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Abstract

We propose an alternative approach for estimating soil-water characteristic curves

based on truncated beta nonlinear regression models. Thus, assuming that the re-

sponse variable follows a truncated beta distribution. Maximum likelihood estima-

tor of the curve parameters are obtained by direct maximization of the likelihood

function and diagnostic analysis tools are considered to check for model adequacy

under the two considered models. A soil profile from the Buriti Vermelho River

Basin database is analyzed using the proposed methodology.

Key-words: Truncated normal, truncated beta, nonlinear generalized models, soil-

water characteristic curves.

1 Introduction

A soil-water characteristic curve (SWCC) is a useful graphical tool which describes the

amount of water remaining in the soil (water volume content) as a function of the soil water

tension (matric potential). These curves are usually estimated by nonlinear regression

models fitted to data sets obtained from laboratory experiments or from pedotransfer

functions. The most widely used method for estimating the parameters of a SWCC is

the nonlinear least squares (LS) method (Yates et al., 1992; Dourado-Neto et al., 2000;

Cornelis et al., 2005; Silva et al., 2006; Chao et al., 2008). However, given the nature

of the SWCC data, it is known that the observed water content at a matric potential

will be such that it is not less than the residual soil-water content, and no more than

the saturated soil-water content; therefore, the data is subjected to a phenomenon known

in statistics as truncation. As argued in Maddala (1983), it is important to account for

truncation in regression analysis since usual least squares estimates (LSEs) can be biased,
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inefficient, and inconsistent, which can seriously affect the estimated curve and prediction

based on it.

As argued in Greene (2003), truncation is a characteristic of the probability distribu-

tion from which the sample data are drawn. Therefore, to account for the truncated nature

of the observed data we must consider a truncated probability distribution, which is the

part of a distribution that is above, below or between some specified value. In common

truncated regression the effects of truncation arise when inferences about a population

are based on a sample drawn from a subset of the population. For example, Hausman

& Wise (1977) present a study of income where only households with income below a

certain poverty line are part of the sample, and A’Hearn (2004) analyzes historical height

data drawn from military records which are truncated from below since armies imposed

a minimum height requirement. On the other hand, truncation in water retention data

occurs naturally since, given the residual soil-water content and the soil-water content at

saturation, the soil-water content at any other matric potential will be truncated between

this two values.

In the context of linear truncated regression models, a variety of contributions is avail-

able in the literature and a number of different approaches have been considered to esti-

mate the model parameters. Heckman (1976) proposes a corrected least squares estimator,

where the bias produced from applying the LS procedure to truncated regression models is

characterized as a specification error or an omitted variable problem. Thus, the corrected

LS estimator is constructed by including the omitted variable as a regressor. Since usual

LS estimator are known to be biased, a popular choice for the estimation of such models

are the method of maximum likelihood or likelihood based methods. In Hausman & Wise

(1977), the authors propose a maximum likelihood procedure and provide a Newton-type

algorithm to obtain the parameter estimates. In Amemiya (1985), the method of maxi-

mum likelihood is used to estimate the model parameters. In A’Hearn (2004) a restricted

maximum likelihood estimator is proposed and applied to height samples data. This re-

stricted ML estimator imposes an a priori value on the standard deviation of the response

variable while estimating its mean freely. The author also uses simulation results to show

that his proposed methodology behaves as the restricted ordinary least squares. There

is also a great deal of contributions in semiparametrics and nonparametrics estimation

of truncated linear regression model (e.g. Powell (1986), Lee (1992), Lee (1993), Newey



(2004), Cosslett (2004), and Chen & Zhou (2012)).

Moreover, since the statistical analysis is conditioned on the probability model consid-

ered and can be misleading if the assumed model is not plausible enough, it is important

to conduct diagnostics to assess model adequacy. As argued in Ritz & Streibig (2008), it

is known that substantial departures from model assumptions could result in biased and

inaccurate estimates and distorted standard errors. Thus, we propose a diagnostic analy-

sis to check the underlying model assumptions, outliers, and influent observations for the

proposed truncated beta nonlinear regression model. Following the diagnostic methodol-

ogy of generalized linear models (GLMs) and usual regression analysis, we consider the

standardized residuals (Cook & Weisberg, 1982) for outliers detections and to check for

model adequacy. We also consider two metrics for influent observations detections based

on the principle of case-deletion first proposed by Cook (1977).

