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1  Introduction

Molecular farming is the production of recombinant phar-
maceuticals, industrial proteins, and secondary metabo-
lites, in plant systems. Since the biosynthesis of recombi-
nant human growth hormone (hGH) by transgenic tobac-

co in 1986, a wide range of recombinant plant-made phar-
maceuticals (PMPs) have been expressed in an increas-
ingly diverse number of crops and vegetable systems
[1–3].

Transgenic plants are capable of folding and assem-
bling complex structural glycoproteins – such as com-
plete antibodies – and also of performing many of the
post-translational modifications required for therapeutic
function [2, 4]. Equally important is the fact that crops
usually provide abundant biomass and have high biosyn-
thetic capacity, requiring only simple elements such as
light, minerals, and water to provide significant protein
accumulation in their leaves, tubers, stems and seeds 
[1, 5]. In addition, advances in transient expression medi-
ated by virus-infected plants can be exploited to obtain
high yields of raw protein in only a few days, and this
 system may constitute the new frontier for the rapid, stag-
gered production of therapeutic proteins, primarily vac-
cines, under competitive conditions [6]. Transient expres-
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sion allows the cultivation of transgenic plants under con-
trolled conditions to be staggered, permitting the produc-
tion of pharmaceutical-grade therapeutic proteins on a
large scale and at competitive costs [6–8].

Another important aspect of the production of thera-
peutic proteins in plants is the usually high safety stan-
dards of PMPs. In contrast to other available production
platforms, notably the mammalian cell suspension, plants
present a low risk of harboring mammalian pathogens,
prions, human viruses, and oncogenes, providing a sig-
nificant manufacturing advantage in terms of safety, qual-
ity, and product authenticity [9, 10].

Interest in the potential of plants as biofactories for
therapeutic proteins is growing rapidly, with the develop-
ment of different expression strategies, improved produc-
tion facilities, and an increase in capital expenditure by
biotechnology companies around the world [2]. Recently,
the recombinant enzyme glucocerebosidase (GCD),
developed by the Israeli company Protalix Biotherapeu-
tics under the registered name of ELELYSOTM, gained
FDA approval for commercialization, becoming the first
manufactured PMP to achieve marketable status [11].
ELELYSOTM is efficient in the treatment of type 1 Gauch-
er`s disease, a lysosomal storage disorder that affects
macrophages, and was synthesized at an industrial scale
using a carrot cell suspension system that uses the C-ter-
minal vacuolar sorting signal from tobacco chitinase [12].
Another drug candidate developed by Protalix is the
chimeric monoclonal antibody pr–antiTNF (tumor necro-
sis factor). The molecule is a biosimilar version of Pfizer
EnbrelTM, a potent drug synthesized by Chinese hamster
ovary (CHO) cells and utilized to treat chronic inflamma-
tory disorders, such as rheumatoid arthritis [13]. Pr-anti -
TNF was synthesized using the same technology as GCD,
and presented the identical amino acid sequence and
similar in vivo activity to EnbrelTM during preclinical trials
(http://www.protalix.com/pipeline_products.html).

In 2010, after signing a Technology Investment Agree-
ment grant of US$ 21 million with the Defense Advanced
Research Projects Agency (DARPA), the Canadian com-
pany Medicago started the development of an H1N1
virus-like particle influenza vaccine using agroinfiltrated
tobacco plants [11]. The main purpose of the agreement
was the development of a quick manufacturing alterna-
tive in case of a pandemic, made possible by the rapid,
agile, transient expression of the vaccine in the leaves
within 24  h after infiltration [14]. The vaccine is now
undergoing Phase I clinical trials and could be efficiently
synthesized on an industrial scale (about 10 million doses
in one month), representing, along with the company’s
previously H5N1 vaccine (currently in Phase II clinical tri-
als), one of the most promising PMPs in the pipeline [14].
Other PMPs have reached advanced stages of develop-
ment and are now undergoing approval for Phase III clin-
ical trials prior to commercialization. These include vac-
cine antigens, antibodies, therapeutic enzymes, growth

factors, hormones, cytokines and other proteins present
in the human bloodstream [2, 3, 11, 15–17].

