Sunnyvale, California) to 

record about 15 measurements per second about 60 cm over the top of corn rows. The on 

board collection software was programmed in LabView (National Instruments Corp., 

Austin, Texas, USA) and had the ability to record all data from the sensors. For every 

geographical coordinate recorded by each sensor we selected the maximum value among 

15 measurements to represent the distance from the sensor to the highest point in the crop 

canopy. By difference with the sensor height to the ground level, we calculated plant 
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height. To start the system, the only input required from the user is the sensor height from 

the ground and a DGPS signal. 

Plant height was measured at V10, V13 and V15 growth stages on plots that 

received 0, 75, 150, 225 and 300 kg N ha
-1

. Final grain yield was measured with a plot 

combine (Gleaner K with 2rows) using the Harvest Master System (Juniper Systems Inc., 

Logan, UT), and corrected to an average grain moisture content of 155 g kg
-1

.  

 

Plant Height Algorithm Development 

 

The algorithm was developed based on a previous framework for optical active 

canopy sensors developed by Solari (2006), who used quadratic equations to adjust the 

relationship between relative grain yield, sensor measurements and N rate. The general 

procedures for algorithm development were: (i) Determine the relationship of relative 

grain yield over years and N rates for each previous crop (CC and CS),  and then 

calculate from the quadratic equation the N rate that maximized yield across 22 years of 

data for CC and 2 years for CS (Table 2); (ii) Determine the relationship between 

normalized plant height measurement to the highest N rate plot (HSI – analogous to SI) 

and N rates to adjust an equation that describes the estimated N supply in the crop by 

plant height over 5 site years, and (iii) Subtract from the N rate that maximizes yield in 

each system (CC and CS) from the estimated N supply in the plant, adjusting an equation 

to determine the N recommended rate. 
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Plant Height Algorithm Validation 

 

The validation was conducted using a prototype plant height-based algorithm 

generated with data collected in 2008 from the long-term N study (BN) with CC (Figure 

10). 

For the validation we compared several approaches for in-season N fertilization: 

 

1. 75 kg N ha
-1

 at planting + 150 kg N ha
-1

 at side-dress during V8 growth stage (V8) 

2. 75 kg N ha
-1

 at planting + 150 kg N ha
-1

 at side-dress during V12 growth stage (V12) 

3. 225 kg N ha
-1

 at planting  (Reference) 

4. 75 kg N ha
-1

 at planting + 150 kg N ha
-1

 at side-dress indicated when N was needed 

using chlorophyll meter approach with a threshold of 0.95 for SI – (AN) 

5. Plant Height Based – (H) 

6. Optical Sensor based – (SB) 

 

In all treatments we used urea treated with Agrotain® to reduce the risk of 

ammonia volatilization. For SB treatment SI was calculated using the chlorophyll index 

proposed by Gitelson et al. (2005) as a vegetation index, using the formula CI = 

(NIR/VIS)-1, where NIR~880nm and VIS~ 590nm, integrated with the algorithm 

proposed by Solari et al. (2010). For the H treatment the normalized plant height (HSI) 

was used with measurements from the ultrasonic height sensors.  

Experimental treatments consisted of two previous crops (CC and CS) and six 

approaches (V8, V12, AN, H, SB, Reference). The experimental design consisted of a 
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randomized complete block split-plot with previous crop as the main plot and approaches 

as subplots, consisting of 6 replications for each treatment. For the ANOVA we used the 

PROC GLM procedure and the Duncan Multiple Range Test for mean separation using 

p<0.05. Climatological data was recorded on-site for all growing seasons using an 

automated weather station and crops were managed to supply all nutrients other than N. 

Grain yield and partial factor productivity (PFP) was measured to evaluate the 

different approaches. Partial Factor Productivity is the ratio between grain yield and the 

amount of N per area (Cassman et all., 1996; Olk et al., 1999). In this case we used yield 

in kg ha
-1

 and N rate in kg N ha
-1

. 

 

RESULTS AND DISCUSSION 

 

Plant Height Algorithm Development 

 

Analyzing the plant height and grain yield data, considering all experiments and 

growth stages, we found a high correlation between plant height sufficiency index (HSI) 

and relative grain yield (RY) (Figure 1), ensuring that the relationship between N rate and 

these two parameters are similar. 

Starting with only CC, the relative yield and N rate relationship was explained by 

the equation: RY= -0.00001N
2
 + 0.005 N + 0.4352, (R

2
 = 0.9603); which had an N rate 

that maximized yield at 250 kg N ha
-1

 across 22 years of data for the BN Study (Figure 

2). The HSI and N rate relationship (HSI = -0.000006N
2
 + 0.003 + 0.6604, (R

2
=0.8054) 

also had the same N rate that maximized yield (250 kg N ha
-1

), showing that HSI and 
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yield had the same N rate that maximizes yield (Figure 3). Subtracting 250 kg N ha
-1 

from 

the N rate determined from the equation of HSI, resulted in the equation that describes 

the N recommendation for the CC across growth stages (Figure 4).  

We also analyzed the relationship across different growth stages, as differences 

among stages were reported previously for optical canopy sensors (Solari, 2006 and 

Varvel et al., 2007). We observed that for plant height the variation was smaller around 

the growth stages of V10, V13 and V15 (Figure 5), showing that the equation combining 

the growth stages in Figure 4 can be a good representation for the N recommendation for 

CC in a practical situation. 

The N rate that maximized yield were different between the average relative yield 

for CC and CS (Figure 6). The N rate that maximized relative yield for CC (averaged 

across 22 years of data) and CS (averaged across 2 years) were 250 and 280 kg N ha
-1

, 

respectively. This finding encouraged the use of two equations to calculate the N 

recommendation considering corn or soybeans as previous crop based on these rates and 

also, more importantly, in the relationship between HSI and N rate described in Figure 7. 

To sum up, the CC equation was defined by Nrec = -2424HSI
2
 + 3350HSI – 906 

and the CS equation by Nrec = -2052HSI
2
 + 2735HSI – 624 (Figure 8). Both equations 

required that a normalized plant height have to be used for N rate calculation. 

Comparing equations developed for CC and CS with other algorithms previously 

evaluated using active canopy sensors, we observed over a range of SI that normally 

occurs in production fields (SI = 0.7 to 1.0) that all algorithms performed similarly except 

the Solari algorithm (Solari et al., 2010), using a N rate that maximized yield of 180 kg N 

ha
-1

. All others included 250 kg N ha
-1

 as the N rate that maximized grain yield and 
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consequently it was expected that they would have similar trends (Figure 9). It is 

important to stress that HSI behaves differently compared to the SI from active canopy 

sensors that use different vegetation indices to calculate SI, so these equations generated 

here are only valid if the input is plant height measured by ultrasonic sensors, and plant 

height is normalized by plant height for the N-rich plot. 

The need for a plant height algorithm is a reality since the use of ultrasonic 

sensors can be practical in a producer situation, and other studies have investigated the 

use of crop canopy height to improve optical sensor N estimation (Martin et al., 2010), to 

allow corn producers to market their corn grain earlier or predict yield spatially (Yin et 

al., 2011). Others studies have shown that plant height can be used for varying rate of 

plant growth regulators in cotton (Sharma et al., 2008) and to create an irrigation 

schedule when estimating evapotranspiration (Sammis et al., 1988). Finally, equations 

shown in Figure 8 provide the first algorithm to be implemented using ultrasonic distance 

sensors for on-the-go variable rate N fertilization, considering previous crop as an 

important variable for in-season N recommendation. 

 

Plant Height Algorithm Validation 

 

All validation was done comparing the first prototype plant height algorithm 

(Figure 10) generated from a N rate that maximized yield at 180 kg N ha
-1

 with other in-

season N management approaches.  

We found that grain yield and PFP were significantly different in the ANOVA 

performed for the treatments (Table 3). Year was significant showing that treatments 
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responded differently in different years. This could be explained by likely higher 

mineralization in 2009 compared to 2010 due to warmer temperatures early in the season. 

Since we had significant two and three-way interactions between N management 

approaches and previous crop, the treatment mean separation was done for both previous 

crop (CC and CS) for each year separately (Tables 4 and 5). 

Analyzing grain yield for CC in 2009, the H yielded less than other treatments, 

but also the Reference treatment yielded less than other treatments, but equal to V8. The 

V12, SB, AN and V8 treatments had similar yields. Split application of N could be a 

major reason for better yields, since all split application treatments produced more yield 

than the reference where N was applied at planting (Table 4). This also could indicate 

that N was lost from the Reference applied at planting even with the use of Agrotain®. 

Randall et al. (2005) suggest that even with the use of an N inhibitor some N loss can 

occur comparing fall applications to early spring depending on rainfall patterns. In 2010 

for CC there were no differences in grain yield among treatments. 