In the present paper, we propose an alternative approach for estimating SWCC based

on generalized nonlinear models, assuming that the response variable follows a truncated

beta distribution. The parameters of the curve are estimated by maximum likelihood

method and diagnostic analysis are conduced to check for model adequacy. To illustrate

the proposed methodology, we analyze a soil profile from the Buriti Vermelho River Basin

database presented by Rodrigues & Maia (2011). The Buriti Vermelho River Basin is

located in the eastern part of the Federal District in Brazil and the data sets consists of

samples from 17 soil profiles collected in three different soil depth for which soil-water

content were measured at nine tension level ranging from 0, 01atm to 15atm, with three

replications per level. The soil profiles represent the sites were the soil sample were

collected along the considered region.

The paper is organized as follows. In Section 2, we give a brief introduction on SWCCs

and describe the van Genuchten model with the Mualem restriction. In Section 3, we

present the truncated beta regression model, which shall be considered for estimating

SWCCs taking into account the truncated nature of soil-water retention data. In Section

5, we present the analysis of a real data set, providing the inferences about the parameters

and the diagnostic analysis of the fitted model. Finally, in Section 6, we give a few brief

concluding remarks.



2 The van Genuchten-Mualem soil-water character-

istic curve

When constructed in laboratory using observed data, SWCCs are fitted considering

pairs, (y, x), which are usually obtained by applying different tensions, x, to the a given

soil sample, and observing the water content, y, remaining in the sample after application

of each tension level considered. Thus, a SWCC relates a variable response, y, with a re-

gressor variable, x. In studies to determine SWCCs, the analytical expressions considered

are nonlinear functions of the type y = η (x,β) where β is the vector of parameters of

the curve.

The relationship between water volume content and matric potential is not trivially

modeled and several analytical expressions have been proposed in the literature for rep-

resenting the SWCC. Among the most widely used expressions for SWCCs are the ones

proposed by Gardner (1958), Brooks & Corey (1964), van Genuchten (1980), and Fredlund

& Xing (1994). These expressions are preferred since they provide a good approximation

of the relationship between the amount of water in the soil and soil suction. We refer

to Leong & Rahardjo (1997) and Sillers et al. (2001), for a revision of different expres-

sion proposed to model SWCCs. In this paper, we consider the model proposed by van

Genuchten (1980) combined with the relation given in Mualem (1976) - hereafter van

Genuchten-Mualem model.

The van Genuchten expression is given by

y = θr +
θs − θr[

1 + (β1x)β2
]β3 , (1)

where β1 is related to the inverse of the air entry value, β2 is related to the pore-size

distribution of the soil and β3 is related to the asymmetry of the model.

Mualem (1976) proposed a fixed relationship between β2 and β3 given by

β3 = 1− 1

β2
, (2)

since β3 > 0, β2 must be greater than 1.

In van Genuchten (1980), the author highlights that ys is easily obtained experimen-



tally, being available most of the times, whereas yr is defined as the soil-water content at

x = −15atm (van Genuchten, 1980), or as a fitting parameter equal the soil-water content

where the first derivative of y with respect to x, dy/dx, equals zero (van Genuchten &

Nielsen, 1985).

3 Truncated beta nonlinear regression model

The truncated beta nonlinear model is constructed based on the beta regression model

of Ferrari & Cribari-Neto (2004), where the beta distribution is reparameterized in terms

of a mean and a dispersion parameter.