Blood proteins are particularly interesting candidates
for PMPs because they play key roles in metabolism and
are associated with diseases that have significant social
impact [18]. The different types of blood proteins can be
divided into two major categories: (i) polypeptides associ-
ated with circulating cells; and (ii) plasma-derived pro-
teins (PDs) that regulate important acellular processes,
such as hormones, cytokines, enzymes, protease
inhibitors, clotting factors, and bloodstream transporters
of lipids, vitamins and ions [18]. Fractionated PDs are pri-
marily utilized in the treatment of the different forms of
acquired or congenital diseases, mainly the different forms
of haemophilia and other bleeding and immunological dis-
orders [18]. Also, this category of therapeutic proteins is
invaluable for compensating for blood loss that results from
trauma or surgery, in this way PDs contribute to saving
and improving patients quality of life all over the globe [19].

Despite the positive impact resulting from the routine
utilization of PDs in human health care, the use of blood
substitutes in the 1980s is linked to a considerable
increase in the spread of viruses and other infectious dis-
eases in America [20, 21]. In the two decades that fol-
lowed, concerns about the safety of blood products result-
ed in the improvement of manipulating facilities and a
strengthening of regulatory control over concentrate pro-
duction [22]. Nowadays laboratories accredited to pro-
duce PDs must follow specific measures in compliance
with good manufacturing practices (GMP), including the
rigorous selection of blood donors, sample testing, and
product treatment during manipulation [23].

The adoption of GMP by manufacturers contributed to
a consistent increase in the quality of products, but other
issues still limit the large-scale production of PDs [20].
Despite the high demands of the market, manufactured
PDs barely meet product demand and have high produc-
tion costs, mostly due to the scarcity of well tested raw
materials and the expensive multi-step fractioning/purifi-
cation protocols required for drug manipulation [20]. Such
limitations represent important challenges that have
directed the scientific focus towards the development of
alternative platforms for the recombinant production of
PDs as virus-free products intended for replacement ther-
apies [21, 24].

Whereas bacterial and yeast cells are commonly uti-
lized to produce many important recombinant thera -
peutic proteins, they are unable to provide the intricate
folding and complex post-translational modifications
required for most PDs [25, 26]. This gap was filled by cul-
tured mammalian cells, which became the workhorse for
recombinant plasma protein production. Mammalian cell
suspensions are equipped with the specific enzymatic
machinery capable of performing extensive post-transla-
tional modifications, mainly N- or O-glycosylation, simi-
larly to those of human proteins [27, 28]. However, mam-
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malian cells present some drawbacks in terms of cost-
effectiveness, low cell density, and safety [25].

Thus, transgenic plants may constitute promising
alternative systems for the large-scale production of high
quality recombinant PDs at accessible costs [26, 29–31].
In this review, we examine the technological approaches
available for the production of cytokines using plant sys-
tems. We also evaluate some of the recent attempts to
improve product quality in vegetable platforms, looking at
the recent advances in the field that will potentially drive
the development of the next generation of cytokines.

2  Cytokines produced by plant-based systems

Cytokines are soluble hormone-like proteins, which are
frequently glycosylated,  secreted primarily by white
blood cells [32]. These molecules are synthesized and
secreted at the femto to picomolar range in response to
autocrine or paracrine inducible stimuli, and act as chem-
ical signals between the cellular and external environ-
ments [33]. Human cytokines are components of the
immune system and also regulate a broad range of
processes as diverse as cell proliferation, differentiation,
and mobility [34–36]. Abnormal fluctuations in cytokine
production or signalling are related to various pathologi-
cal immune and inflammatory disorders, such as major
depression, cancer, and Alzheimer’s disease [37].

There are more than 100 well characterized cytokines,
which can be conveniently grouped into eight distinct
families distributed in two major functional classes [36].
Class I cytokines are the hematopoietins: (i) erythropoi-
etin; (ii) cardiotrophin; (iii) macrophage colony-stimulat-
ing factor (M-CSF); (iv) granulocyte-macrophage colony-
stimulating factor (GM-CSF); and (v) interleukins (ILs) 2,
4, 12 and 13. The cytokines from Class II are: (i) the inter-
feron (IFN) family (IFN-α, IFN-β, IFN-γ, IFN-κ and ILs 10,
20 and 22); (ii) the platelet-derived growth factors (PDGF);
(iii) TNFs; (iv) IL-1; (v) IL-7; (vi) the tumor growth factor
(TGF-beta) families; and (vii) the chemokines [36].