For the CS in 2009 and 2010 only the H treatment produced less yield than the 

others treatments. All other approaches yielded similarly in both years. Generally split 

application was beneficial and the AN and SB approaches yielded similar to the 

Reference or other N application procedures. We observed that even late applications 

(V12) had better yields than at planting (Reference). Scharf et al. (2002) also found that 

delaying N applications until V12 – V16 resulted in yield loss of about 3%, but generally 

late applications had good yield response over 28 experiments with a single N 

application. There are some occasions where late applications may be of interest, for 
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example: spreading the work away from the planting season, remedying the N loss in wet 

years, or to allow use of in-season diagnostic tools as those related in this chapter. 

Analyzing PFP for CC in 2009,  the highest PFP of 82 kg grain (kg N applied)
-1

 

was for the H treatment, that was higher than for the SB treatment (74 kg grain (kg N 

applied)
-1

) (Table 4). SB was superior to all other treatments that did not have differences 

in PFP, averaging around 60 kg grain (kg N applied)
-1

. In 2010, SB had the lowest PFP 

but equal statistically to Reference, V12 and H treatments. The V8 and AN treatments 

were similar, since they were applied only a few days apart. Overall, the highest PFP for 

the H treatment in this study did not represent a better approach, but yield was maintained 

by indigenous N sources. This is strong evidence that justifies the need for an adjustment 

of the first prototype plant height algorithm. This was done in the first part of this 

Chapter in Figure 8, where higher N rates should be prescribed in general if the new 

proposed algorithm is used. 

Overall, grain yield was higher for treatments where N was divided in two 

applications (75 kg N ha
-1

 at planting + 150 kg N ha
-1

 at side-dress), The ranking in terms 

of grain yield was V8, AN, V12, SB, REF and H. This indicates that split application 

performed better than total N at planting (Reference) as expected and that V8 (or AN 

applied at the same growth stage, but using chlorophyll meter threshold of 0.95 SI, as a 

decision criteria ) tended to performed better than later at V12, though not statistically 

better. SB and H treatments had the lowest yields, but SB was not different from the other 

approaches that yielded more. 

The first prototype algorithm tested based only on 1 year of data and specifically 

for CC seems weak to be used across previous crops; because it prescribed low N rates 
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for CS over years, producing less yield than other approaches. The new algorithm 

proposed shown in Figure 8 is a better option, since it accounts for previous crop and was 

developed using a higher N rate that maximized yield. 

 

SUMMARY AND CONCLUSIONS 

 

In this chapter an algorithm for in-season N fertilization based on plant height 

measured by an ultrasonic distance sensor was developed. We found that plant height 

measurements during V10-15 growth stages of corn can be a good indicator of in-season 

plant N status and can be used to prescribe N rate on-the-go similarly to the process used 

with active optical canopy sensors. Due to a different response of plant height to N rate 

and different N rate that maximized yield, we decided to generate an algorithm based on 

plant height that could prescribe N for irrigated corn considering the previous crop. The 

equations for different previous crops are: (i) Nrec = -2424HSI
2
 + 3350HSI – 906 for corn 

after corn; and (ii) Nrec = -2052HSI
2
 + 2735HSI – 624 for corn after soybeans. The new 

algorithm proposed, that accounts for previous crop and was developed using a N rate 

that maximized yield could be a reasonable option for in-season N management. 
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Figure 1. Relationship between relative grain yield and plant height normalized by the N-

rich strip (HSI).  

 

Figure 2. Relationship between relative grain yield and N rate across 22 years of data 

from the BN and MS study sites for CC. 

  



159 

 

 

 

 

Figure 3. Relationship between HSI and N rates across 22 years of data from the BN and 

MS study sites for CC. 

 

Figure 4. Recommended N rate for corn after corn (CC) across V11, V13 and V15 

growth stages using an ultrasonic height sensor.  
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Figure 5. Recommended N rate for corn at different growth stages using an ultrasonic 

height sensor when the previous crop was corn (CC). 

 

Figure 6. Relationship between relative grain yield and N rate for two different previous 

crop (CC and CS) for the BN and MS sites. BN includes 22 years of data and MS 2 years. 
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Figure 7. Relationship between HSI measured by ultrasonic sensor and N rates across 3 

growth stages of data for the BN and MS study sites from 2008 until 2010. 

 

Figure 8. Recommended N rate for corn after corn (CC) and corn after soybeans (CS) 

across the V11, V13 and V15 growth stages using an ultrasonic height sensor. 
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Figure 9. Comparison among algorithms developed to recommend N rate for corn using 

optical and ultrasonic sensors. 

 

Figure 10. Prototype plant height algorithm developed for CC using only one site year of 

ultrasonic sensor collection during 2008 growing season. We used 180 kg N ha
-1

 as the N 

rate that maximized yield and ultrasonic sensor responses for one season data collection 

from V10, V11 and V13. 
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Table 1. Corn phenological stages, corn hybrid, N rates, crop system and predominant 

soil series at experimental sites conducted during 2008, 2009 and 2010. BN and MS are 

plots at experimental station (SCAL). 

 

Site Growth Stages Corn Hybrid N rates (kg/ha) Crop 

System 

Soil Series 

BN08 V11,13,15 Pioneer 33H29 0,75,150,300 Strip Till Crete Silt Loam 

BN09 V11,13,15 Pioneer 33H29 0,75,150,300 Strip Till Crete Silt Loam 

BN10 V11,13,15 Pioneer 1395 XR 0,75,150,300 Strip Till Crete Silt Loam 

MS09 V10,13,15 Pioneer 33H29 0,75,150,225 Strip Till Crete Silt Loam 

MS10 V10,13,15 Pioneer 1395 XR 0,75,150,225 Strip Till Crete Silt Loam 

 

Table 2. Relative yield (RY) predicted equations to evaluate N response during 22 site 

years. The data from the BN study is from 1990 to 2010 and from MS Study (2009 and 

2010). The Avg is the average equation across years. Study areas are less than 2 km 

apart. 

 
Year Equation R

2
 

1990 RY = -1E-05N
2
 + 0.0044N + 0.5609 R² = 0.96  

1991 RY = -1E-05N
2
 + 0.0047N + 0.4824 R² = 0.9936  

1992 RY = -1E-05N
2
 + 0.0005N + 0.4516 R² = 0.9969  

1994 RY = -8E-06N
2
 + 0.0039N + 0.5460 R² = 0.9777  

1995 RY = -1E-05N
2
 + 0.0046N + 0.5248 R² = 0.9921  

1996 RY = -1E-05N
2
 + 0.0045N + 0.5168 R² = 1  

1997 RY = -1E-05N
2
 + 0.0061N + 0.4029 R² = 0.9983  

1998 RY = -1E-05N
2
 + 0.0052N + 0.4196 R² = 0.9973  

1999 RY = -1E-05N
2
 + 0.0051N + 0.4659 R² = 0.9884  

2000 RY = -9E-06N
2
 + 0.0041N + 0.5953 R² = 0.9962  

2001 RY = -1E-05N
2
 + 0.0061N + 0.3785 R² = 0.988  

2002 RY = -8E-06N
2
 + 0.0039N + 0.4983 R² = 0.9941  

2003 RY = -7E-06N
2
 + 0.0044N + 0.3507 R² = 0.9876  

2004 RY = -3E-06N
2
 + 0.0033N + 0.3312 R² = 0.9876  

2005 RY = -5E-06N
2
 + 0.0035N + 0.3775 R² = 0.9991  

2006 RY = -1E-05N
2
 + 0.0055N + 0.4147 R² = 0.9998  

2007 RY = -1E-05N
2
 + 0.0066N + 0.2550 R² = 0.994  

2008 RY = -5E-06N
2
 + 0.0038N + 0.3179 R² = 0.9952  

2009 RY = -6E-06N
2
 + 0.0033N + 0.5371 R² = 0.9991  

2010 RY = -4E-06N
2
 + 0.0030N + 0.4138 R² = 0.9989  

Avg RY = -9E-06N
2
 + 0.0044N + 0.4451 R² = 0.9999  
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Table 3. Analysis of variance (ANOVA) for the comparison among in-season N 

fertilization approaches. 

Source DF Type I SS Mean Square F Value Pr > F 

Year 1 1.31E+09 1.31E+09 1259.43 <.0001 

Approach 5 3.46E+08 69157470 66.51 <.0001 

Year*Approach 5 66758807 13351761 12.84 <.0001 

Previous crop 1 9.02E+08 9.02E+08 867.62 <.0001 

Year*Previous crop 1 1.64E+08 1.64E+08 158.03 <.0001 

Approach*Previous crop 5 61697744 12339549 11.87 <.0001 

Year*Approach*Previous crop 5 1.28E+08 25605308 24.63 <.0001 

 

Table 4. Treatment mean separation for grain yield and PFP (kg grain).(kg N applied)
-1

 

for the CC plots during 2009 and 2010 growing seasons. 

