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Abstract 

Soil amendment with pyrogenic organic matter (PyOM) can sequester carbon, increase 

mutualistic root symbioses with arbuscular mycorrhizal fungi and nitrogen-fixing rhizobia, and 

hence improve crop yield. However, there is still a gap in our knowledge about the effects of 

PyOM over longer temporal scales, especially in field experiments that last longer than one 

cropping cycle. This thesis aims to study interactions between PyOM and soil organic carbon 

(SOC) and symbiotic patterns in soybean (Glycine max) under tropical field conditions in a 

sandy ferralsol in northeast Brazil.  

Data from a meta-analysis indicated that PyOM additions significantly increase CO2 emissions 

at PyOM-C (PyC):SOC ratios >2, suggesting that such increases are derived from the labile 

fractions of PyOM rather than from SOC. They also indicated that positive priming is not a 

main driver of increased CO2 emissions in PyOM-amended soils. Results from a field 

experiment using 13C isotopic data confirmed the lack of positive priming of SOC over four 

cropping cycles. Data demonstrated that decomposition of traditionally produced PyOM was 

faster than stated in the literature, and depended on the PyOM application rate. We found a 

significant PyOM × cropping cycle interaction for mycorrhizal root colonization, with a linear 

decrease in the first cropping cycle with increasing PyOM rates, in contrast to a linear increase 

in colonization in the fourth cropping cycle. Grain yield was highest at high PyOM rates in 

phosphorus-fertilized treatments in the fourth cropping cycle. Path analysis indicated a lack of 

pH and phosphorus-mediated effects on root colonization by arbuscular mycorrhizal fungi, 

suggesting interference in signaling processes as the likely mechanism for PyOM effects on the 

mycorrhizal symbiosis over time. Cropping cycle had a major effect on biological nitrogen 

fixation, but no effects of PyOM were observed. Alleviation of micronutrient deficiency at the 

fourth cycle enhanced positive effects of phosphorus fertilizer and increased biological nitrogen 

fixation, suggesting that under adequate management, PyOM does not increase nitrogen 

fixation in soybean. 

In this thesis I demonstrated that stability of PyOM can be influenced by the soil environment 

and provide indications that mycorrhizal activity may play a role in this stability in the long-

term. I also showed that the main beneficial effects of PyOM on AMF and crop yield develop 

with time, but in well-managed soils, increased crop yield is not a direct consequence of PyOM 

addition. 
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1.1 Introduction 

The use of pyrogenic organic matter (PyOM), also named biochar, as a soil amendment was 

inspired by the dyscovery of anthropogenic soils in the Amazon basin, called “Amazonian Dark 

Earths” (ADE - Terra Preta de Índio). These soils are more fertile and contain larger amounts 

of PyOM than the surrounding soils (Glaser et al., 2001). The high amount of PyOM is 

considered one of the main reasons for the high fertility of ADE (Glaser et al., 2002). 

Soil additions of PyOM have been shown to improve soil fertility and crop yields (Jeffery et 

al., 2011), while also providing other environmental services. These environmental services 

include PyOM’s capacity to increase the recalcitrant soil organic carbon (SOC) pool (Lehmann 

et al., 2006; Knicker et al., 2013), contributing to offset CO2 emissions. The combination of 

increased nutrient availability and crop yields, with a larger SOC pool suggests that the “carbon 

dilemma” (Janzen, 2006) could be solved by adding PyOM to the soil. Solving this dilemma 

would imply that crops could benefit from SOC decomposition and nutrient release, 

concomitantly with increases in SOC stocks. However, Jeffery et al. (2013) demonstrated that 

in many instances, it is not possible for all benefits to be simultaneously maximized in PyOM-

amended soils, due to trade-offs between two or more “wins”, for instance, between soil fertility 

and C sequestration. 

Currently there is growing interest in research on PyOM (Fig. 1.1) and several areas have been 

emphasized in particular, for instance SOC and PyOM stability in PyOM-amended soils 

(Verheijen et al., 2014). Effects of PyOM on soil fertility and crop yield have also received 

attention of researchers, especially in tropical countries such as Brazil (Maia et al., 2011). In 

such environments, high temperature and soil moisture favour SOC decomposition (Tiessen et 

al, 1994). Therefore, soil amendment with PyOM is of particular interest in tropical agro-

ecosystems, where the management of SOC represents one of the main challenges for 

sustainable use of soil. 

Soil organic matter (SOM) is essential as a source of important nutrients such as P and N, which 

become available when SOM is decomposed (Tiessen et al., 1994). It is also essential for 

microbial activity as SOM provides the fuel for the “engine” that drives soil quality (Balota et 

al., 2004; Causarano et al., 2008). Changes in soil microbiota following PyOM addition may 

have direct or indirect effects on plant growth through changes in nutrient cycles or soil 

structure (Lehmann et al., 2011). Modification of soil microbial assemblages following PyOM 

addition with special emphasis on microbial functionality (e.g. mutualistic root symbioses) is 

also a major topic for research (for instance, Warnock et al., 2007; Rondon et al., 2007; Mia et 

al., 2014). The use of PyOM can enhance plant associations with symbiotic microorganisms as 

arbuscular mycorrhizal fungi (AMF) and nitrogen-fixing bacteria (rhizobia). However, the role 

of PyOM on modifying root symbioses has received much less attention compared to PyOM 

effects on SOC (Fig. 1.1). 
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Most studies on PyOM effects are from short-term experiments, often conducted in greenhouses 

or laboratories. Such studies provided insights into potential factors driving changes in SOC 

and symbiotic relationships in PyOM-amended soils. However, there are still gaps in our 

understanding regarding the duration and magnitude of effects over time under field conditions 

and the possible mechanisms involved. This thesis aims to address these gaps. 

 

1.2 Pyrogenic organic matter and soil organic carbon 

A considerable proportion of the C contained in the total SOC pool in different soils (e.g. ADE, 

chernozems) is present as PyOM (Atkinson et al., 2010). In such soils this PyOM has been 

found to be older than other non-pyrogenic C forms protected in soil aggregates and organo-

mineral complexes (Pessenda et al., 2001). This may be not only a result of PyOM recalcitrance, 

but also a result of interaction of this PyOM with other soil ecosystem properties. The role of 

ecosystem properties has been proposed for native soil organic carbon of non-pyrogenic origin, 

but such effects are not extended to PyOM (Schmidt et al., 2011).  

Next to the high amounts of PyOM in ADEs, these soils also show higher quantities of non-

pyrogenic C forms compared to surrounding soils. Changes in the physicochemical and 

biological properties of the soil environment control the decomposition rate and persistence of 

SOC (Schmidt et al., 2011). However, little is known about the role of PyOM affecting soil 

properties and its direct and indirect consequences for SOC stabilization. Pyrogenic organic 

 
Figure 1.1. Number of publications in scientific journals (Web of ScienceTM) between 2005 and 

2014. Blue bars represent total number of publications using only biochar as keyword. Green and 

red bars represent number of publications using biochar + soil organic carbon (SOC) and biochar + 

symbiosis as keywords, respectively. The cut-off date was 01 of August, 2014. Total annual number 

of publications for 2014 (NP2014) was estimated using the following equation: NP2014= (NP / 7) 

x 12, where NP is the number of publications in the initial seven months of the year. 
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matter increases soil pH and can be a source of basic cations that can be retained in the soil by 

increased CEC (Liang et al., 2006). Increases in cation exchange capacity (CEC) and soil pH 

can lead to improved soil fertility and crop yield (Jeffery et al., 2011), which in turn contribute 

to converting these soils into a significant C sink (Glaser et al., 2002). 