The recombinant production of structurally simple
cytokines traditionally relies on microbial systems [38].
For these simple cytokines the glycosylated products are
active without the carbohydrate moiety or the hypergly-
cosylation provided by yeast does not interfere with the
therapeutic function [25]. Cell suspensions of Escherichia
coli and yeast are the most commonly utilized vehicles for
the production of cytokines, and yields of more than 5 g of
interferon per liter of cell culture are routinely obtained
[39]. Although the expression levels associated with
microbial systems are frequently high, the clinical usage
of recombinant cytokines is still limited by high produc-
tion costs [36]. Notwithstanding, different recombinant
cytokines from microorganisms have been approved for
clinical use in the treatment of neutropenia, leukemia,
chronic hepatitis B and C [36].

In contrast, while the first PMPs date from almost
25 years ago, the development of plant-derived cytokines
is an emerging field in molecular farming, with a few
examples of advanced drug candidates in the pipeline
[36]. The drawbacks that limit the commercial success of
cytokines produced in plant systems are similar to those
encountered by any other class of PMPs. Commonly, the
addition of undesirable plant glycosylation is a major con-
cern related to the unsatisfactory therapeutic perform-
ance of many plant-derived cytokines [40, 41]. Although
eukaryotes share many N-glycosylation steps along the
secretory pathway, the final structures of N-complex gly-
cans may differ considerably between plants and mam-
mals [40]. In plants, the intermediate oligosaccharide 
GlcNAc2Man3GlcNAc2 (GnGn) is usually decorated with
β1,2-xylose and core α1,3-fucose residues [41]. Mammals
also present core fucosylation, but only α1,6-fucose
residues are processed in mammalian system. Further
elongation can occur in plants, with the attachment of
β1,3-galactose and α1,4-fucose residues to form Lewis-a
epitopes (Lea) [41]. The removal of terminal N acetylglu-
cosamine (GlcNAc) from GnGn carbohydrates, resulting in
the formation of paucimannosidic N-glycans, is another
usual processing that may occur in plants [42]. Also, plants
lack the machinery for mucin-type O-glycosylation [42].

Major structural differences in glyco epitopes are fre-
quently associated with protein instability, loss of biolog-
ical function and immunogenicity. These represent
important obstacles for manufacturing, and result in diffi-
culties in standardization and validation of drug candi-
dates [43]. However, several cytokines have already been
synthesized in different plant systems, ranging from cell
suspensions to transplastomic plants and virus-based
production platforms for transient expression, as summa-
rized in Table 1.

2.1  Production of erythropoietin (EPO) in plants

EPO is an extensively glycosylated cytokine of 30 to
38 kDa that acts as a peptide hormone in the regulation of
the differentiation of progenitor cells involved in the for-
mation of mature erythrocytes [40]. The molecule is uti-
lized in the treatment of anemia resulting from serious
diseases, such as cancer, AIDS, and renal failure [44].

Recombinant human EPO (rhEPO) from CHO cells has
become an important therapeutic product on the market,
with a business volume of about 8 billion US$ in 2003, and
an estimated demand of 2  kg per year worldwide [45]. 
The rhEPOs display complex glycosylation with three 
N-linked (Asn-24, Asn-38 and Asn-83) and one O-linked
(Ser-126) carbohydrate chains. The protein also requires
sialylated N-glycans and processing of the carboxy-ter-
minal arginine to be stable in the bloodstream and fully
active [46, 47].

The production of rhEPO in plants began in 1993, with
the development of protoplasts derived from transgenic
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Table 1. Examples of recombinant cytokines produced in different plant systems, showing the most utilized expression strategies and the final protein
yieldsa)

Cytokine Crop Transformation Method Expression Level/Yield Reference

Cell suspensions

erythropoietin Tobacco Agrobacterium-mediated 0.0026% TSP [44]
G-CSF Tobacco Agrobacterium-mediated 1.05 × 10-4 g/L [93]
GM-CSF Tobacco Agrobacterium-mediated Max. 2.5 × 10-4 g/L [54]
GM-CSF Tobacco Agrobacterium-mediated Max. 7.8 × 10-4 g/L [55]
IL-2 Tobacco Agrobacterium-mediated 9 × 10-5 g/L [64]
IL-4 Tobacco Agrobacterium-mediated 4.5 × 10-4 g/L [64]
IL-12 Tobacco Agrobacterium-mediated 1.75 × 10-4 g/L [70]
GM-CSF Rice Biolistics 0.129 g/L [57]
GM-CSF Rice Biolistics 0.28 g/L [56]
GM-CSF Rice Biolistics 0.29 g/L [94]
GM-CSF Rice Biolistics 0.25 g/L [58]
IFN-γ Rice Agrobacterium-mediated 6.99 × 10-4 mg/g cell [81]
IFN-α Tomato Lipofectin-mediated transformation Max. 3.0 × 103 U/g [79]