Treatments CC - 2009 CC - 2010 

 Yield 

(kg.ha
-1

) 

PFP 

(kg.kg
-1

) 

Yield 

(kg.ha
-1

) 

PFP 

(kg.kg
-1

) 

V8 13790ab 61c 12046a 53a 

V12 14633a 65c 10725a 47ab 

Reference 13367b 59c 10414a 46ab 

AN 14205a 63c 11574a 51a 

SB 14519a 74b 10807a 41b 

H 12114c 82a 11141a 48ab 

 

Table 5. Treatment mean separation for grain yield and PFP (kg grain).(kg N applied)
-1

 

for the CS plots during 2009 and 2010 growing seasons. 

Treatments CS - 2009 CS - 2010 

 Yield 

(kg.ha
-1

) 

PFP 

(kg.kg
-1

) 

Yield 

(kg.ha
-1

) 

PFP 

(kg.kg
-1

) 

V8 15084a 67c 13728a 61c 

V12 14955a 66c 13938a 62c 

Reference 14899a 66c 14035a 62c 

AN 14981a 66c 13694a 60c 

SB 14849a 165b 13459a 81b 

H 13661b 180a 11983b 117a 
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CHAPTER 5 

 

EVALUATION OF CROP WATER STATUS USING CANOPY SENSOR 

INTEGRATION 

 

ABSTRACT 

 

In the early 2000’s, active optical crop canopy sensors began being used to 

manage in-season variable nitrogen (N) fertilization in cornfields, increasing the 

efficiency compared to preplant  uniform rate N applications. There have also been 

initiatives of using ultrasonic sensors to measure plant height on-the-go for N application 

and crop water demand estimation, but no studies have integrated optical, ultrasonic and 

canopy temperature for crop water stress assessment. The objective of this chapter is to 

evaluate crop water status using infrared thermometry integrated with optical and 

ultrasonic canopy sensors. Specifics objectives are: (i) to evaluate corn canopy 

temperature under different previous crop, N rates and irrigation levels; (ii) test a 

procedure for water stress assessment in commercial cornfields using the integration of 

sensors, (iii) correlate plant based sensor measurements (N status, plant height and 

canopy temperature) with grain yield, soil attributes and detailed topographical features, 

and (iv) study the spatial dependence of canopy temperature. This study was conducted in 

one small plot study and on three producer’s fields in 2010. The small plot experiment 

consisted of two irrigation levels (70 and 100% evapotranspiration – ET), two previous 

crops (corn after corn – CC and corn after soybeans – CS), and four N rates (0, 75, 150, 



166 

 

 

 

225 kg N ha
-1

). Canopy temperature, optical reflectance and plant height were measured 

from R2 until R6 in the small plot study. At the producer’s fields, three long strips across 

center pivots were used to have a non-limited N and water crop, and then continuous 

georeferenced sensors measurements were taken at the V11 growth stage in about 10 

hectares in each field. In the small plot study the crop canopy temperature was influenced 

by irrigation levels and N rates. The procedure proposed could be used to identify zones 

in producer’s field where water stress can be a yield-limiting factor. Inside the zones 

considered there were low correlations between plant height, plant N status and canopy 

temperature, indicating that the canopy temperature had more influence from water stress 

than vegetation cover. Concave landscape positions and lower elevation areas had higher 

yields compared to convex and high elevation portions indicating that detailed elevation 

mapping can be beneficial to delineate stables zones that possibly could be used with 

variable irrigation systems. The spatial dependence of canopy temperature was over 65 

meters across producers’ sites, suggesting that commercial high clearance applicator’s 

swath width is adequate to obtain accurate maps of canopy temperature. The integration 

of canopy reflectance, plant height and canopy temperature was beneficial to detect water 

stressed zones in the field. Opportunities can be foreseen for on-the-go N fertilization 

using integration of these sensors because is likely that water stress can be confounded 

with differential N supply during the growing season and in different zones in the field. 

 

Abbreviation list: IRT, infrared thermometers; NSI, nitrogen sufficiency index; HSI: Plant Height 

Sufficiency Index; CC, corn after corn; CS, corn after soybean; Tc-Ta, canopy temperature minus ambient 

temperature; Tc-Tr, canopy temperature minus canopy temperature of a well watered plot; CWSI, Crop 

Water Stress Index; MTCI, Meris Terrestrial Chlorophyll Index. 
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INTRODUCTION 

 

Infrared thermometers (IRT) were introduced into agriculture more than 40 years 

ago as a hand-held tool to remotely measure the surface radiometric temperature of crops 

to characterize water stress in plants, predict yields and manage irrigation. Using optics 

and specialized detectors, these sensors were engineered to filter thermal radiation in the 

mid to far-infrared region (8 to 14 µm) converting to a digital temperature without direct 

physical contact between the leaf and the thermometer (Hatfield et al., 2008, 

O’Shaughnessy et al., 2011). Advances in IRTs have increased the options available for 

irrigation management available on the market at reasonable prices. The main goal of 

these IRT is to obtain crop canopy temperature to assess crop water status (Aston and 

Van Bavel, 1972; Idso et al., 1978; Idso et al., 1982). Several studies indicated that 

foliage temperature can be correlated with soil moisture content, plant water stress and 

plant transpiration rate (Idso et al., 1978, Howell et al., 1984, Jackson et al., 1981, 

González-Dugo et al., 2006). Vapor pressure deficit (VPD), net radiation and wind speed 

can influence canopy temperature (Sepulcre-Canto et al., 2006). Further studies 

demonstrated a linear relationship between vapor pressure deficit and foliage 

temperature, with one of the most important contributions for proper use of IRT being the 

crop water stress index (CWSI) developed at the USDA-ARS Water Conservation 

Laboratory, Phoenix, Arizona (Jackson et al. 1981). They also showed that canopy 

temperature (Tc) minus air temperature (Ta) is essential to study the water status of a 

crop, relating Tc-Ta to productivity and crop water requirements. Other studies compared 
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the measured canopy temperature to that of a well-watered reference plot (Tr) as an 

indicator of water stress (Fuchs and Tanner, 1966), representing by Tc-Tr (Sepulcre-

Canto et al., 2006). Moran et al., (1994) found that vegetation cover assessed by 

vegetation indices can be negatively correlated with canopy temperature, because the soil 

background can influence canopy temperature measurements. It was also found that 

evapotranspiration and field water deficit can be estimated using remotely sensed 

measurements of surface temperature (crop + soil) and reflectance (red and near infrared 

spectrum) with limited on-site meteorological data (net radiation, vapor pressure deficit, 

wind speed and air temperature). It is challenging to separate the plant water stress from 

N stress (Zhu et al., 2011, Clay et al., 2006) and also separate soil factors such as texture 

and others nutrients from N deficiency (Zillmann et al., 2006). Knowing that several 

factors can influence the assessment of crop water status using canopy temperature 

measured by IRTs, due to interferences and calibration of the equipments, there were 

initiatives for complex variable rate irrigation systems that relied on canopy temperature 

measurement to manage water in center pivots with success (Sadler et al., 2002 and 

O’Shaughnessy et al., 2010). 

In the early 2000’s, active optical crop canopy sensors have been used to manage 

in-season variable N fertilization to match the plant demand that occurs mid-season, 

increasing efficiency compared to broadcast N applications (Stone et al., 1996; Raun et 

al, 2005; Tubana et al., 2008, Schmidt et al., 2009). There were also initiatives of using 

ultrasonic sensors to measure plant height on-the-go for N application (Sui et al., 2006) 

and plant height measurement during the season to estimate evapotranspiration and crop 

water demand (Sammis et al., 1988), but no studies have integrated optical, ultrasonic 
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and canopy temperature sensors for on-the-go crop water stress assessment. The objective 

of this chapter is to evaluate crop water status using infrared thermometry integrated with 

optical and ultrasonic sensors. Specifics objectives are: (i) evaluate corn canopy 

temperature under different previous crop, N rates and irrigation levels; (ii) test a 

procedure for water stress measurement using the integration of sensors, (iii) correlate 

plant based sensor measurements (N status, plant height and canopy temperature) with 

grain yield, soil attributes and detailed topographical features, and (iv) study the spatial 

dependence of canopy temperature. 