 

1.3 Pyrogenic organic matter and interactions with native SOC 

In spite of relatively high recalcitrance of PyOM (Lehmann, 2007), it has been proposed that 

PyOM may modify the turnover rate of native SOC, either accelerating or decelerating its 

decomposition. Such interactions are supposed to occur through a mechanism known as 

priming. The original definition of priming refers to a greater loss of soil organic matter in a 

soil receiving an organic amendment, than the loss of organic matter in an untreated soil 

(Bingeman et al., 1953). However, currently a more narrow and restrictive definition is used 

(Kuzyakov et al., 2000), where priming is considered as a short-term change in the turnover of 

soil organic matter caused by small additions of more easily decomposable C to the soil 

(Kuzyakov et al., 2000). Priming effects can be positive when there is an acceleration of SOC 

decomposition, or negative when there is a deceleration of SOC decomposition (Fig. 1.2). 

Glaser et al. (2000) estimated that C from PyOM consists of up to 35% of total SOC content in 

ADE. The high proportions of C from PyOM associated with higher amounts of non-pyrogenic 

C compared to surrounding soils suggest that PyOM may be responsible for the stability of non-

pyrogenic C in these soils (negative priming). On the other hand, PyOM can also accelerate 

SOC decomposition (positive priming). This hypothesis was first supported by data from 

Wardle et al. (2008), who observed that mass loss from mixtures of PyOM and forest humus 

was significantly greater (24.6%) than mass loss predicted by an additive model without 

interaction between both components (14.3%). Even though their data did not allow analysis of 

the causes of this increase (they did not separate both C fluxes through isotopic methods), the 

authors speculated that humus decomposition was stimulated by PyOM rather than the reverse 

(enhanced degradation of PyOM). This is an important issue considering that the PyOM 

decomposition rate can also be modified depending on soil and PyOM characteristics 

(Steinbeiss et al., 2009). Apart from the potential decomposition of PyOM, the findings of 

Wardle et al. (2008) raised the question as to whether PyOM addition to soils could accelerate 

the loss of native SOC, thus reducing the C sequestration potential of PyOM (Cross and Sohi, 

2011). 
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It is worth mentioning that a variety of mechanisms, other than priming effects, can result in 

non-additive interactive effects between PyOM and native SOC, thereby resulting in changes 

in SOC and/or PyOM turnover rate. For instance, PyOM can adsorb toxic compounds that 

would otherwise decrease microbial activity (Verheijen et al., 2010). The adsorption (and 

inactivation) of compounds that are toxic for microbes can thus enhance microbial activity and 

result in accelerated SOC decomposition. On the other hand, PyOM can also interact with SOC 

through sorption of organic compounds onto PyOM surface and within pores, thereby 

protecting SOC from degradation (Zimmerman et al., 2011). 

The debate whether and how PyOM can affect turnover rates of native SOC and the direction, 

duration and magnitude of such changes has not yet been resolved. One complicating issue for 

disentangling priming from other non-additive interactions is the uncertainty regarding the 

origin of the respired CO2 from PyOM-amended soils (whether from SOC or PyOM). This issue 

can only be solved with the use of isotopes. Studies using stable isotopes have suggested 

acceleration of SOC decomposition in PyOM-amended soils (Luo et al., 2011; Farrell et al. 

2013), whereas others have shown deceleration of SOC decomposition (Hilscher et al., 2009; 

Laird et al., 2010; Cross and Sohi, 2011; Jones et al., 2011; Keith et al. 2011). The mechanisms 

behind PyOM and native SOC degradation in soil are still far from been resolved. 

 

 
Figure 1.2. Conceptual scheme of priming - non-additive interactions between decomposition of 

the added substrate and of soil organic matter (SOC): (a) acceleration of SOC decomposition - 

positive priming effect; (b) retardation of SOC decomposition - negative priming effect. Adapted 

from Kuzyakov et al. (2000). 
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Pyrogenic organic matter is usually considered highly recalcitrant due to presence of stable 

polycyclic aromatic hydrocarbons (Atkinson et al., 2010). However, PyOM also usually 

contains a proportion of more easily degradable aliphatic C structures (Cheng et al. 2006; Liang 

et al., 2008). Early increases in CO2 emission following PyOM-soil additions may, therefore, 

result from the decomposition of this labile C compartment of PyOM rather than from the native 

SOC (Hilscher et al., 2009; Smith et al., 2010; Zimmerman et al., 2011; Jones et al., 2011; Cross 

and Sohi, 2011; Méndez et al., 2013). Under the assumption of high recalcitrance of PyOM 

such increases would be interpreted as evidence for the priming effect, but this interpretation 

would clearly be incorrect in such situations. 

Understanding factors controlling the decomposition of PyOM and SOC in PyOM-amended 

soils is of great importance to guide the design of future policies. This is especially important 

for allowing predictions about the effects of PyOM additions to different soils under particular 

conditions. The relatively short time-frames of published studies is considered an important 

issue in current research with PyOM (Verheijen et al., 2014). Currently, the study of factors 

controlling interactions and decomposition of PyOM and SOC has only been included in short-

term laboratory and greenhouse experiments (Mukherjee and Lal, 2014). A systematic approach 

based on current literature data, in particular associated with long-term studies under field 

conditions is still missing. This approach is discussed in more detail in Chapters 2 and 3. 

 

1.4 Pyrogenic organic matter and microbial activity 

Understanding the effects of PyOM addition on the soil microbiota is crucial as microbial 

activity is strongly related to the functioning of soils. Additions of PyOM to soil can 

significantly increase soil microbial activity (Lehmann et al., 2011), with direct impacts on soil 

C dynamics and crop performance. Several explanations for increase in microbial activity in 

PyOM-amended soils have been suggested and include changes in soil pH and in the availability 

of nutrients (Atkinson et al., 2010). Additionally, PyOM can significantly influence microbial 

community structure (Steinbeiss et al., 2009) resulting in changes in C use efficiency 

(Khodadad et al., 2011). Changes in microbial community structure, especially regarding 

bacterial groups, have been demonstrated to be an important aspect affecting the oxidation of 

aromatic C (and therefore its functionalization) in PyOM-amended soils (Anderson et al., 2011) 

and in ADE (Germano et al., 2012). 

Modification of the soil environment by PyOM, either in terms of altered nutrient availability 

(e.g., N, P) and/or shifts in abiotic factors (e.g., pH, water-holding capacity, toxic elements) 

may cause some microbial groups to become dominant (Lehmann et al., 2011). Changes in soil 

nutrient status caused by PyOM additions are relevant for saprotrophic microbial groups, but 

also for microbial groups that form mutualistic root associations such as AMF and rhizobia 

(Lehmann et al., 2011). To what extent changes in soil microbial communities can be 

manipulated by PyOM addition in order to maximize benefits from such symbiotic relationships 

remains unknown. 
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Mycorrhizal activity 

Soil additions of PyOM may increase soil P availability. Increases can occur either through the 

direct addition of soluble phosphate salts and exchangeable phosphorus in PyOM (DeLuca et 

al., 2009) or as a consequence of increased soil pH and therefore P solubility, or the stimulation 

of phosphatase production by plants and microorganisms (Steiner et al., 2008). Such effects 

allow plants to acquire P from less soluble (organic) forms in the soil (Richardson et al., 2009). 