Transgenic plants (nuclear transformation)

GM-CSF Sugarcane Biolistics 0.02% TSP [59]
Murine GM-CSF Tobacco Agrobacterium-mediated 0.019 mg/g [95]
IL-4 Tobacco Agrobacterium-mediated 0.1% TSP [96]
IL-4 Tobacco Agrobacterium-mediated 0.086% TSP [97]
IL-10 Tobacco Agrobacterium-mediated 0.27% TSP [97]
IL-10 Tobacco Agrobacterium-mediated Max. 0.043 mg/g [98]
IL-10 Tobacco Agrobacterium-mediated Max. 0.037 mg/g [68]
IL-12 Tobacco Agrobacterium-mediated 4 × 10-5 mg/g [69]
IL-13 Tobacco Agrobacterium-mediated 0.15% TSP [72]
IL-18 Tobacco Agrobacterium-mediated Max. 3.51 × 10-4 mg/g [73]
cardiotrophin-1 Tobacco Biolistics 0.14 mg/g [99]
Fibroblast growth Tobacco Agrobacterium-mediated 4.1% TSP [100]
factor 8 isoform b 
(FGF8b)
IL-12 Tomato Agrobacterium-mediated 7.3 × 10-3 mg/g [71]
IFN-α2 Aloe vera Biolistics Max. 9.53 × 102 IU/g [101]
IFN-α2b Carrot Agrobacterium-mediated Max. 26.8 × 103 U/g [82]
GM-CSF Tobacco Agrobacterium-mediated 1.3% TSP [61]
GM-CSF Tobacco Agrobacterium-mediated Max. 0.03% TSP [60]
Murine IL-2 Tobacco Agrobacterium-mediated 0.7% TSP [102]

Arabidopsis
GM-CSF Rice Agrobacterium-mediated Max. 0.014 μg/seed [103]
IL-10 Rice Agrobacterium-mediated 0.05 mg/g [67]
IGF-1 Rice Biolistics up to 6.8% of total seed protein [80]
IL-2 Potato Agrobacterium-mediated 1.15 × 105 U/g [66]
IL-4 Potato Agrobacterium-mediated 0.08% TSP [96]
IFN-α2b Potato Agrobacterium-mediated 560 IU/g [78]
IFN-α8
TNF-α Potato Agrobacterium-mediated 0.015 mg/g [104]
Fish IFN-α1 Potato Agrobacterium-mediated Max. 5400 U/g [105]

Rice Agrobacterium-mediated Max.820 U/g

Transplastomic plants

cardiotrophin-1 Tobacco Biolistics Max 1.14 mg/g [99]
IFN-α2b Tobacco Biolistics 20% TSP [84]
IGF-1 Tobacco Biolistics Max. 32% TSP [85]
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tobacco BY2 cell lines, which were capable of accumulat-
ing very low levels of rhEPO (approximately 1 × 10–9 mg/g
of wet cells) [48]. Similar levels (up to 1.2 × 10–3 mg/L) were
obtained from transgenic tobacco cell lines harboring the
coding sequence of EPO and the endogenous N-terminal
signal peptide for extracellular secretion under control of
35S promoter of cauliflower mosaic virus (CaMV). Secre-
tion was observed in protoplasts derived from transgenic
cells but the protein presented only showed activity in vit-
ro [44].

The constitutive expression of rhEPO was also
observed in whole plants of tobacco and Arabidopsis sp.
Although high transcription levels were detected in all
transgenic lines, tobacco plants presented abnormal mor-
phology with retarded vegetative growth and male steril-
ity [49].