 

MATERIAL AND METHODS 

 

Research Fields 

 

This study was conducted on small plots at the South Central Agriculture 

Laboratory (SCAL) (MS10), near Clay Center, Nebraska and on three producer’s fields 

in 2010 (BR10, HU10 and BL10). The BL10 field was near Brule, Nebraska, and the 

other (BR10 and HU10) near Aurora, Nebraska. All fields were sprinkler-irrigated to 

provide enough water for high yielding corn production. The hybrids, starter fertilization 

and water management were selected by each farmer and similar hybrids were selected 

for the small plots at SCAL. Soil characteristics and other management practices and 

related information are presented in Chapter 2. 
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Sensor Platform 

 

One optical sensor, two ultrasonic sensors and one infrared temperature sensor 

(IRT) were mounted in an aluminum apparatus designed to keep enough distance 

between sensors to avoid interference and close enough to measure the same target. The 

aluminum bar was painted black around the infrared thermometer to avoid interference of 

the aluminum surface. For the small plot field, sensors were installed on a bicycle and 

integrated with a differential global navigation satellite system (DGPS) to gather data in 

the same location. For the producer fields the sensors were installed on the boom of a 

high clearance sprayer. All sensors were adjusted to make measurements over the corn 

row, to have minimum bare soil interference in the readings. 

 

Sensors Descriptions 

 

The optical sensor was an active light reflectance sensor that emits and receive 

canopy reflectance in the near infrared (NIR) and visible spectrum regions. The Crop 

Circle 470 (CC470) (Holland Scientific, Lincoln, NE) was used. The CC470 is a three 

band active sensor that measures NIR at 760nm and the red and red-edge bands at 670 

and 720nm, respectively. These spectral bands were used to calculate a vegetation index. 

From the results obtained in the Chapter 1, the MTCI was chosen as vegetation index. 

For plant height measurements we used an ultrasonic distance sensor that 

measures the sound pulse and scattering from the canopy back to the sensor. The model 
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used was a TSPC-30S1 (Senix, Bristol, VT) that has a maximum range of 4.3 meters and 

optimum range of 0.10 to 3 meters, with a field of view less than 5 cm at 1 meter height 

from the target. It is waterproof and temperature-compensated. Output data was 

calibrated in the laboratory and converted to distance in centimeters. Plant height was 

determined by the difference of the sensor height and the distance from the top of the 

canopy to the sensor. 

Canopy temperature was measured using an non-contact infrared temperature 

sensor (IRT) model PSC SSS – LT02H (Process Sensors Corp., Milford, MA), that has a 

lower limit temperature of 0 ºC and a upper limit of 500 ºC, with a 2:1 field of view, and 

accuracy of 0.5 ºC at object temperatures > 20ºC for the target temperature. The sensor 

was oriented at nadir position and kept from about 1 meter above crop canopy. The 

sensor was calibrated in the factory. IRT also measures the temperature of the instrument 

box and the tip of the sensor. The selection of this sensor allowed the use of the tip or box 

temperature as the ambient temperature (Ta) that is required in most of canopy 

temperature studies for calculation of the difference of canopy temperature (Tc) minus 

the ambient temperature (Ta), related to water status of the crop. Details about the (Tc-

Ta) theory can be found in Jackson et al. (1981) and Idso et.al. (1978). To calculate the 

Tc-Ta it we used the ambient temperature measured on site with automated weather 

stations due to variations of the temperature recorded by either box or tip temperature. 

For on-the-go purposes it is required to measure the Ta in real time to calculate the Tc-

Ta, so attempts were made to calculate a similar approach using the tip temperature (Tc-

Tt), where Tt was the tip temperature measured at the same time as the target temperature 

or canopy temperature (Tc). 
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Experimental Design and Data Analysis 

 

Small Plots 

 

The small plot experiment consisted of two irrigation levels (70 and 100% of 

evapotranspiration – ET), two previous crop schemes (corn after corn – CC and corn after 

soybean – CS), and four N rates (0, 75, 150, 225 kg N ha
-1

) with three replications. 

Canopy temperature was measured from R2 until R6 growth stages. Soil moisture sensor 

probes were installed to monitor hourly the soil available water during the growing 

season. The experimental design was a randomized complete block split-split plot, with 

irrigation levels as main plot, previous crop as subplot, and fertilizer N rate as sub-sub 

plots. Analysis of variance was done to evaluate treatment effects on canopy temperature 

(Tc-Ta) and means separation using the Duncan Multiple Range Test (p<0.05). Irrigation 

level, previous crop and replications were considered random effects. Time-repeated 

measures analysis was used with PROC MIXED to evaluate Tc-Ta at different growth 

stages (R2, R3, R4 and R6). 

 

On-Farm Research Sites 

 

At producer’s fields, three long strips across the field were for a non-limited N 

treatment with 250 kg N ha
-1

. These strips were used to calculate the nitrogen sufficiency 

index (NSI) for the optical and plant height sufficiency index (HSI) for the ultrasonic 
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sensors and also to have a reference canopy temperature where N and water were not 

limiting. To evaluate plant water availability at the time of sensing, data were collected 

from two sets of soil moisture probes (Watermarks, Irrometer Co, Riverside, California) 

measuring at 30, 60, 92 and 121 cm soil depth installed in two locations inside the 

reference strip in each field at the beginning of the growing season. These locations 

consisted of low and high elevation areas in the field where one of three reference strips 

were located. These regions were used to calculate a reference canopy temperature, 

considered to be non-water stressed plants (Tc-Tr), where Tr is the canopy temperature of 

a non-stressed crop measured by IRT. This method was used by Sadler et al. (2002) in 

corn and Sepulcre-Canto et al. (2006) assessing olive tree canopy temperatures. Next to 

those reference strips, continuous georeferenced sensor measurements were taken at side-

dress (V11 growth stage) in about 10 hectares in each field. 

The procedure to be tested consisted of the main assumption that water stress 

measured with canopy temperature is the major factor affecting the grain yield. To 

evaluate this assumption two zones in each farmers fields were created: (i) Non-water 

stressed (NonS) and (ii) Water stressed (S). To delineate these zones the Raster 

Calculator in ArcGIS was used considering the following criteria: 

 

NonS = NSI and HSI > 0.95 and Tc-Tr < 0 

S = NSI and HSI > 0.95 and Tc-Tr > 0  

 

Where:  

NSI is the nitrogen sufficiency index calculated using the average MTCI calculated from three replications 

of the N-rich strips; HSI is the height sufficiency index calculated using the average plant height measured 
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using ultrasonic sensors from the N-rich strips; Tc – Tr is the canopy temperature minus the average 

canopy temperature from the N-rich strips where soil matric potential measured by soil moisture sensors 

indicated non water-limited crop at time of sensing. 

 

The criteria of 0.95 was selected based on previous studies (Varvel et al., 2007 

and Solari et al., 2010) where an SI greater than 0.95 can be considered N sufficient. 

Similarly as observed in Chapter 4, a HSI of 0.95 is also a good indicator of N 

sufficiency corn plant. 

After the two zones were delineated, all points inside these zones were used to 

compare the means of the variables using pairwise comparison with Tukey’s test at p < 

0.05. To perform a balanced comparison a number of points were randomly excluded 

from some fields to have the same number for every zone. 

  

Correlations between Canopy Temperature, Topographic Features and Soil 

Attributes 

 

Previous to the reference strip implementation on the producer’s fields, apparent 

electrical conductivity (EC) was mapped using a Veris (Veris Technologies, Salina, KS) 

and grid soil sampling was done to map organic matter and other soil nutrients. Detailed 

elevation was measured using a real kinematic (RTK) GPS associated with the EC 

mapping. To delineate topographical features (concave and convex areas) it was used the 

Focal Statistics procedure from the Spatial Analyst package of ArcGIS 9.3 (ESRI, 

Redlands, CA). Using focal statistics it was calculated the difference in elevation from 

one pixel (5x5 meters) in the raster elevation map and the average elevation inside a 
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radius of 10 meters of that pixel (Focal20m). Focal20m = pixel – (average elevation of 10 

m radius from that pixel). In the resulting map, negative values in meters represent 

concave areas and the positive convex areas, considering one region of influence in the 

pixel of 20m diameter. It is expected that concave areas and lower relative elevation have 

less water stress and lower canopy temperatures compared to convex and relatively high 

elevation areas. All variables (NSI, HSI, Tc-Tr, grain yield, ECsh, OM, pH, P, NO3, RTK 

elevation, Focal20m, Tc-Tr) were correlated using Spearman rank correlations to analyze 

spatial relationships between these variables inside zones (NonS and S). As reported by 

Kitchen et al. (2003) if correlation analysis is used to compare large datasets, such as 

these collected using sensors, the results should be viewed subjectively and mainly used 

as an indicator of those factors to be included in more scrutinizing analyses. With large 

datasets statistically significant correlations are common. However, a variable could be 

found to be significant even with a quite low correlation. For this reason it was decided to 

analyze the data also using zones comparisons. Then, the Focal20m data was used as 

input for clustering in Management Zone Analyst 1.0.1 (MZA) (USDA-ARS and 

University of Missouri, Columbia, MO) (Fridgen et al., 2004) to delineate homogeneous 

zones of concave and convex areas, and evaluate yield, Tc-Tr and Focal20m values 

averaged inside each zone. Two performance indices are calculated with the software to 

determine the number of zones within each field. The Normalized Classification Entropy 

(NCE) measures the disorganization created by dividing the data into classes. The 

Fuzziness Performance Index (FPI) is a measure of membership sharing (fuzziness) 

among classes. The optimum number of zones or classes is when NCE and FPI are 

minimized. 
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Spatial Dependence of Crop Canopy Temperature 

 

Tc-Ta in the producer’s fields was evaluated using geostatistical analysis basically 

to determine if the maximum distance between passes was adequate for this experiment, 

and also an indicator on how far we can sample for Tc-Ta and generate a confident kriged 

map. The semivariograms to determine the model and range were calculated using GS+ 

(Gamma Design Software, Plainwell, MI), and the models were adjusted and validated 

using cross validation. 