Another explanation for increased plant P uptake in PyOM-amended soils (even without 

changes in P availability) is through stimulation of arbuscular mycorrhizal fungal (AMF) 

associations (Nishio and Okano, 1991; Ohsowski et al., 2012). Soil amendments with PyOM 

can have positive impact on AMF (Rillig et al., 2010; Ohsowski et al., 2012; Salem et al., 2013), 

although negative effects have also been reported (Warnock et al., 2010 and George et al., 

2012). 

The causes for changes in mycorrhizal activity after PyOM applications are not completely 

understood and several mechanisms have been proposed (Warnock et al., 2007). One of these 

mechanisms refers to changes in soil nutrient availability (e.g. P and N) and in soil pH following 

PyOM additions. Besides, PyOM alkalinisation effects on soil promote root health and 

beneficial microbes (e.g. mycorrhiza helper bacteria) which in turn increase AMF root 

colonization (Elmer and Pignatello, 2011). These mycorrhiza-associated organisms are known 

to influence each other mutually and are capable of secreting metabolites that facilitate the 

colonization of plant roots (Warnock et al., 2007). Pyrogenic organic matter has also been 

reported to interfere in the signalling dynamics between plants and AMF and in the 

detoxification of allelochemicals in the soil rhizosphere (Warnock et al., 2007). These effects 

are particularly relevant because the establishment of the AMF in plant roots is the result of a 

complex exchange of signals between the host plant and AMF (Vierheilig et al., 2008). Another 

mechanism mentioned by Warnock et al. (2007) that potentially affects AMF-plant associations 

in PyOM-amended soils is the physical protection of AMF from fungal grazers provided by 

porous structure of PyOM (Saito, 1989; Ezawa et al., 2002; Yamato et al., 2006; Hammer et 

al., 2014). This may allow PyOM-amended soils to support a larger AMF biomass than 

comparable non PyOM-amended soils. 

Despite evidence of PyOM affecting colonization of plant roots by AMF, a clear understanding 

of the mechanisms through which PyOM controls such associations still represents a challenge 

for research. Understanding the potential factors either associated with PyOM properties, or the 

properties acquired by soils when amended with PyOM, which affects the abundance of 

mycorrhizal fungi and the effectiveness of the mycorrhizal symbiosis could be useful for 

designing strategies to increase the benefits in terms of plant production from such associations. 

Currently, studies have reported both positive and negative effects of PyOM on AMF-plant 

associations but most studies spanned short growing periods. Therefore, there is a need for 

investigation over multiple successive cropping cycles. Such an approach will provide a better 

understanding of modifications induced by addition of PyOM that lead to changes in AMF 

activity and plant performance. In Chapter 4 I address the effects of soil amendments with 
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PyOM on plant-AMF associations, on phosphatase activity and on P speciation over four 

soybean cropping cycles under field conditions in Brazil. 

Biological nitrogen fixation (BNF) 

Additions of PyOM can improve N bioavailability in agricultural soils (Nelissen et al., 2012; 

Zheng et al., 2013). PyOM can also stimulate biological nitrogen fixation (BNF) (Rondon et 

al., 2007). The potential of soil amendment with pyrolized materials for improving nodulation 

by rhizobia was early reported in literature (Turner, 1955). However, the quantification of this 

potentially beneficial effect was limited by the lack of appropriate tools (e.g. isotopic analyses). 

Increases in N2 fixation by bean (Phaseolus vulgaris L.) grown in PyOM-amended soils were 

demonstrated by the isotope dilution method (Rondon et al., 2007). These authors reported that 

the positive effects of PyOM, including increased N2 fixation, led to increases in bean yield, 

compared to the control. These results are supported by Anderson et al. (2011), who found 

increased abundance of DNA from the family Bradyrhizobiaceae in soil amended with PyOM. 

More recently, Mia et al. (2014) found increased BNF and higher total biomass production of 

red clover at moderate PyOM applications rates (10 Mg ha-1), compared to the control without 

PyOM and higher applications rates (120 Mg ha-1). These latter authors proposed that 

availability of potassium (K) provided by PyOM may have been responsible for increased BNF.  

Although mechanistic explanations for changes in BNF in PyOM-amended soils have been 

proposed (Lehmann and Rondon, 2006; Atkinson et al., 2010), these suggestions are mostly 

speculative as they are not (yet) backed up by experimental data. There is a need for additional 

experiments to further elucidate the mechanisms involved in BNF changes in PyOM-amended 

soils. For instance, possible effects of PyOM on P availability and consequently, on BNF have 

not been considered. Biological N fixation has a high P requirement since P is an important 

element in nodule metabolism (Vance, 2001). Phosphorus has shown to be important for initiate 

nodule formation, to increase the number of nodule primordia and is essential for the 

development and function of formed nodules (Waluyo et al., 2004). However, how BNF is 

affected by P fertilization in PyOM-amended soils is still unknown. 

 

1.5 Objectives 

Given the research gaps mentioned above, the main objective of this thesis is to provide a better 

understanding about the possible interactions between PyOM and SOC and the factors 

controlling symbiotic relationships in tropical soil amended with PyOM. The specific 

objectives are: 
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1. To quantitatively integrate and analyse studies on the effects of soil amendments with PyOM 

on CO2 emissions and identify the potential factors affecting these emissions (Chapter 2). 

2. To quantify changes in the PyOM and SOC stocks and decomposition rates over several 

soybean cropping cycles under field conditions, in a tropical soil amended with PyOM (Chapter 

3). 

3. To explore the effects of PyOM on root colonization by AMF and on soybean performance 

over several cropping cycles and disentangle the most important mechanisms controlling such 

effects (Chapter 4). 

4. To test the effects of PyOM on BNF over several soybean cropping cycles under tropical 

field conditions (Chapter 5). 

 

1.6 Experimental approach 

To address the above-mentioned research objectives I used a combination of meta-analytic data, 

field experiments and a pot experiment in greenhouse. 

Meta-analysis 

Studies investigating the influence of PyOM on CO2 emissions often report variable results. 

These studies include efforts to provide mechanistic explanations for changes in CO2 emissions 

from PyOM-amended soils. However, results from individual studies are derived from specific 

conditions and from a limited number of soils and PyOM types. By quantitatively combining 

results from many studies, we can identify patterns and draw robust conclusions regarding the 

nature of changes in CO2 emission for a wide range of PyOM and soil types outside of the 

experimental conditions used. 

Meta-analysis is a powerful technique that enables the quantitative combination of results from 

the whole body of studies available. I considered categories of controlling factors associated to 

soil and PyOM properties and experimental conditions affecting CO2 emission rates. Such an 

approach allowed a better understanding of the factors involved in changes in CO2 emission 

from PyOM-amended soils (Objective 1). 

Field experiment 

Two major characteristics of most experiments using PyOM, either studying CO2 emissions or 

symbiotic relationships, are their duration (usually short-term) and the conditions under which 

the experiment was carried out (usually in the laboratory or greenhouse). Consequently, these 

studies often also use unrealistically high amounts of PyOM compared to amounts of SOC – 

both in order to increase the probability of significant effects in the short time and because 

PyOM availability is not a limiting factor at such a small scale. A disadvantage of such studies 

is that they may not reproduce realistic field conditions and therefore results of such studies 
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cannot be extrapolated or scaled up with confidence. Although such experiments are relevant 

for understanding mechanisms involved, they may overestimate some effects of PyOM, and not 

consider important changes that may occur over longer periods of time. 