The initial setbacks in the development of functional
rhEPO in plant systems corroborated the hypothesis that
the differences in plant and mammalian glycosylation
were crucial for the stability of the protein and for proper
biological function [50]. To minimize such problems, dif-
ferent expression strategies have been developed in order
to humanize plant glycosylation. One promising approach
is to utilize the mutant moss Physcomitrella patens as a
host for high quality production of rhEPO. An advanta-
geous feature of P. patens is high frequency of homolo-
gous recombination for efficient gene targeting, enabling
the specific knock out of the α1,3-fucosyltransferase and
β1,2-xylosyltransferase genes [51]. For example, high lev-
els of stable and transiently produced rhEPO (max.
0.250 mg/g dry weight) were achieved in protoplasts of
wild-type and Δ-fuc-t Δ-xyl-t mutant lines of P. patens by
Weise and collaborators [47].

Another interesting strategy shown to be a promising
tool for the generation of improved hEPO in plants is gly-
coengineering, the remodeling of complete mammalian
biosynthetic pathways within host cells [45]. Transgenic
tobacco lacking plant-specific glycosyltransferases and
harboring mammalian β1,4-mannosyl-β,4-N-acetylglu-
cosaminyltransferase (GnTIII), α1,3-mannosyl-β1,4-N-ace -
tylglucosaminyltransferase (GnTIV) and α1,6-mannosyl-

β1,6-N-acetylglucosaminyltransferase (GnTV) were uti-
lized to modulate the plant glycosylation pathway toward
the accumulation of rhEPO with complete human-type
bisected and branched N-glycans [52].

Along with N-glycosylation, terminal sialyation also
seems to be crucial for the circulatory half-life and activi-
ty of rhEPO. Different glycoforms of biologically active bi-
and multi-sialyated rhEPO were purified from mutant 
Δ-fuc-t Δ-xyl-t tobacco plants harboring the genes for
branching, β1,4-galactosylation, synthesis, transport, and
transfer of sialic acid [40, 45]. Examples of the improved
recombinant production of EPO in glycoengineered
plants are shown in Table 2.

2.2  Production of human GM-CSF in plants

GM-CSFs are small proteins (22 kDa) secreted mainly by
macrophages and T cells that act in the immune/inflam-
matory cascade [53]. GM-CSFs show little structural vari-
ation and are well tolerated by patients, thus constituting
good candidates for PMPs [54].

Tobacco and rice cell suspensions are the most com-
monly utilized systems for GM-CSF production, and dif-
ferent protocols for manipulation of the culture growth
medium are available for improving expression levels [55,
56]. The rice amylase Ramy3D promoter is the most effi-
cient genetic element used to increase the final GM-CSF
expression in cell suspensions of rice, yielding up to
0.129 g/L of culture [57]. The silencing of rice α-amylase
and cysteine proteinase combined with the co-expres-
sion of the cytokine and a protease inhibitor increases
protein secretion and expression levels at least two-fold
[58].

Constitutive GM-CSF production in whole plants was
also achieved, but at low levels. Transgenic sugarcane
and tobacco plants were able to accumulate 0.02 and
0.22%  TSP (total soluble protein) respectively in the
leaves, whereas transgenic tobacco seeds produced up to
1.3% TSP [59, 60]. In fact, seed endosperm, rather than
leaves, seems to be a more promising vehicle for the sta-
ble synthesis of GM-CSF. For instance, biologically active
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Table 1. Examples of recombinant cytokines produced in different plant systems, showing the most utilized expression strategies and the final protein
yieldsa) (continued)

Cytokine Crop Transformation Method Expression Level/Yield Reference

Transient expression – virus-based/Agroinfection

GM-CSF N. benthamiana Viral vector Max. 2% TSP [106]
Stem cell factor (SCF) Tobacco Viral vector Max. 0.2 mg/g [107]
IL-3 Tobacco Viral vector Max. 0.144 mg/g [107]
IGF-1 Tobacco Viral vector Max. 0.25 mg/g [107]
Chicken IFN-α Lettuce Agroinfiltration/binary vector 0.393 mg/g [108]
IFN-β Lettuce Agroinfiltration/binary vector 3.1 × 104 IU/mL [109]

a) Adapted from Sirko et al. 2011 [36]. Max, maximum; IU, international unit. Note: All rhEPO information is in Table 2
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fractions of this cytokine were obtained in rice seeds
using the glutelin promoter Gt1 at 1.3% TSP [61].