 

RESULTS AND DISCUSSION 

 

Comparing Ambient and Sensor Tip Temperatures  

 

In the beginning of this project about on-the-go canopy temperature 

measurements, it was expected that the temperature measured by the tip of the IRT (Tt) 

could be used as a substitute of Ta for Tc-Ta calculations, but variations obtained during 

the course of the day were high compared to Ta (Figures 1, 2, 3 and 4). For the small 

plots experiment where the collection time varied from 3 to 6 hours, the Tt variation was 

a big concern. For the producer’s fields where the data gathering was done in one or two 

hours, the Tt also varied. When air temperatures are not available, the adjustment used by 

Evans et al. (2000) can be used, which entails the regression of temperature against time, 

subtracting the trend, and adding back the average. For this study to calculate the Ta 
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diurnal variations for each Tc reading in different positions (to obtain Tc-Ta for each 

position), we was used an equation regressing the time and the hourly data available from 

an automated weather station near the sites, using the same method proposed to obtain 

the corrected Ta. The hourly air temperature information was downloaded from the High 

Plains Regional Climate Center. For the small plot study hourly temperatures were 

recorded on site, and for the producer’s fields we used the closest weather station. For the 

producer’s sites the diurnal Ta variation was also a concern for corrections, even with 

collection in 2 hour interval (Figure 2, 3 and 4). For the BR10 field where the 

measurements were done early evening, the Ta dropped faster than the crop temperature 

(Figure 2). To be able to compare results from this study with previous studies, we used 

Ta estimated from the hourly data from weather stations to calculate Tc-Ta. 

Another difficulty encountered in the canopy temperature data was the filtering 

process for outliers caused by several issues, e.g. soil background interference, gaps in 

the plots and inter-row sensing due to inadequate sensor orientation. These outliers can be 

observed in Figures 1 to 4. Fortunately, the optical measurements and plant height could 

be used to help this filtering process. Basically, most of the outliers were filtered using 

the following criteria: Exclude the temperature data when the reflectance was lower than 

the value at 15% percentile in the check plot (0 kg N ha
-1

) ; plant height lower than the 

smallest plant inside the plot (excluding the buffer), and temperatures with coefficient of 

variation higher than 200% in each plot. 
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Small Plots 

 

The 2010 growing season had good early season rainfall delaying the irrigation 

for the small plot area compared to other years. The canopy measurements started at V7, 

but the irrigation commenced around V15. Thus only later stages of corn were selected 

for statistical analysis to study canopy temperature effects. Analysis of variance of 

canopy temperature showed significant correlations for irrigation level and N rates, but 

no interaction terms were observed (Table 1). Irigation levels affected the Tc-Ta similarly 

for both previous crops, and significant differences were observed at R3 and R4 growth 

stages (Table 2). When soybean was the previous crop, differences in canopy temperature 

were also observed at R6 (Table 2), perhaps due to higher leaf density in vigorous plants. 

However, Hatfield (1983) observed in wheat that non-transpiring panicles above the 

canopy can confound canopy temperature measurements. There are chances in the R6 

stage that the tassel or other dry material may have interfered with readings. Analyzing N 

rates effects on canopy temperature across growth stages and previous crop, there were 

differences between the check plot (0 kg N ha
-1

) and the other N rates (Table 3). 

Carefully attention was given during the filtering process to exclude plot alley ways and 

extremely low plants using the plant height measured by ultrasonic sensors, but as 

observed by Moran et al. (1994) and Heilman et al. (1981), soil temperature can still be 

interfered with canopy temperature with low vegetation cover. During sensing it was 

observed that the CS had higher plants than CC, but the ANOVA didn’t indicate 

significant differences in canopy temperature between previous crops. The growth stage 
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R4 was the best stage to sense water stress as shown in Figure 2, with pronounced 

differences in Tc-Ta between irrigation levels. At this stage the highest N rate had the 

lowest temperature also for 100 % ET. This experiment showed that differences from 0.5 

to 3 ºC can be detected when different irrigation levels were used across previous crop 

and N rates. Overall the experiment showed that intensive data collection of canopy 

temperature can be viable to detect small differences in irrigation levels across previous 

crop and N rates. 

  

On-Farm Research Sites 

 

All producer fields had adequate soil moisture at the time of sensing for the reference 

strip, as assured by measurements taken with soil moisture sensors (Table 4). Normally, 

in practical situations the trigger point to start irrigation for corn planted reference is 

around 85 cB, to have enough time for a safe and complete irrigation event. This 

moisture threshold will change with soil type, clay content and others soil physical 

properties, but the soil matric potential at all sites were generally very low, indicating 

sufficient available soil water content. The highest measurements for the soil moisture 

sensors in the BR10, HU10 and BL10 fiels were 15, 61 and 32 cB, respectively (Table 4), 

so enough moisture was observed in all reference strips, either in the low or high 

elevation areas of the field. Based on these measurements, the calculation of an average 

reference temperature (Tr) from these strips was a good representation of a non-water 

limited crop, and the Tc-Tr approach can be used as an indicator of crop water stress for 

the producer fields. As observed in Chapter 2, local variations can still have effect when a 
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reference value is adopted for SI, and certainly soil spatial variability can also affect Tc-

Tr, but variability in Tr was not evaluated in this study. 

On those areas with SI higher than 0.95 we observed considerable zones with low 

and high Tc-Tr, in this case represented by negative and positive numbers (Figure 6). The 

white areas in the maps represent NSI and HSI < 0.95, and these were not considered in 

the analysis to determine zones with water stress, because the canopy temperature can be 

influenced by N deficient plants. All these producer’s sites (BR10, HU10 and BL10) had 

enough N applied before the sensor measurements were conducted (over 180 kg N ha
-1

). 

Analyzing the NonS and S zones, significant grain yield differences were observed 

between zones in 2 of 3 fields (Table 5). For the BR10 and HU10 sites the differences in 

grain yield caused by water stress were around 840 kg ha
-1

 on average; but BL10 

difference was only 45 kg ha
-1

 and not statistically significant. The Tc-Tr and Tc-Ta also 

showed significant differences between the zones, indicating that the crop canopy 

temperature was higher for water-stressed plants, as expected. 

Soil fertility between zones were not different, though lower nitrate in the 

beginning of the season was observed for HU10 and BL10. After starter N fertilizer and 

N sidedressing it was not a concern for these zones because average SI was higher than 

0.96 in all zones (Table 5). Organic matter, pH and P were similar in all fields. 

The spatial variability observed in Figure 7 for the BR10 field showed that NSI, 

HSI, Tc-Tr and grain yield had similar spatial patterns when all data was used. On the 

East side of the field higher yields were observed and in the Tc-Tr map two different 

zones of canopy temperatures were noted even with high NSI and HSI. For the HU10 

field the spatial patterns were not delineated with as large zones as BR10, but it can be 
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seem that lower yields were obtained in areas with higher Tc-Tr (Figure 8). In the BL10 

field the spatial pattern was similar for NSI, HSI and yield, but for canopy temperature it 

seems that the visual correlations were low. In general the procedure proposed to 

delineate zones of water stress could identify zones in the producer’s field where water 

stress can still be a yield limiting factor even with irrigation. 

 

Correlations between Canopy Temperature, Topographic Features and Soil 

Attributes 

 

Inside the zones where NSI and HSI were higher than 0.95, water stress played a 

major role, because low correlations between plant height (HSI), plant N status (NSI) and 

canopy temperature (Tc-Tr) were found, indicating that the canopy temperature had more 

influence from water stress than vegetation cover (Table 7, 9 and 11). Negative 

correlations between NSI, HSI and Tc-Tr were observed, indicating that taller plants with 

adequate N nutrition can have lower temperatures, though Moran et al., (1994) showed 

that vegetation indices can be negatively correlated with canopy temperature, because the 

soil background can influence canopy temperature measurements.  