In my field study I evaluated the effects of different rates of PyOM and P fertilization on the 

stocks and decomposition rates of PyOM and native SOC (Objective 2) over four cropping 

cycles of soybean, which is a major grain crop in Brazil. I also collected data associated with 

symbiotic associations between soybean plants with AMF (Objective 3) and BNF by N-fixing 

bacteria (Objective 4). These experiments were conducted for a period of 17 months (Fig. 1.3A, 

1.3B and 1.3C).  

Auxiliary experiments 

A pot experiment under greenhouse conditions was designed using a similar structure to the 

field experiment (PyOM rates and P treatments), utilizing soil collected from the field 

treatments. From this experiment additional data regarding symbiotic associations were 

collected and used in the General Discussion. 

An additional litterbag experiment was performed under field conditions in order to test 

possible differential interactions of fresh and aged PyOM with non-pyrogenic organic matter. 

This experiment was an attempt to evaluate long-term dynamics of PyOM decomposition in a 

two-year experiment. 

 

1.7 Outline of the thesis 

This thesis consists of six chapters, including this General Introduction (Chapter 1). The 

previously mentioned four objectives correspond to Chapters 2 to 5, which are described below. 

Chapter 2 addresses the first objective, focusing on the role of soil amendments with PyOM on 

changes in CO2 emission from soil and the potential causes of such changes. Based on a meta-

analysis , I summarize the effect of PyOM on CO2 emission across 46 individual studies (276 

data points) and identify the most likely causes involved. I also provide insights about the 

usefulness of the results for predicting CO2 emissions in PyOM-amended soils. 

Chapter 3 deals with the second objective and extends the findings of Chapter 2 by confirming 

the low ability of PyOM to prime decomposition of native soil organic matter under field 

conditions. It further explores the potential recalcitrance/lability of PyOM, which has been 

addressed only in laboratory studies to date. For this purpose, I use soil samples from a 17-

month-old field experiment in which PyOM was applied at different rates and discriminate the 

origin of the remaining C (whether from PyOM or native SOC) by 13C stable isotope analysis. 
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In Chapter 4, I address Objective 3 by investigating the direct and indirect effects of PyOM on 

root colonization by AMF and on soybean grain yield. Data from a field experiment conducted 

over four cropping cycles were analysed through path analysis. The AMF behaviour over time 

allowed evaluation of the likely mechanisms responsible for changes in mycorrhizal activity in 

PyOM-amended soils. 

A B 

 

C 

 

Figure 1.3. Field experiment in Parnaiba, Brazil, showing (A) PyOM application, (B) soil layer 

mixed with PyOM, and (C) general view of the experiment. 
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Chapter 5 addresses Objective 4, by testing the potential effects of soil amendment with PyOM 

on BNF. I use data from the same field experiment conducted over four cropping cycles, and 

assess BNF through 15N stable isotope analysis. Changes in the BNF pattern over time allowed 

reflecting on potential mechanisms controlling this symbiosis in PyOM-amended soils and its 

relevance over time. 

This thesis concludes with a General Discussion in Chapter 6. In this final chapter I summarize 

the main findings in my thesis through an integrated approach, and reflect on their relevance to 

current knowledge and future research. I also place my findings in a societal relevance context. 
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Abstract 

Soil amendment with pyrogenic organic matter (PyOM), also named biochar, is claimed to 

increase carbon (C) sequestration. However, possible interactions between PyOM and native 

soil organic carbon (SOC) may accelerate the loss of SOC, thus reducing PyOM’s C 

sequestration potential. We combined the results of 46 studies in a meta-analysis in order to 

investigate changes in CO2 emission patterns of PyOM-amended soils and to identify the causes 

of these changes and the possible factors involved. Our results showed a statistically significant 

increase of 29% in CO2 emission from PyOM-amended soils. However, increases in CO2 

emission were only evident in soils amended with a PyOM-C (PyC):SOC ratio >2. Our data are 

consistent with the hypothesis that increased CO2 emission after PyOM addition is additive and 

mainly derived from PyOM’s labile C fractions. The PyC:SOC ratio provided the best predictor 

of increases in CO2 production after PyOM addition to soil. This meta-analysis highlights (i) 

the importance of taking into account the amount of applied PyC in relation to SOC for 

designing future decomposition experiments and that (ii) the recalcitrance of PyOM in soil-

PyOM mixtures may be lower than usually assumed. 
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2.1 Introduction 

Soil organic carbon (SOC) plays vital roles in important soil ecosystem services such as soil 

fertility, carbon (C) sequestration and mitigation of greenhouse gas emission (Paustian et al., 

1997). Application of pyrogenic organic matter (PyOM; also named biochar) to agricultural 

soils has the potential to sequester C in the long-term because PyOM is assumed to be highly 

recalcitrant in soil (Lehmann, 2007). Pyrogenic organic matter is composed of a range of 

different forms of C, with predominance of fused aromatic ring structures (Novotny et al., 

2009). When formed under natural conditions, such as in forest fires, this material is known as 

“black carbon” (BC). Black carbon has been found to be the oldest fraction of C in soils, even 

compared to the most protected C in soil aggregates and organo-mineral complexes (Pessenda 

et al., 2001); it can persist in the soil for millennia (Kuzyakov et al., 2009). The production of 

PyOM and its application to soil is, therefore, a potential strategy to sequester C in soils 

(Lehmann, 2007). 

Although PyOM is considered to be highly recalcitrant, it is not completely biologically inert 

(Jones et al., 2012; Farrell et al., 2013). Application of PyOM to soil can increase CO2 emission 

as PyOM contains a proportion of relatively labile aliphatic C structures (Cheng et al., 2006; 

Liang et al., 2008). Such increases may be additive if the fluxes from SOC and PyOM behave 

independently. However, it has been proposed that PyOM can also non-additively affect CO2 

emission through changes in native SOC turnover, either accelerating its decomposition (Farrell 

et al., 2013) or decelerating it (Keith et al., 2011). These non-additive interactions are 

summarized under the term “priming effect” (PE). Positive priming is defined as strong short-

term changes in the turnover of soil organic matter caused by comparatively moderate 

treatments of the soil (Kuzyakov et al., 2000). 

Wardle et al. (2008) suggested that PyOM can accelerate decomposition of non-pyrogenic 

carbon as they found greater CO2 production from mixtures of PyOM and forest humus than 

predicted from the sum of these components considered separately. However, the origin of the 

(additionally) respired CO2 (i.e. whether from SOC or PyOM) was not identified. In a recent 

meta-analysis investigating priming effects of PyOM addition, Maestrini et al. (2014) showed 

that labile C fractions of applied PyOM induce a short-term positive priming effect on native 

SOC, especially when PyOM with low C content is used. They also showed that priming can 

become negative over time (after 200 days), possibly as a result of sorption of dissolved organic 

carbon on PyOM surface. 