2.3  Production of ILs in plants

The normal function of the immune system depends
largely on the synthesis of ILs, signaling proteins that are
synthesized primarily by white blood cells [62]. Deficien-
cy in IL production is associated with rare autoimmune
diseases and immune failure. [63].

The first ILs expressed in plant systems were IL-2 and
IL-4, which accumulated at low levels in tobacco cell sus-
pensions [64]. In this example, most of the ILs were
retained inside cells and only the secreted fractions pre-
sented biological function [64]. As alternatives to secre-
tion, protein targeting and the synthesis of ILs as protein
fusions seem to be promising strategies for improving
recombinant IL production. The IL-2 targeted to the ER of
potato tubers and the IL-4 fused to elastin in tobacco
leaves presented high stability after translation, but were
accumulated at low levels,115 U and 0.08% TSP, respec-
tively [65, 66].

Advances have also been made in the expression of
plant-derived IL-10 and IL-12. Functional IL-10 has been
produced in rice seeds (showing higher activity than the
commercially available product from E. coli), and tobacco
leaves (up to 0.037 mg/g of fresh weight) [67, 68]. Further-
more, high expression levels of fully active recombinant
IL-12 were observed in tobacco leaves infiltrated with two
Agrobacterium spp. strains (5% TSP) and in crude
extracts of tomato (7.3 × 10–3 mg/g) [69–71]. The tomato
IL-12 also presented a biological function comparable
with its commercial E.  coli counterpart [71]. Other ILs
such as IL-13 and IL-18, have also been stably produced
in tobacco plants, but at low levels [72, 73].

2.4  Boosting expression in chloroplasts 
of human interferons (IFNs) and insulin-like
growth factor 1 (IGF-1)

Since the end of the 1990s, IFNs have been evaluated as
potential candidates for molecular farming. IFNs present
diverse molecular masses and are potent triggers of pro-
tective defenses of the immune system against patho -
gens and different types of tumors [74]. Recombinant IFNs
from microbes are commonly used to treat Kaposi’s sar-
coma, myeloid leukaemia, and chronic hepatitis A and C,
but microbial produced IFNs are expensive [75].

Attempts to obtain a cost-effective IFN from plants
have led to the development of Locteron®, a recombinant
IFN-α2b synthesized by the defunct company Biolex [11,
76]. The drug candidate is produced using the LEX sys-
temSM, a high-throughput platform that uses the aquatic
plant Lemna minor, commonly known as duckweed, for
the large-scale production of glycan engineered mono-
clonal antibodies and interferons [15]. Locteron® has since
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been licensed by Dutch company OctoPlus NV and has
completed Phase IIb clinical trials, becoming one of the
most advanced recombinant therapeutic cytokines in 
the pipeline (http://www.octoplus.nl/files/4713/4676/5370/
OctoPlus_announces_publication_of_positive_Locteron_
interim_Phase_IIb_data.pdf).

IGF-1 is a 7.6 kDa cytokine-like hormone structurally
similar to insulin that mediates the anabolic action of the
human growth hormone (hGH) and is utilized worldwide
in the treatment of growth disorders during childhood
[77]. Both, IFN-α2b and IGF-1, have been expressed in
transgenic crops including: (i) potato tubers (560  IU of
IFN-α2b/g); (ii) tomato and tobacco leaves (923  IU of 
IFN-α/g and 3  mg of IFN-α2b/g respectively); (iii) rice
seeds (IGF-1, 6.8% TSP); and (iv) rice cell suspensions (up
to 6.9 × 10–4 ng of IFNγ/g) [78–81]. Also, considerably high
yields of functional IFN-α2b have been achieved by
apoplast targeting in young carrot leaves (26.8 × 103 IU/g)
and roots (8.56 x 103 IU/g) [82].

The stable transformation of the tobacco plastid
genome has turned into a promising approach to increase
the final yields of recombinant cytokines, especially IFNs
and IGF-1 [83]. Homoplasmic transplastomic tobacco
plants, developed by researchers at the University of Cen-
tral Florida (US), could accumulate IFN-α2b at levels up to
20% TSP (3 mg/g of leaf FW) [84]. The molecules present-
ed in vitro biological activity similar to the interferon mar-
keted as PEG-IntronTM, a drug utilized to protect cells
from cytopathic viral replication and inhibit early human
immunodeficiency virus (HIV) infection [84]. Also, 
IFN-α2b presented in vivo antitumor protection. The
transgenic plants expressing IFN-α2b received United
States Department of Agriculture Animal and Plant
Health Inspection Service (USDA–APHIS) approval for
field growth, becoming the first example of field produc-
tion of a plant-derived plasma protein, taking a crucial
step towards clinical trials and commercialization [84].