In the BR10 field (sandy site) moderate correlations between yield and NSI were 

noted (r=0.61), indicating that even in zones with SI > 0.95, N nutrition was important to 

achieve higher yields (Table 6 and Figure 10). Generally the spatial patterns showed in 

Figure 10, indicated that elevation, EC shallow and OM were high correlated, but Table 7 

also showed correlations of concave and convex areas with grain yield (r=-0.579), where 

lower yield was observed in convex zones. 
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At the HU10 and BL10 fields there were low correlations between N status and 

plant height with yield, indicating again that water stress was the major yield limiting 

factor on those zones used to study the water stress effect measured by IRTs (Table 7). 

For BR10 field the visual correlation of the procedure to determine concave and convex 

areas (Focal 20 m) had high correlation with EC shallow, but the Spearman rank 

correlation was non-significant (Table 9). Grain yield was negatively correlated with 

RTK elevation, with the same trend for BR10. For the BL10 field elevation was 

positively correlated with yield and EC shallow (r = 0.22 and 0.20). Generally canopy 

temperature was not correlated with yield or NSI on those fields, indicating that the water 

stress measured by IRT integrated with the plant N status and height can be a good 

approach to isolate water effects on the corn canopy.  

In 2 of 3 fields (BR10 and HU10) the concave and lower elevation areas had 

higher yields compared to convex and higher elevation areas. These fields also had higher 

Tc-Tr at high elevation zones where the OM was lower. 

In general, soil fertility (pH, P, NO3, OM) was not correlated with yield as 

expected, since nutrients were supplied in adequate amounts for the crop (Table 5). 

The entire dataset for the three producer fields were analyzed using MZA, 

clustering zones of Focal20m to compare topographical features (concave or convex 

areas) in terms of grain yield and canopy temperature. MZA indicated an optimum 

number of zones as 3 for all sites, minimizing the NCE and FPI (Fridgen et al., 2004). As 

observed in Figure 13, the lower the Focal20m (concave areas) and Tc-Tr, the higher the 

yield for all fields. This is a strong indicator that the procedure for zone delineation 

(Focal20m) in concave and convex areas can be a good tool for delineation of zones to be 
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considered in variable rate irrigation systems. These zones are spatial and temporally 

stable and likely will behave similarly in terms of water demand and consequently 

canopy temperature. Zone 1 was the lowest yielding zone across fields, with yields 

around 7000, 12500 and 9000 kg ha
-1

 for BR10, HU10 and BL, respectively, and zone 3 

had the highest yields (Figure 13). Zones 1 and 3 had a difference of 4000 kg ha
-1

 for the 

BR10 field and 1000 kg ha
-1

 for the BL10 field, indicating that the zones were very 

different in terms of yield and canopy temperature. At all sites even including the areas 

with NSI and HSI < 0.95, the zones (which can introduce a bias in the interpretation of 

canopy temperature as a water stress indicator, because N is the main factor) lower yields 

were found when the canopy temperature was higher compared to the reference and that 

concave areas were beneficial in all fields (Figure 14, 15 and 16). This finding confirms 

that the Focal20m could be a good approach to refine irrigation optimizing the use of 

water and could be an important layer to use with optical and ultrasonic sensors for site-

specific N management to discriminate water effects from plant N demand. 

 

Spatial Dependence of Crop Canopy Temperature 

 

The spatial dependence of canopy temperature determined by semivariogram 

analysis was over 65 meters across farmer sites, with varying ranges of 65, 80 and 210 

meters for HU10, BL10 and BR10, respectively, showing that commercial high clearance 

applicator’s swath width was detailed enough to obtain accurate kriged maps during 

canopy temperature mapping (Figure 17). The resultant maps showed consistent spatial 

patterns (Figures 7, 8 and 9) compared to other measurements made for NSI, HSI and 
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yield. For the BR10 field, the model had very low semivariance at small distances 

indicating that the canopy temperature in this field had low variability at small scales, 

different from the other sites where the semivariance was much higher (higher intercept) 

at small distances. These effects can be observed in the cross validation where BR10 had 

the best prediction model with low standard error (SE) and higher r
2
. Even with a higher 

intercept for the HU10 and BL10 sites, the maps represent well the spatial variability of 

Tc-Ta. For both sites, the model used for interpolation underestimated canopy 

temperature, showing that for several estimated points the actual canopy temperature was 

much higher, almost double (Figure 18 and 19). These high temperatures could be error 

during mapping where the sensors “see” the inter-row or deficient plant stand with long 

gaps between plants, as observed on those fields. Maybe increasing the IRT field of view 

angle from nadir to slightly oblique can ameliorate these interferences, but also acute 

angles can introduce differences of 3 to 5ºC into canopy temperature measurements (Paw 

E et al., 1989). 

 

SUMMARY AND CONCLUSIONS 

 

In this chapter we evaluated the use of on-the-go canopy temperature measured by 

infrared sensors integrated with plant N status measured with optical sensors and plant 

height measured with ultrasonic sensors for crop water status assessment. In the small 

plot experiment the effect of different irrigation levels, previous crop and N rates were 

evaluated on canopy temperatures. We found that canopy temperature was influenced by 

irrigation level and N rate. Small differences between 70 and 100% irrigation levels could 
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be detected using IRTs and small plants with lower N supply had the highest canopy 

temperatures. On-farm research plots were mapped and the procedure proposed (using 

optical and ultrasonic sensors, the criteria of NSI and HSI > 0.95 as a filter for IRT 

evaluation of water stress) could identify zones in the field where water stress was the 

major yield-limiting factor, showing differences of about 840 kg ha
-1

 due to water deficit 

even with irrigation. Correlations between plant, soil, topographical features and canopy 

temperature in zones where water was the major yield-limiting factor indicated that 

canopy temperature was important to delineate zones prone to water stress, but plant N 

status still affected grain yield simultaneously. The delineation of zones using the 

Focal20m procedure could identify great differences in yield, and showed that concave 

areas had cooler plants. It is likely that measurements taken with the IRT used in this 

study can be used in commercial high clearance machines to map canopy temperature. 

The integration of plant N status, plant height and canopy temperature was beneficial to 

detect water stressed zones in the field, affecting yield and possibly promising to 

delineate stable zones for variable rate irrigation. Opportunities can be foreseen also for 

on-the-go N fertilization using integration of sensors because is likely that water stress 

can be confounded with N supply during the growing season and in different zones of the 

field. More studies should be done to investigate the integration of these sensors with 

detailed topography to fine tune in-season N variable rate fertilization. 
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Figure 1. Diurnal temperature variations in the IRT sensor tip (Tt) and ambient 

temperature (Ta) for the small plots area. Ta was acquired using the onsite automated 

weather station at the MS field in July1st, 2010.  
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Figure 2. Temperature variations in the IRT sensor tip (Tt), canopy (Tc) and ambient (Ta) 

for the BR10 field. Ta from High Plains Regional Climate Center in June 28
th

, 2010. 
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Figure 3. Temperature variations in the IRT sensor tip (Tt), canopy (Tc) and ambient (Ta) 

for the HU10 field. Ta from High Plains Regional Climate Center in June 30
th

, 2010. 
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Figure 4. Diurnal temperature variations in the IRT sensor tip (Tt) and ambient 

temperature (Ta) for the BL10 site. Ta from High Plains Regional Climate Center in July 

13
th

, 2010.  
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Figure 5. Effects of N rates on Tc-Ta under different irrigation levels and growth stages 

(R2 – R6) for MS site. 
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Figure 6. Zones delineated indicating water status based on the procedure proposed. 

Inside the zones where NSI and HSI > 0.95 the Tc-Tr > 0 represent water-stressed zone 

and Tc-Tr < 0 non water-stressed zone.   
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Figure 7. Interpolated maps of NSI, HSI, Tc-Tr and yield for the BR10 field. 
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Figure 8. Interpolated maps of NSI, HSI, Tc-Tr and yield for the HU10 field. 
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Figure 9. Interpolated maps of NSI, HSI, Tc-Tr and yield for the BL10 field. 
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Figure 10. Soil attributes and topographical features for the BR10 field. 
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Figure 11. Soil attributes and topographical features for the HU10 field. 
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Figure 12. Soil attributes and topographical features for the BL10 field.  
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Figure 13. Grain yield, Focal 20 m and Tc-Tr average inside each zone delineated with 

Focal20m that represents concave and convex areas in the field. 
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Figure 14. Average of Tc-Tr (ºC) and concave and convex areas in each zone delineated 

by Focal20m, overlaying yield map (kg ha
-1

) for the BR10 field. Zones 1,2 and 3 were 

classified in three zones of different Focal20m values using MZA. For each zone was 

calculated the average value of Focal 20m and Tc-Tr. 
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Figure 15. Average of Tc-Tr (ºC) and concave and convex areas in each zone delineated 

by Focal20m, overlaying yield map (kg ha
-1

) for the HU10 field. Zones 1,2 and 3 were 

classified in three zones of different Focal20m values using MZA. For each zone was 

calculated the average value of Focal 20m and Tc-Tr. 