As in Ferrari & Cribari-Neto (2004), we consider Y be a Beta (α, γ) r.v. with proba-

bility density distribution given by

f (y) =
Γ (α + γ)

Γ (α) Γ (γ)
yα−1(1− y)γ−1I(0,1) (y) ,

Letting µ = α/ (α + γ) and eφ = α + γ, it follows that

E (Y ) =
α

α + γ
= µ, (3)

and

V ar (Y ) =
αγ

(α + γ)2 (α + γ + 1)
=
µ (1− µ)

1 + eφ
. (4)

Therefore, µ is the mean parameter and eφ is the dispersion parameter, and the prob-

ability density distribution of Y can be rewritten as

f (y) =
Γ
(
eφ
)

Γ (µeφ) Γ ((1− µ) eφ)
yµe

φ−1(1− y)(1−µ)e
φ−1I(0,1) (y) , (5)

with 0 < µ < 1 and φ ∈ R.

If Y is truncated to a known interval (a, b), then the distribution of Y given a < Y < b,



0 < a < b < 1, denoted by TB(µeφ, (1− µ) eφ, a, b), is written as

f (y) =
Γ
(
eφ
)

Γ (µeφ) Γ ((1− µ) eφ)
yµe

φ−1(1− y)(1−µ)e
φ−1

[
I
(
b;µeφ, (1− µ) eφ

)
− I

(
a;µeφ, (1− µ) eφ

)]−1
I(a,b) (y) , (6)

where I (t;κ, τ) = B (t;κ, τ)/B (κ, τ), with B (κ, τ) =
∫ 1

0
yκ−1(1− y)τ−1dy the beta func-

tion, and B (t;κ, τ) =
∫ t
0
yκ−1(1− y)τ−1dy the incomplete beta function.

The expectation and variance of a truncated beta r.v., under the reparameterized

distribution, are given by

E (Y ) =
I
(
a;µeφ + 1, (1− µ) eφ

)
− I

(
b;µeφ + 1, (1− µ) eφ

)
I (a;µeφ, (1− µ) eφ)− I (b;µeφ, (1− µ) eφ)

, (7)

and

V ar (Y ) =
I
(
a;µeφ + 2, (1− µ) eφ

)
− I

(
b;µeφ + 2, (1− µ) eφ

)
I (a;µeφ, (1− µ) eφ)− I (b;µeφ, (1− µ) eφ)

−

[
I
(
a;µeφ + 1, (1− µ) eφ

)
− I

(
b;µeφ + 1, (1− µ) eφ

)
I (a;µeφ, (1− µ) eφ)− I (b;µeφ, (1− µ) eφ)

]2
(8)

respectively.

We assume that µ = η (x,β), where x = (x1, . . . , xp)
′ is a vector of p covariates, xq

is a subset of x, η (·) is a continuous and twice differentiable function with respect to β.

On the other hand, the parameter related to the dispersion of the response variable, φ, is

left unmodeled. Therefore, we denote the vector of indexing parameters by θ = (β, φ).

It is worthwhile to mention that in the truncated beta nonlinear regression model the

response variable is asymmetric and heteroscedastic, whereas in the truncated normal

nonlinear regression model the response variable is symmetric and it allows for both a

homoscedastic or a heteroscedastic structure for the variance of the response variable.

Suppose Y1, . . . , Yn are independent random variables such that each Yi, i = 1, . . . , n,

follows a TB
(
η (xi,β) eφ, (1− η (xi,β)) eφ, a, b

)
distribution. Let y = (y1, . . . , yn)′ be a

vector of observed values of Y = (Y1, . . . , Yn)′. Then, given the data set D = (n,y,x), the

log-likelihood function for θ = (β, φ), the vector of unknown parameters to be estimated,



is written as

l (θ) =
n∑
i=1

log Γ
(
eφ
)
−

n∑
i=1

log Γ
(
η (xi,β) eφ

)
−

n∑
i=1

log Γ
(
(1− η (xi,β)) eφ

)
+

n∑
i=1

[
η (xi,β) eφ − 1

]
log (yi) +

n∑
i=1

[
(η (xi,β)− 1) eφ − 1

]
log (1− yi)

−
n∑
i=1

log

{
I
(
b; η (xi, β) eφ, (1− η (xi, β)) eφ

)
− I

(
a; η (xi, β) eφ, (1− η (xi, β)) eφ

)}
(9)

The MLEs of θ can be obtained by direct nonlinear optimization of (9).