Irrespective of the mechanisms involved, these results suggest that PyOM addition to soil could 

undermine its C sequestration potential (Cross and Sohi, 2011). Several studies have 

investigated this topic using isotope analysis. Findings suggested acceleration of SOC 

decomposition (Luo et al., 2011; Farrell et al., 2013), deceleration (Keith et al., 2011; Knicker 

et al., 2013), both effects (Zimmerman et al., 2011; Bamminger et al., 2013) or no effects on 

SOC decomposition (Jones et al., 2012; Santos et al., 2012; Díaz-Rojas et al., 2014), without 

indicating the probable cause(s) of this variation in effects (Maestrini et al., 2014). 
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When soils are amended with PyOM, changes in CO2 emission rates can occur as a consequence 

of several factors, either associated with environmental conditions such as temperature 

(Hilscher and Knicker, 2011) or soil (type or disturbance intensity), or with PyOM (type, 

application rate) (Singh et al., 2010). Pyrolysis process parameters (e.g. pyrolysis temperature, 

residence time) also play a role (Bamminger et al., 2013; Farrell et al., 2013) as they affect the 

characteristics of the resulting PyOM, including the amount of labile C remaining after 

production. While there are now a number of studies in the primary literature reporting changes 

in CO2 emission following PyOM application to soil, individual studies necessarily utilise a 

limited number of soils and PyOM types. As such, they do not allow the drawing of robust 

conclusions regarding the nature of changes in CO2 emission for the wide range of PyOM and 

soil types outside of the experimental conditions used. Therefore, a joint analysis, utilising the 

entire body of studies currently available, is required in order to better formulate hypotheses 

regarding the observed effects. 

Meta-analysis is a powerful technique that provides a quantitative statistical means of 

integrating the results of independent studies, allowing for general conclusions to be drawn 

(Gurevitch and Hedges, 2001; Borenstein et al., 2009). Currently, a few meta-analyses on 

PyOM research have been published in the fields of crop yield (Jeffery et al., 2011; Liu et al., 

2013; Biederman and Harpole, 2013 – but see Jeffery et al., 2014), N2O emission (Cayuela et 

al., 2013) and priming (Maestrini et al., 2014), with relevant contributions for enhancing our 

understanding of PyOM effects on soil processes and functions. 

Here we build and expand on work reported by Maestrini et al. (2014) and integrate results 

from 46 independent studies, including those which did not use stable isotopes, in order to gain 

a better understanding of the effects of soil amendments with PyOM on CO2 emissions. Such 

analysis will allow the identification of factors associated with soil, PyOM properties and 

experimental conditions that can affect CO2 emission from PyOM-amended soils. These data 

are vital to allow the effective guidance of policy, for example, to determine whether PyOM is 

to be eligible for future C-trading schemes (Lehmann et al., 2006). 

 

2.2 Material and Methods 

Data sources and compilation 

We performed a systematic literature search of peer-reviewed publications on the effects of 

PyOM addition to soils on soil CO2 fluxes using Scopus, Web of Science and Science Direct 

databases. Different combinations of keywords were used (“biochar” OR “PyOM” OR 

“charcoal” OR “black carbon” AND “priming” OR “CO2”), selecting also “Abstract, Title, 

Keywords” for search field with data range “2000 to present”. The cut-off date was 23rd April 

2014. 

Studies performed under laboratory, greenhouse and field conditions were included. 

Experiments were grouped according to the provenance of the soils used, whether from (sub-) 
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tropical or temperate regions. Data are reported as rates of CO2 emission on the basis of soil 

mass or area. If CO2 emission had been measured several times in the same study, only the last 

sampling date was used. Our approach intended to avoid introducing bias into the analysis 

because some studies included considerably more data points than others. Cumulative CO2 

emissions were far more commonly reported in studies than daily fluxes. Therefore, cumulative 

values were preferred over daily or individual measurements when both types were available. 

In both cases, only studies that reported CO2 emission from bulk soil samples after a clearly 

defined experimental period were included.  

A minimum of three replicates per treatment was required for the study to be included in the 

meta-analysis. When PyOM was produced from the same feedstock and pyrolysis type, but 

under a range of temperatures, data from the highest and lowest temperatures were recorded. 

This reduced the potential bias of introducing many non-independent data points from a single 

study. When pyrolysis temperature was given as a range (e.g. 400–500°C), the highest value 

was chosen (i.e. 500°C). Only studies that used PyOM in combination with soil were included 

in the meta-analysis; we excluded studies where washed sand or humus was used instead of 

soil. Studies of CO2 emission from anthropogenic Amazonian Dark Earths (ADE) were also 

excluded as information is not available on the original amounts of PyOM applied to or present 

in the soil, its age, production conditions, nor the environmental factors to which PyOM has 

been subjected (Pereira et al., 2014). 

We collected data comparing CO2 emission between a control and a PyOM treatment. One 

major assumption of meta-analysis is that studies and data points are independent (Gurevitch 

and Hedges, 2001; Borenstein et al., 2009). When particular publications reported data from 

more than one study system (e.g. different PyOM feedstock, pyrolysis type, pH and 

experimental type; lab or field), those systems were considered independent and were treated 

as such. The control was chosen to be identical to the treatment for all variables but without the 

addition of PyOM. For each observation within every study we collected the means of the 

control treatment (soil without PyOM) and the experimental treatment (PyOM-amended soil), 

as well as their standard deviation (SD) and replicate numbers (n). We acknowledge that in 

some instances this procedure means that more than one experimental treatment may be 

compared to the same control. In these instances, this approach artificially increases the number 

of replicates that the statistic is based on and as such may bias the results towards over-

confidence (i.e. confidence intervals may be too narrow). However, utilising the more 

conservative approach of using only a single average measurement for all potentially dependent 

measures (e.g. Borenstein et al., 2009) sacrifices too much information, as discussed in Guo 

and Gifford (2002). 

For studies that did not report SD or a measure of variance that could be used to calculate SD, 

such as standard error (SE), efforts were made to obtain these from the corresponding authors. 

In some cases this was successful (see Acknowledgements). If not, those studies were excluded 

from the analysis. When data were only provided in graphs, Plot Digitizer 2.6.2 was used to 
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extract data points. Unidentified error bars were present in two studies and were conservatively 

assumed to denote SE rather than SD. 

The search resulted in 45 papers that were suitable for being included in the meta-analysis. The 

database covered 276 side by side comparisons, from 45 studies published from 2009 to 2013. 

To reduce the potential effects of publication bias, efforts were also made to search the grey 

literature for data. This lead to one additional unpublished study (Rittl et al. in preparation) 

being included as it satisfied all the criteria of data quality and amount of information provided. 

Therefore, in total, 46 studies were used (see appendix in Supporting Information). 

Data grouping and treatment 

Besides the data on measured response variables, details of experimental conditions also needed 

to be specified as categories for inclusion in the analysis. Studies were categorized by soil 

properties and environmental conditions (C content, pH, C:N ratio, fertilization background, 

texture and provenance), PyOM properties (C content, C:N ratio, pH, ash content, surface area, 

volatile matter, pyrolysis type and residence time, pyrolysis temperature, and feedstock) and 

experimental conditions (duration, temperature of incubation, moisture content, and type). The 

proportion of applied PyOM-C (PyC) in relation to original SOC content (PyC:SOC ratio) was 

also calculated and included. Because initial analyses demonstrated a highly significant 

difference between studies with higher and lower PyC:SOC ratios (i.e. >2 and <2, respectively), 

the data were split into two sub-groups for ratios >2 and <2 within each category in order to 

assess the impact of this factor on other potentially relevant factors (categories). 