  



205 

 

 

 

 

Figure 16. Average of Tc-Tr (ºC) and concave and convex areas in each zone delineated 

by Focal20m, overlaying yield map (kg ha
-1

) for the BL10 field. Zones 1,2 and 3 were 

classified in three zones of different Focal20m values using MZA. For each zone was 

calculated the average value of Focal 20m and Tc-Tr. 
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Figure 17. Semivariograms and cross validation for the canopy temperature (Tc-Tr) 

measured with IRT for the BR10 field. 
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Figure 18. Semivariograms and cross validation for the canopy temperature (Tc-Tr) 

measured with IRT for the HU10 field. 
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Figure 19. Semivariograms and cross validation for the canopy temperature (Tc-Tr) 

measured with IRT for the BL10 field. 
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Table 1. Analysis of variance calculated for canopy temperature (Tc) minus ambient 

temperature (Ta) obtained using infrared temperature sensors (IRT) at different irrigation 

levels (70 and 100 % ET), different previous crop (CC and CS) and nitrogen rates 

between growth stages R2 and R6 for the MS site. 

Source of variation     

Effect Num DF Den DF F Value Pr > F 

Irrigation Level 1 34.9 4.53 0.0404 

N 3 174 4.38 0.0053 

Irrigation Level*N 3 174 0.29 0.8308 

Previous Crop 1 174 3.32 0.0703 

Irrigation Level*Previous Crop 1 174 3.19 0.0757 

N*Previous Crop 3 174 0.19 0.9047 

Irrigation Level*N*Previous Crop 3 174 0.21 0.8869 

 

 

 

 

Table 2. Tc-Ta at different irrigation levels, previous crop (corn after corn – CC and corn 

after soybeans – CS) and growth stages of corn (R2 to R6) for the MS site. 

Tc-Ta (ºC) Previous Crop 

 CC   CS 

  Irrigation Levels 

Growth stage 70% ET  100% ET   70% ET  100% ET 

R2 -0.66a  -0.39a   -1.01a  -1.16a 

R3 0.81a  0.68b   0.80a  -0.44b 

R4 1.50a  -1.31b   1.50a  -1.68b 

R6 1.46a  1.40a   1.75a  1.06b 

 

* Letters in the rows indicate treatment mean differences in canopy temperature between irrigation levels 

(70 and 100% ET) inside the same previous crop, either CC or CS, using Duncan’s Multiple Range Test 

(p<0.05). 
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Table 3. Treatment mean differences for Tc-Ta measured at different N rates across 

growth stages, irrigation levels and previous crops. Duncan Multiple Range Test 

(p<0.05) for MS site. 

 

Differences of TRT Least Squares Means    

N N Estimate Standard Error DF t Value Pr > |t| 

0 75 0.6301 0.3027 32 2.08 0.0454 

0 150 0.9773 0.3027 32 3.23 0.0029 

0 225 0.9025 0.3027 32 2.98 0.0054 

75 150 0.3472 0.3027 32 1.15 0.2599 

75 225 0.2724 0.3027 32 0.9 0.3749 

150 225 -0.07476 0.3027 32 -0.25 0.8065 

 

 

Table 4. Soil matric potential (cB – centibars) measured with soil moisture sensors 

(Watermark) installed in high and low elevation areas delineated from elevation inside 

the N-rich strip in each of the producer fields at the day of sensing. 

 

Elevation Depth (cm) Soil Matric Potential (cB) 

High  BR10 HU10 BL10 

 30 15 61 15 

 60 12 50 20 

 92 10 43 23 

Low     

 30 15 13 18 

 60 3 8 32 

 92 3 4 30 
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Table 5. Zonal average for the points inside each non water-stressed (NonS) and water-

stressed (S) zones delineated for each producer field. 

Variable  BR10   HU10   BL10   

  NonS S  NonS S  NonS S  

Yield (kg ha
-1

)  11915* 10850*  13089* 12476*  9883 9838  

NSI  1.16 1.11  0.99 0.96  1.01 0.98  

HSI  1.15 1.13  0.98 0.95  1.00 0.98  

Tc-Tr (ºC)  -1.70* 0.80*  -0.82* 0.90*  -1.39* 2.47*  

Tc-Ta (ºC)  -1.96* 0.54*  2.16* 3.83*  -1.80* 1.74*  

pH  6.50 6.53  7.23 7.14  7.11 7.24  

P (mg kg
-1

)  15.99 16.83  16.31 17.34  17.48 16.93  

NO3 - N (µg g
-1

)  5.26 6.21  1.87 1.86  1.88 1.89  

OM (g kg
-1

)  1.83 1.51  2.88 2.85  2.16 2.15  

RTK (m)  523.38 523.84  573.76 574.51  1057.63 1057.39  

ECsh (mS m
-1

)  1.22 1.05  8.83 8.99  3.84 3.66  

Focal (m)  -0.05* 0.02*  -0.02* 0.01*  -0.03 -0.02  

 

* Pairwise comparisons between NonS and S zones in the field using Tukey-test significant at p < 0.05 
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Table 6. Descriptive statistics for the variables measured in the BR10 field 

 
Variable N Mean Std Dev Median Minimum Maximum 

NSI 1448 1.17 0.10 1.19 0.95 1.42 

HSI 1448 1.18 0.12 1.17 0.95 1.54 

Tc-Tr 1448 -1.01 1.37 -1.18 -3.71 2.51 

Yield 1448 11861 2155 12111 6400 17686 

OM 1448 1.74 0.29 1.83 0.88 2.38 

RTK_elevation 1448 523.49 0.36 523.49 522.65 524.91 

EC_shallow 1448 1.18 0.37 1.14 0.46 2.01 

Focal 20 m 1448 -0.05 0.21 -0.07 -0.57 0.73 

P 1448 16.25 1.46 15.96 13.47 20.18 

pH 1448 6.51 0.04 6.49 6.45 6.61 

NO3 1448 5.48 2.50 5.80 1.68 9.80 

 

 

Table 7. Spearman rank correlations between variables for the BR10 field 

 
Spearman Correlation Coefficients, N = 1448        

Prob > |r| under H0: Rho=0          

 NSI HSI Tc-Tr Yield OM RTK_elev EC_sh Focal20m P pH NO3 

NSI 1.000 0.478 -0.188 0.610 0.243 -0.411 0.356 -0.435 -0.177 -0.145 -0.133 

HSI 0.478 1.000 -0.002* 0.294 0.000* -0.141 0.087 -0.297 -0.103 -0.005* -0.009* 

Tc-Tr -0.188 -0.002* 1.000 -0.138 -0.373 0.505 -0.066 0.053 0.044* 0.255 0.209 

Yield 0.610 0.294 -0.138 1.000 0.249 -0.587 0.495 -0.579 -0.212 -0.174 -0.207 

OM 0.243 0.000* -0.373 0.249 1.000 -0.357 0.531 -0.011* -0.261 -0.147 -0.190 

RTK_elev -0.411 -0.141 0.505 -0.587 -0.357 1.000 -0.528 0.616 0.209 0.226 0.217 

EC_sh 0.356 0.087 -0.066 0.495 0.531 -0.528 1.000 -0.171 -0.212 -0.268 -0.315 

Focal20m -0.435 -0.297 0.053 -0.579 -0.011* 0.616 -0.171 1.000 0.153 -0.016* -0.077 

P -0.177 -0.103 0.044* -0.212 -0.261 0.209 -0.212 0.153 1.000 -0.307 -0.337 

pH -0.145 -0.005* 0.255 -0.174 -0.147 0.226 -0.268 -0.016* -0.307 1.000 0.850 

NO3 -0.133 -0.009* 0.209 -0.207 -0.190 0.217 -0.315 -0.077 -0.337 0.850 1.000 

 
* Correlations were not significant at p < 0.05 
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Table 8. Descriptive statistics for the variables measured in the HU10 field 