4 Diagnostic analysis

In regression analysis, diagnostic procedures are aimed to check if the underlying as-

sumptions of a proposed model are reasonable enough and to detect evidences of possible

model misspecification. Therefore, model diagnostic analysis procedures can provide a

guidance whether the regression model being fitted is plausible and whether the con-

clusions based on it are correct. The regression model constructed in Section 3 was

based in the following underlying assumptions: (i) the response variable, y follows a

TB
(
η (xi,β) eφ, (1− η (xi,β)) eφ, a, b

)
distribution, i = 1, . . . , n; (ii) the observations are

mutually independent. These assumptions may be checked by visual inspections of several

residual plots, which are also useful to detect outliers and possible influent observations.

We also consider the generalized Cook distance and the likelihood distance to detect

influent observations.

4.1 Residual analysis

Let ŷi be the predicted value of the ith observation defined as

ŷi = E
(
Yi

∣∣∣a < Yi < b,xi, θ̂
)
, (10)

where the expectation corresponds to (7) and θ̂ is the MLE of θ obtained by maximizing

(9).



We consider the standardized residuals and the standardized Pearson residuals to

check for model adequacy, outliers and influent observations. These residuals are given

by

rsi =
yi − ŷi√

V ar
(
Yi

∣∣∣a < Yi < b,xi, θ̂
) , (11)

and

rPi =
yi − ŷi√

V ar
(
Yi

∣∣∣a < Yi < b,xi, θ̂
)

(1− hii)
, (12)

respectively.

In both (11) and (12), yi is the observed value of the ith case and θ̂ is the MLE of θ.

The variance, V ar
(
Yi

∣∣∣a < Yi < b,xi, θ̂
)

is as given in (8). For the Pearson residuals in

(12), hii is the ith diagonal element of the Hat matrix defined as H = X(X ′X)−1X ′.

Standardized residuals can be interpreted as how much predicted values deviate from

real values. Thus, we can set limits for the standardized residuals based on the amount of

deviation that we are willing to tolerate between the real value and the predicted value.

In this paper, we shall consider an observation as an outlier if its standardized residual is

larger than 3 or smaller than -3.

4.2 Influence measures

Let θ̂(−i) be the MLE of θ with the ith case deleted. Case-deletion diagnostic metrics

were first proposed by Cook (1977) and they rely on the principle that the influence

of a given observation can be assessed by comparing the difference between parameters

estimates obtained fitting the considered model to the complete data, D, and parameters

estimates obtained for the model fitted to the data with the ith observation deleted, D(−i).

If the deletion of the ith observation influences the estimates, then θ(−i) is far from θ and

the ith case is considered influent.

We shall consider Cook’s generalized distance and the likelihood distance for influent



observations detections. These two metrics are given by

GCi =
(
θ̂(−i) − θ̂

)′
I
(
θ̂
)(
θ̂(−i) − θ̂

)
, (13)

and

LDi = 2
{
l
(
θ̂ |D

)
− l
(
θ̂(−i) |D

)}
, (14)

respectively.

In (13), I
(
θ̂
)

is the observed Fisher information matrix defined as

I
(
θ̂
)

= −∂
2l (θ |D )

∂θ∂θ′

∣∣∣∣
θ=θ̂

.

Since both (13) and (14) require θ(−i) for each i = 1, . . . , n, which can be computa-

tionally demanding if n is large, Cook & Weisberg (1982) provided the approximation

θ̂(−i) = θ̂ +
[
I
(
θ̂
)]−1

U(−i)

(
θ̂
)
,

where U(−i)

(
θ̂
)

is the score vector defined as

U(−i)

(
θ̂
)

= −
∂l
(
θ
∣∣D(−i)

)
∂θ

∣∣∣∣∣
θ=θ̂

.

In practice, a case is considered influent if its GCi or LDi value is large. In Cook

& Weisberg (1982), the authors suggest that GCi and LDi can be compared to critical

values of a Chi-squared distribution with the degrees of freedom equal to the number of

parameters, p. However, this method may fail to detect influent cases for moderate and

large values of p since the critical value of the χ2
p may be large enough to prevent the

detection of cases that are indeed influent.