Data from the different categories were subjected to a standardization process to allow for 

comparisons. For instance, soil or PyOM pH values measured with CaCl2 were found in six 

studies and were made comparable with pH measured with distilled water using the formula 

pH(H2O) = 1.65 + 0.86 * pH(CaCl2) (Augusto et al., 2008). When no information on pH 

measurement method was provided, data were assumed to denote pH measured in distilled 

water. Data reported on a continuous scale (such as pH) were placed into categories which 

covered a range of scales, such as 1 pH unit (i.e. pH 6-7), resulting in an adequate number of 

data points in each sub-group. When soil texture was not explicitly provided by the authors it 

was defined based on soil contents of sand, clay and silt, according to FAO/UNESCO (2003). 

Statistics 

A quantitative index of the effect size in each comparison was calculated as the natural log of 

the response ratio by using the following formula (Rosenberg et al., 2000): 

 

𝑙𝑛 𝑅𝑅 = 𝑙𝑛 (
𝑋𝐸

𝑋𝐶
) 
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where RR= response ratio, XE = mean of experimental group and XC = mean of control group. 

The effect size of each grouping was calculated using a categorical random effects model, 

where the effect size was weighted in inverse proportion to its variance (Adams et al., 1997). 

Publication bias (Rothstein et al., 2005) is unlikely in our meta-analysis. Not only increases and 

decreases, but also lack of significant effects in CO2 emission in PyOM-amended soils is 

equally publishable. Nevertheless, we tested the effects of publication bias using the Fail-safe 

N technique (Orwin, 1983; Rosenthal and Rosnow, 1991). This technique involved computing 

the combined P value for all of the studies included, and calculating the number of additional 

studies showing no effect (i.e. average Z value of 0) that would be needed in order to change 

the P value from significant to non-significant at P= 0.05. 

The mean of a response variable was considered significant if the lower limit of the 95% CI 

was >1 or the upper limit of the 95% CI <1. The latter case can be considered evidence for 

negative priming; however, significantly positive values could be the result of additive effects 

and/or priming. The means of different subcategories were tested for significant differences 

based on the model heterogeneity test (Q -test), which is tested against a χ2 distribution with 1 

degree of freedom (d.f.) (Rosenberg et al., 2000). Calculations were performed using Metawin 

Version 2 Statistical software (Rosenberg et al., 2000) and in Microsoft Excel worksheets. The 

response ratio (RR) and CI of treatments presented in Tables and Figures were back-

transformed from lnRR. 

 

2.3 Results 

Main effect 

On average, CO2 emission increased significantly by 29% (RR = 1.29; CI = 1.15-1.43) 

following the addition of PyOM to soil. Rosenthal’s Fail safe N was 1739, indicating that the 

statistical significance of the reported increase of CO2 emission after PyOM addition is unlikely 

due to publication bias. Studies with high PyOM additions relative to SOC (PyC:SOC ratio >2) 

had a significantly higher CO2 flux than studies with a PyC:SOC ratio <2 (RR = 1.99 and 1.03 

respectively; P <0.01; Fail safe N= 1591 for the relatively high application; Fig. 2.1). For the 

relatively low application the effect on CO2 emission was not significant. For this reason we 

analysed all further factors for both categories separately. 

Influence of soil characteristics 

There were significant differences in CO2 emission (P<0.05) between sub-groups of different 

soil-associated categories for PyC:SOC ratios >2, for soil fertilization background and soil 

provenance (Table 2.1). For PyC:SOC ratios <2, there were significant differences between 

sub-groups for soil C content and soil texture. 
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Soils with C content <30 g kg-1 showed a significantly increased CO2 emission (Tab. 2.1) at 

both PyC:SOC ratios. Soils with C content >30.0 g kg-1 were not affected by PyOM additions 

in terms of CO2 emissions, regardless of the PyC:SOC ratios. Soils with C:N ratios <10.0 

showed increased CO2 emission only at PyC:SOC ratios >2. Soils with C:N ratio >10.0 had 

emissions of CO2 significantly increased independently of the PyC:SOC ratios. Additions of 

PyOM to soils with pH values >6.0 resulted in increased CO2 emission only when PyC:SOC 

ratio was >2. Additions of PyOM to soils with pH values <6.0 resulted in significant increases 

in CO2 emission regardless of the PyC:SOC ratio. Soils with a history of N fertilization and 

those without any fertilizer input increased CO2 emission only at PyC:SOC ratios >2. 

Contrarily, the CO2 emission from soils with a history of NPK fertilization was unaffected by 

PyOM addition. 

Emission of CO2 increased in medium-textured soils after addition of PyOM, regardless of the 

PyC:SOC ratio. Coarse-textured soils increased CO2 emissions only at high PyC:SOC ratios 

(>2) and fine-textured soils only when PyC:SOC ratio was <2. Soils originating from temperate 

regions increased their CO2 emission following PyOM addition only at PyC:SOC ratios >2. 

However, experiments using soils from (sub-)tropical regions did not show significant effects 

in terms of CO2 emission irrespective of the PyC:SOC ratio. 

 

 

 

 
Figure 2.1. Influence of different PyC:SOC ratios on CO2 emission from PyOM-amended soils. Symbols 

show response ratio (RR) and bars show 95% confidence intervals. The numbers shown in parentheses 

correspond to the number of observations upon which the statistical analysis is based. 
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Influence of PyOM characteristics 

For sub-groups of PyOM-associated characteristics, there were significant (P<0.05) differences 

in CO2 emission at PyC:SOC ratios >2, for PyOM surface area, PyOM volatile matter, pyrolysis 

residence time and PyOM feedstock (Tab. 2.2). At PyC:SOC ratios <2 there were significant 

differences in CO2 emission among sub-groups of different categories for PyOM C content, 

PyOM C:N ratio and PyOM pH. 

We observed a significant increase in CO2 emission at both PyC:SOC ratios when PyOM with 

C content varying from 50.1-80.0 % was used. However, the response ratio was significantly 

larger (P<0.01) at PyC:SOC ratios >2 (RR= 1.88) than <2 (RR= 1.18). When PyOM with C 

content <50.0 % and >80.0% was applied to the soil, only PyC:SOC ratios >2 resulted in 

Table 2.1. Meta-analysis of the effects of PyC:SOC ratios on CO2 emission, within soil-associated 

characteristics. PyC:SOC ratios are divided as >2 and <2. 

 

Categories 

PyC:SOC 

ratio 

 

RR 

 

95% CI 

 

n 

 

P* 

 

P** 

Soil C content  (g kg-1)       