 
Variable N Mean Std Dev Median Minimum Maximum 

NSI 1461 0.97 0.01 0.97 0.95 1.00 

HSI 1461 0.81 0.04 0.80 0.75 1.00 

Tc-Tr 1461 2.80 1.61 2.40 0.00 8.63 

Yield 1461 13234 1572 13321 3012 20172 

OM 1461 2.97 0.49 3.09 1.31 3.77 

RTK_elevation 1461 574.07 3.37 574.18 568.22 580.88 

EC_shallow 1461 8.75 1.62 8.82 5.52 12.16 

Focal20m 1461 -0.01 0.14 0.01 -0.59 0.65 

P 1461 20.51 3.32 19.90 14.99 26.54 

pH 1461 5.95 0.12 5.91 5.81 6.43 

NO3 1461 17.58 1.36 17.33 14.78 20.43 

 

 

 

Table 9. Spearman rank correlations between variables for the HU10 field 

 
Spearman Correlation Coefficients, N = 1461        

Prob > |r| under H0: Rho=0          

 NSI HSI Tc-Tr Yield OM RTK_ele

v 

EC_sh Focal20

m 

P pH NO3 

NSI 1.000 0.118 -0.341 0.042* 0.041* 0.013* -0.054 0.003* 0.101 0.080 0.009* 

HSI 0.118 1.000 -0.198 0.099 -0.236 -0.304 -0.070 -0.159 0.007* -0.053 0.043* 

Tc-Tr -0.341 -0.198 1.000 0.000* 0.127 0.142 0.082 0.043* -

0.048* 

-0.052 -

0.013* 

Yield 0.042

* 

0.099 0.000* 1.000 -0.118 -0.295 0.153 -0.230 0.052 0.005

* 

-

0.024* 

OM 0.041

* 

-0.236 0.127 -0.118 1.000 0.469 -0.093 0.246 -0.114 0.046

* 

-

0.013* 

RTK_ele

v 

0.013

* 

-0.304 0.142 -0.295 0.469 1.000 0.087 0.410 -0.060 0.066 -

0.039* 

EC_sh -0.054 -0.070 0.082 0.153 -0.093 0.087 1.000 0.034* 0.013* 0.010

* 

-

0.038* 

Focal20m 0.003

* 

-0.159 0.043* -0.230 0.246 0.410 0.034* 1.000 0.031* 0.009

* 

0.006* 

P 0.101 0.007

* 

-

0.048* 

0.052 -0.114 -0.060 0.013* 0.031* 1.000 0.665 -0.571 

pH 0.080 -0.053 -0.052 0.005* 0.046* 0.066 0.010* 0.009* 0.665 1.000 -0.482 

NO3 0.009

* 

0.043

* 

-

0.013* 

-

0.024* 

-

0.013* 

-0.039* -

0.038* 

0.006* -0.571 -0.482 1.000 

 
* Correlations were not significant at p < 0.05 
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Table 10. Descriptive statistics for the variables measured in the BL10 field 

 
Variable N Mean Std Dev Median Minimum Maximum 

NSI 1570 1.03776 0.04506 1.0365 0.95007 1.18475 

HSI 1570 1.03542 0.05714 1.02633 0.9502 1.2558 

Tc-Tr 1570 0.38879 2.34457 -0.13 -3.805 8.14 

Yield 1570 10242 2105 10448 62.3354 16852 

OM 1570 2.15452 0.10902 2.09146 2.01096 2.53076 

RTK_elevation 1570 1058 2.5039 1057 1054 1064 

EC_shallow 1570 3.89199 1.52492 4.16693 1.0496 6.67878 

Focal20m 1570 -0.02584 0.11194 -0.02643 -0.60461 0.27698 

P 1570 16.68864 4.42243 15.86671 10.24663 27.39797 

pH 1570 7.19001 0.18274 7.1985 6.80091 7.50846 

NO3 1570 1.88149 0.4291 1.72011 0.80253 3.05766 

 

 

 

Table 11. Spearman rank correlations between variables for the BL10 field 

 

 
Spearman Correlation Coefficients, N = 1570        

Prob > |r| under H0: Rho=0          

 NSI HSI Tc-Tr Yield OM RTK_elev EC_sh Focal20m P pH NO3 

NSI 1.000 0.246 -0.124 0.128 -0.088 -0.033* -0.086 -0.086 -0.019* 0.188 0.041* 

HSI 0.246 1.000 -0.133 0.118 0.191 0.168 0.214 -0.025* 0.012* -0.034* 0.006* 

Tc-Tr -0.124 -0.133 1.000 0.147 -0.082 0.030* 0.096 0.104 -0.361 -0.266 -0.359 

Yield 0.128 0.118 0.147 1.000 0.109 0.222 0.208 -0.011* -0.264 0.047* -0.135 

OM -0.088 0.191 -0.082 0.109 1.000 0.701 0.408 0.292 -0.100 -0.077 0.143 

RTK_elev -0.033* 0.168 0.030* 0.222 0.701 1.000 0.562 0.438 -0.307 0.114 0.005* 

EC_sh -0.086 0.214 0.096 0.208 0.408 0.562 1.000 0.322 -0.122 -0.006* -0.113 

Focal20m -0.086 -0.025* 0.104 -0.011* 0.292 0.438 0.322 1.000 -0.078 -0.032* 0.097 

P -0.019* 0.012* -0.361 -0.264 -0.100 -0.307 -0.122 -0.078 1.000 0.035* 0.354 

pH 0.188 -0.034* -0.266 0.047* -0.077 0.114 -0.006 -0.032* 0.035* 1.000 0.178 

NO3 0.041* 0.006* -0.359 -0.135 0.143 0.005* -0.113 0.097 0.354 0.178 1.000 

 
* Correlations were not significant at p < 0.05 
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GENERAL SUMMARY AND FUTURE SUGGESTIONS 

 

The main objective of this research was to develop and validate strategies for in-

season N fertilization using integration of plant-based canopy sensors, considering spatial 

variability and detailed topographical features. 

The first experiment was conducted to compare different vegetation indices for 

on-the-go N assessment with different soil N residual from previous crop and irrigation 

levels. We found that some vegetation indices are less susceptible to the effects of 

irrigation and more reliable for N estimation in the corn plant. This is a good indication 

that the selection of index is very important depending on particular purposes. 

The second experiment showed that local variations should be considered if the 

N-rich concept is used, due to local variations across agricultural fields. We also 

generated a database for yield linked with a sufficiency index response for diverse soil 

types, crop systems, topographical features, weather conditions, and locations in 

Nebraska.  This database can be used for future algorithm development and simulations. 

The third experiment showed that the correlation between optical and ultrasonic 

sensors were strong and that the integration of both sensors to measure the plant N status 

improves the use of on-the-go systems for N assessment. 

These correlations were strong between both sensors and, in the fourth 

experiment, encouraged the development of a first approximation of an algorithm for in-

season N fertilization based on the use of plant height information. It is important to note 

that plant height varies in response to several sources of stress other than N derived, so 

the algorithm is limited for some conditions. 
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The last experiment used on-the-go infrared thermometry in association with 

optical and ultrasonic sensors to study the spatial variability of crop water stress and the 

effects on grain yield. We were able to isolate the potential water stress with the 

integrated use of sensors and detailed topographical features, showing great differences in 

yield between zones delineated based on canopy temperature. This bodes well for 

improving the ability of sensors to make better decisions in real-time, considering the 

benefits of the integration of plant-related information. 

Future research possibilities complementing this study include the use of local 

variations embedded in systems that can update the sufficiency index information on-the-

go in commercial cornfields. Another complementary line of research would involve the 

development of optical sensors with the ability to sense water and nitrogen content in 

crops simultaneously. In more complex situations normally encountered in producers’ 

fields (e.g., differing hybrids, plant population, crop history, and fertilization history), the 

integrated use of sensors and detailed layers of information should be beneficial. 

Certainly the area size and production system adopted will be of great importance when 

deciding the best strategy and conditions for the use of these technologies. 
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APPENDIX 

 

 
 

Appendix 1.1. Example of data collection using sensors with the bicycle platform in the 

MS field. 
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Appendix 1.2. Experimental design for the MS Study, that accommodates in parts data used for chapters 1, 2, 3, 4. Source: 

adapted from Glen Slater record keeping. 
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Appendix 2.1. Example of data collection using sensors with the bicycle platform in the 

BN field. 
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Appendix 3.1. High clearance machine used to take sensor readings and the sensor 

attachment to the spray boom. 
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Appendix 3.2. Real Time Kinematic GPS base station and equipment to measure EC 

(Veris). Source: (ARS/USDA server).  
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Appendix 3.1, 4.1. and 5.1. Apparatus designed to accommodate sensors in the bicycle 

platform or in the boom of high clearance sprayers. CC210 – Crop circle sensor, model 

210 (2 bands – 880nm and 590 nm), CC470 – Crop Circle 470 (3 bands – 760nm, 720nm 

and 670nm), IRT – infrared thermometer for canopy temperature measurements. 
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