IGF-1 was also successfully accumulated in the
chloroplasts of tobacco using the endogenous chloroplast
psbA promoter. Final yields in routine cultivation were
11.3% TSP, but reached 32% TSP when plants were sub-
mitted to continuous photoperiod [85].

Despite the myriad of reports of accumulation of PMPs
in chloroplasts, there are no companies seeking to explore
the chloroplast expression technology for cytokine pro-
duction, as chloroplasts are unable to provide the complex
post-translational modifications required for most cyto -
kines to function properly in vivo [2, 86].

3  Conclusions and perspectives

Among the novel classes of therapeutic molecules under
development, recombinant proteins are the fastest grow-
ing candidates to fulfill customer demands [41]. The diver-
sification of current plant-based expression systems and

the improvement of existing technology platforms have
allowed the development of new, efficient drug candi-
dates. Some plant-produced drug candidates have
reached advanced stages of preclinical trials and
achieved basic commercial requirements such as high
production speed, scalability, safety, high-quality manu-
facturing, and reduced costs [28].

The introduction of the first PMP into the pharmaceu-
tical market paves the way for the further development of
recombinant cytokines. Recent progress in understand-
ing the nature of many immune system disorders has con-
tributed to a substantial increase in the demand for
cytokines worldwide [11]. However, technical and regula-
tory challenges, mainly undesirable glycosylation, still
limit the development of affordable products and make
cytokine investment less attractive to investors, with
some pioneering companies facing economic challenges
or bankruptcy [2, 36].

Protein targeting is an interesting strategy to avoid
plant glycosylation but is insufficient when the cytokine
of interest needs the correct galactosylation and sialyla-
tion for half-life and in vivo efficacy [43]. The utilization of
Δ-fuc-t Δ-xyl-t mutant lines and those harboring GnTIII,
GnTIV and GnTV has already proven to be suitable for the
biosynthesis of functional cytokines, but such hosts
strains are only available in a few plant systems, most
notably tobacco and P. patens, therefore this technology
is currently not applicable to other crops, such as cereals
and legumes [41, 47, 51].

In this context, zinc finger nucleases (ZFNs) and tran-
scription activator-like effectors nucleases (TALENs) are
promising molecular tools for the humanization of the 
N-glycosylation of cytokines in plants [87]. These DNA-
modifying proteins enable the targeted alteration of genes
in a wide range of cell types and organisms, with the
potential to generate a substantial impact on the com-
mercial production of PMPs [88]. Engineered ZFNs and
TALENs can be designed to target any genomic location
of interest, allowing genome editing with high accuracy
and precision, even within complex genomes [89, 90]. 

Genome editing promises to facilitate genetic manip-
ulation of N-glycan associated genes to a much broader
extent than the currently available molecular tools, poten-
tially enhancing expression levels and permitting struc-
tural manipulation of complex cytokines without altering
biological function.

Some plant systems still provide low yields of recom-
binant cytokines, limiting the commercial utilization of
such systems due to production insufficient in speed and
quantities to meet customer demands [36]. It is crucial to
develop efficient strategies to boost recombinant expres-
sion of cytokines in order to achieve affordable manufac-
turing standards.

Recently, a new promising class of genetic tools relat-
ed to the modulation of gene transcription was discovered
in mammalian pluripotent cells: the super enhancers [91].
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These are unusual domains formed by clusters of
enhancers up to 50 kb in size, which are densely occupied
by master regulators involved in the activation of tran-
scription in embryonic stem cells (ESCs) [92]. Super
enhancers play key roles in gene expression and cell iden-
tity and can be explored, in the future, as a means to boost
transcription of cytokine genes in different plant expres-
sion systems.

Genome-editing technology and strategies to boost
recombinant expression in plants may constitute two
powerful approaches for the large-scale production of
recombinant cytokines with improved product quality
and humanized post-translational modifications. We
believe that both of these strategies represent the most
exciting and promising subjects for future research in the
field of molecular farming.
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