<10.0 >2 2.55 1.56-4.32 23 <0.01 0.22 

 <2 1.19 1.04-1.33 26 <0.01 

10.1-30.0 >2 1.93 1.46-2.63 61 <0.01  

 <2 1.13 1.02-1.27 79  

>30.0 >2 1.05 0.13-3.20 3 0.63  

 <2 0.89 0.72-1.09 62  

Soil C:N ratio       

<10.0 >2 2.85 1.73-5.31 22 <0.01 0.85 

 <2 1.21 0.97-1.51 22 0.07 

>10.0 >2 1.38 1.03-1.93 6 0.14  

 <2 1.16 1.06-1.27 74  

Soil pH       

>6.0 >2 2.64 1.80-3.80 46 <0.01 0.12 

 <2 0.99 0.85-1.14 106 0.06 

<6.0 >2 1.48 1.03-2.17 35 0.22  

 <2 1.15 1.03-1.26 49  

Fertilization background       

N >2 12.01 6.70-20.87 8 <0.01 <0.01 

 <2 1.04 0.88-1.24 12 0.87 

None >2 1.92 1.40-2.64 65 <0.01  

 <2 1.00 0.86-1.17 100  

NPK >2 1.07 0.85-1.37 14 0.36  

 <2 0.97 0.88-1.06 32  

Soil texture        

Medium >2 3.01 1.96-4.80 32 <0.01 0.11 

 <2 1.17 1.01-1.38 42 <0.01 

Coarse  >2 3.02 1.70-5.32 24 <0.01  

 <2 0.85 0.65-1.09 53  

Fine >2 1.20 0.78-2.20 5 0.46  

 <2 1.33 1.19-1.49 25  

Soil provenance       

Temperate >2 2.16 1.63-2.87 79 <0.01 0.03 

 <2 1.06 0.94-1.19 125 0.41 

(Sub-)tropical >2 1.04 0.80-1.59 10 0.72  

 <2 0.98 0.89-1.08 40  

RR= response ratio; CI= 95% confidence interval for RR; n= number of observations within each category; P*= 

probability of the model heterogeneity test between the two relative application ratios (PyC:SOC ratio >2 and <2 

respectively) within the various groupings; P**= probability of the model heterogeneity test between the various 

groupings within the categories of relative application ratios. 

 



Chapter 2 

24 

 

increased CO2 emission. Similarly, only PyC:SOC ratios >2 resulted in increased CO2 emission 

both at PyOM C:N ratios <50 and >50 (RR= 2.40 and 2.54, respectively). Pyrogenic organic 

matter with pH values <8.0 resulted in increased CO2 emission from the soil independently of 

PyC:SOC ratios. When PyOM with pH values >8.0 were used, only PyC:SOC ratios >2 

significantly increased CO2 emission.  

Table 2.2. Meta-analysis of the effects of PyC:SOC ratios on CO2 emission, within PyOM-associated 

characteristics. PyC:SOC ratios are divided as >2 and <2. 

 

Categories 

PyC:SOC 

ratio 

 

RR 

 

95% CI 

 

n 

 

P* 

 

P** 

PyOM C content (%)       

50.1-80.0 >2 1.88 1.42-2.54 64 <0.01 0.70 

 <2 1.18 1.03-1.34 98  <0.01 

>80.0 >2 2.27 1.16-4.56 19 0.04  

 <2 0.98 0.85-1.13 28   

<50.0 >2 2.92 1.34-5.00 6 <0.01  

 <2 0.77 0.62-0.96 37   

PyOM C:N ratio       

>50.0 >2 2.40 1.68-3.40 48 <0.01 0.87 

 <2 1.04 0.88-1.26 62  <0.01 

<50.0 >2 2.54 1.51-4.31 21 <0.01  

 <2 1.00 0.85-1.16 68   

PyOM pH       

<8.0 >2 3.23 1.45-7.50 10 <0.01 0.56 

 <2 1.36 1.20-1.58 44  <0.01 

>8.0 >2 1.67 1.15-2.57 24 0.14  

 <2 1.02 0.95-1.11 60   

PyOM ash content (%)       

<10.0 >2 1.98 1.22-3.37 28 <0.01 0.74 

 <2 1.00 0.85-1.15 45  0.57 

>10.0 >2 1.79 1.19-2.70 31 <0.01  

 <2 0.94 0.77-1.15 67   

PyOM surface area (m2 g-1)       

<50.0 >2 4.01 2.60-6.68 26 <0.01 <0.01 

 <2 0.82 0.63-1.09 47  0.11 

>50.0 >2 1.15 0.79-1.59 29 0.26  

 <2 1.01 0.88-1.14 32   

PyOM volatile matter (%)       

<10.0 >2 3.89 1.84-8.98 9 0.11 0.01 

 <2 1.19 1.04-1.28 3  0.58 

>10.0 >2 1.31 0.92-1.81 24 0.06  

 <2 1.05 0.93-1.20 32   

Pyrolysis residence time (h)       

<0.5 >2 12.01 6.87-20.85 8 <0.01 <0.01 

 <2 1.08 0.96-1.23 24  0.61 

>0.5 >2 1.09 0.84-1.42 34 0.62  

 <2 1.04 0.95-1.13 68   

PyOM feedstock       

Lignocellulosic waste >2 3.29 1.25-8.98 10 0.01 <0.01 

 <2 0.93 0.74-1.12 17  0.61 

Herbaceous >2 2.97 1.73-5.07 27 <0.01  

 <2 1.07 0.90-1.30 59   

Wood >2 1.52 1.18-2.05 52 <0.01  

 <2 1.05 0.90-1.23 62   

RR= response ratio; CI= 95% confidence interval for RR; n= number of observations within each category; P*= 

probability of the model heterogeneity test between the two relative application ratios (PyC:SOC ratio >2 and <2 

respectively) within the various groupings; P**= probability of the model heterogeneity test between the various 

groupings within the categories of relative application ratios. 
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Only PyC:SOC ratios >2 resulted in significant increases of CO2 emission either using PyOM 

with ash contents <10.0 and >10.0 % (RR= 1.98 and 1.79, respectively). When PyOM with 

surface area <50.0 m2 g-1 was applied to the soil, there was increased CO2 emission at PyC:SOC 

ratios >2. However, when PyOM with surface area >50.0 were used there were no changes in 

CO2 emission at both PyC:SOC ratios. Additions of PyOM with volatile matter contents 

<10.0% resulted in increased CO2 emission independently of the PyC:SOC ratios. Pyrogenic 

organic matter with volatile matter contents >10.0% did not significantly affect CO2. 

Emissions of CO2 from soils amended with pyrogenic organic matter produced under pyrolysis 

residence times <0.5 hours were significantly increased at PyC:SOC ratios >2 (RR= 12.01), but 

not at PyC:SOC ratios <2. No significant increases in CO2 emission were observed when PyOM 

produced under pyrolysis residence times >0.5 hours was applied. At PyC:SOC ratios >2 there 

was a significant increase CO2 emission independently of feedstock used for PyOM production. 

Emission of CO2 from soils amended with PyOM produced from lignocellulosic waste and 

herbaceous materials was greater (RR= 3.29 and 2.97 respectively) than from wood materials 

(RR= 1.52) at PyC:SOC ratios >2. 

Pyrogenic organic matter produced at temperatures <350°C increased CO2 emission 

independently of the PyC:SOC ratio (RR= 2.22 and RR= 1.50 for PyC:SOC ratio >2 and <2, 

respectively) (Fig. 2.2). When PyOM was produced at temperatures ranging from 351-550°C, 

there was increased CO2 emission only at PyC:SOC ratio >2 (RR= 1.96). For PyOM produced 

at temperatures >550°C, no significant changes in CO2 emission was observed at PyC:SOC 

ratio >2, but a significant decrease in CO2 emission at PyC:SOC ratio <2 (RR= 0.86; CI= 0.72-

0.98). 

Influence of experimental conditions 

Significant differences among sub-groups at PyC:SOC ratios >2 were observed in most 

instances, except for experiment type. At PyC:SOC ratios <2, these differences were significant 

only for incubation temperature and soil moisture (Tab. 2.3). 