5 Real data set analysis

In this section we analyze a soil profile data set selected from a database collected

in the Buriti Vermelho River Basin, located in the eastern part of the Federal District



in Brazil (Rodrigues & Maia, 2011). The data set consists of soil samples of 0 − 5cm,

15− 20cm, and 60− 65cm deep measured in k = 9 tension levels with r = 3 replications

per level, giving a total of 27 soil water content measurements for a total of 17 soil profiles.

We refer the reader to Rodrigues & Maia (2011) for a more detailed description of the

experimental procedures applied to collect the soil samples and the laboratory procedures

used to measure soil-water content.

We notice that in common soil-water data analysis, for each soil profile and for each

depth, a different SWCC is fitted. In this paper, we choose to fitted a single SWCC to

each soil profile with all depths. Thus, the data set features a total of 81 observations.

Soil water content at saturation, θs, were calculated by weighing the soil profile samples

directly. The residual soil water content for each soil profile sample were calculated by

submitting the soil samples to a tension of 1500 kPa.

We shall consider the location parameters η (x,β) as the Van Genuchten-Mualem

model given in (1) and (2), and the truncation limits are a = θr and b = θs.

Therefore, we shall fit the truncated beta nonlinear regression model where

Yi ∼ TB
(
η (xi,β) eφ, (1− η (xi,β)) eφ, θr, θs

)
, i = 1, . . . , n.

Model fit summary provided in Table 1 indicate all parameters in the heteroscedastic

truncated normal van Genuchten-Mualem regression model as statistically significant with

a 95% confidence. We notice that the estimated standard deviation of β1 is quite larger

than would be prefered.

From the estimated SWCC presented in Figure 1a, it is possible to see that the van

Genuchten-Mualem model is a good choice for the representation of the relationship be-

tween soil-water content and matric potencial for the analyzed soil profile. Predicted

against observed values are depicted in Figure 1b, indicating that the predicted values

are reasonably close to the observed values of the response variable. Moreover, the stan-

dadized residual plots show the residuals as randomly distributed around zero with no

outlier observations. We also note that no influent observation was depicted by Cook’s

generalized distance in Figure 2c and by the likelihood distance in Figure 2d.



Table 1: Model fit summary for the truncated beta van Genuchten-Mualem regression
model adjusted to soil profile 214 data.

Parameter Estimate St. Dev. 95% C.I.

β1 61,8415 5,4828 51,0951 72,5878
β2 1,4324 0,0191 1,3950 1,4697
φ 6,8356 0,1714 6,4996 7,1716
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Figure 1: Profile 204 data: (a) estimated SWCC; (b) Observed y against predicted values
of y.
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Figure 2: Profile 204 data: (a) standardized residuals; (b) standardized Pearson residuals;
(c) approximated Cook’s generalized distance; (d) approximated likelihood distance.



6 Conclusions

In this paper, we have proposed and illustrated an alternative approach to model

SWCCs based on the truncated beta nonlinear regression model, which take truncation

into account, an important feature of the data. Moreover, diagnostic analysis tools were

used to check the model assumptions and for outlier and influent observations detection.

We acknowledge that the truncated beta is only one of many truncated distributions

that can be considered to model soil-water retention data. Also, we could consider the

truncated version of some recently propose skewed distributions. Moreover, it is important

to take into account the sample depth information an extend the proposed model under the

generalized nonlinear mixed models framework. Another key point that could be improved

is the estimation procedure which could be performed under the Bayesian perspective,

thus taking into account prior information about the model parameters. Those are issues

to be considered in a future work.

In summary, we present a novel methodology to model and study the SWCC which are

important to study the relationship between soil and water, a physical phenomenon that

affects soil use in many different purposes. The proposed truncated normal and truncated

beta nonlinear regression models are simple models, that can be estimated with known

implemented procedures. Yet, the model improves the quality of parameters estimates as

it encompass important features of the data.
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