Experiments performed for periods shorter than 200 days showed increased CO2 emission only 

when the PyC:SOC ratio was >2 (RR= 2.48). For experiments performed for periods longer 

than 200 days, no significant effects on CO2 emission were observed (Tab. 2.3). Soils incubated 

at temperatures of <30.0°C had their CO2 emissions significantly increased independently of 

the PyC:SOC ratio. However, CO2 emission from soils incubated at temperatures >30.0°C or 

under variable temperatures were not influenced by PyOM additions.  
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 There was a significant increase in CO2 emission from soils incubated at moistures <40% and 

>80% of water holding capacity (WHC) at PyC:SOC ratios >2 (RR= 3.03 and 3.32, 

respectively). Conversely, for soils incubated under moisture ranging from 40.1-80.0 % WHC, 

there was a significant increase in CO2 emission when the PyC:SOC ratio was <2 (RR= 1.17). 

Soils amended with PyOM in laboratory and field experiments had their CO2 increased only at 

PyC:SOC ratios >2 (RR= 2.14 and 1.17, respectively). Emissions of CO2 from greenhouse 

experiments were not influenced by PyOM additions. 

 

2.4 Discussion 

Our meta-analysis showed an overall statistically significant increase of 29% in CO2 emission 

from PyOM-amended soils compared to soils without PyOM. We have also shown that 

significant increases in CO2 emission were only evident at PyC:SOC ratios >2. These findings 

are consistent with the hypothesis that the main source of increased CO2 emission from PyOM-

 
Figure 2.2. Influence of different PyC:SOC ratios, within different PyOM pyrolysis temperatures on 

CO2 emission from PyOM-amended soils. Symbols show response ratio (RR) and bars show 95% 

confidence intervals. The numbers shown in parentheses correspond to the number of observations 

upon which the statistical analysis is based. 
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amended soils is the labile C fraction of PyOM. For the first time, we demonstrate that the 

PyC:SOC ratio is the best predictor for increases in CO2 production in PyOM-amended soils. 

Soils with low C contents and low C:N ratios emitted more CO2 at PyC:SOC ratios >2 than 

soils with high C contents and high C:N ratios (Tab. 2.1). Soils with low C contents have been 

reported as being more responsive to PyOM additions in terms of CO2 emission (Stewart et al., 

2013; Yu et al., 2013). In these relatively low-SOC soils, labile fractions of PyOM may provide 

an important source of C that is used as selective substrate for microbial activity (Cross and 

Sohi, 2011). Coarse-textured (i.e. sandy) soils normally have lower amounts of SOC as they 

offer less protection against decomposition than fine-textured (i.e. clayey) soils (Roscoe et al., 

2001). This lower protective effect may also enhance PyOM exposure and hence its 

decomposition (Brodowski et al., 2005), resulting in increased CO2 emission. Such a hypothesis 

is supported by our findings of higher CO2 emissions from soils with medium and coarse texture 

at PyC:SOC ratios >2, compared to fine-textured soils (Tab. 2.1). It further suggests that 

persistence of PyOM is influenced by the soil environment, in contrast to suggestions by 

Schmidt et al. (2011). 

Table 2.3. Meta-analysis of the effects of PyC:SOC ratios on CO2 emission, within experimental-

associated characteristics. PyC:SOC ratios are divided as >2 and <2. 
 

Categories 
 

PyC:SOC ratio 
 

RR 
 

95% CI 
 

n 
 

P* 
 

P** 

Experiment duration       

<200 days >2 2.48 1.87-3.33 72 <0.01 <0.01 

 <2 1.04 0.91-1.17 120  0.82 

>200 days >2 0.85 0.55-1.21 17 <0.01  

 <2 1.07 0.98-1.16 47   

Incubation temperature (T°C)       

20.1-30.0 >2 2.22 1.51-3.54 30 <0.01 0.03 

 <2 1.21 1.10-1.32 64  0.01 

<20.0 >2 1.66 1.03-2.64 2 0.21  

 <2 1.25 1.06-1.50 28   

>30.0 >2 1.08 0.72-1.55 20 0.77  

 <2 1.04 0.89-1.20 20   

Variable >2 1.02 0.72-1.66 7 0.60  

 <2 0.95 0.86-1.03 31   

Soil moisture (%)       

<40.0 >2 3.03 1.67-5.88 20 <0.01 <0.01 

 <2 0.91 0.65-1.21 8  <0.01 

>80.0 >2 3.32 2.02-5.34 30 <0.01  

 <2 0.76 0.57-1.01 44   

40.1-80.0 >2 1.20 0.88-1.58 28 0.74  

 <2 1.17 1.08-1.28 72   

Experiment type       

Laboratory >2 2.14 1.64-2.85 80 <0.01 0.11 

 <2 1.07 0.94-1.20 132  0.50 

Greenhouse >2 1.02 0.74-1.68 7 0.54  

 <2 0.92 0.75-1.12 10   

Field >2 1.17 1.16-1.17 2 0.45  

 <2 1.00 0.62-1.10 25   

RR= response ratio; CI= 95% confidence interval for RR; n= number of observations within each category; P*= 

probability of the model heterogeneity test between the two relative application ratios (PyC:SOC ratio >2 and <2 

respectively) within the various groupings; P**= probability of the model heterogeneity test between the various 

groupings within the categories of relative application ratios. 
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Results from PyOM pyrolysis temperature sub-groups (Fig. 2.2) further support the hypothesis 

that increases in CO2 emission following soil-PyOM additions may derive mainly from PyOM 

labile fractions. Pyrogenic organic matter produced at <350°C, which usually have a higher 

labile fraction of C (Sun et al., 2014), significantly increased CO2 emission irrespective of 

PyC:SOC ratio, but PyOM produced at >550°C (i.e. with a lower labile fraction) did not, even 

at high application rates. For the studies included in our meta-analysis, high pyrolysis 

temperatures were generally associated to PyOM with higher C contents than those produced 

at low pyrolysis temperatures, as confirmed by Sun et al. (2014). However, PyOM C content 

was not a significant factor controlling CO2 emission, as relevant increases occurred only at 

PyC:SOC ratios >2, irrespective of PyOM C content (Tab. 2.2). 

Our results are consistent with the assumption that positive priming is not the main driver of 

increased CO2 emission. While the original definition of priming (Bingeman et al., 1953) 

referred to increased decomposition of SOC after addition of organic sources, later definitions 

are more restrictive. For instance, the definition of Kuzyakov et al. (2000) refers to priming as 

strong short-term changes in SOC turnover after additions of small amounts of labile fresh 

organic materials. The studies covered in this meta-analysis do not fit with this narrow 

definition in two respects. Amounts added were usually large (and significant increases in 

respiration only occurred at PyC:SOC ratios >2). Furthermore, the material added was 

supposedly recalcitrant rather than labile. However, labile-C fractions can also be present on 

the surface of PyOM following pyrolysis, from example in the form of sugars and aldehydes 

(Painter, 2001). The total amount of these labile-C fractions increases with increasing PyOM 

application rates. Therefore, the fact that CO2 emission increased significantly only at PyC:SOC 

rates >2 (Fig. 2.1) suggests that this CO2 originated to a large extent from the decomposition of 

labile C fractions of the PyOM (cf. Smith et al., 2010; Cross and Sohi, 2011; Hilsher and 

Knicker, 2011; Luo et al., 2011; Méndez et al., 2013).  

One major implication of our study is that some PyOM (or fractions thereof) decompose more 

quickly, and hence are less recalcitrant than usually thought (Lehmann et al., 2006). If the 

assumption of very high recalcitrance of all chars is relaxed, our data also imply that increases 

in CO2 emission following PyOM additions may have been often mistakenly referred to as 

positive priming. This risk is highest in those studies where isotope analysis was not performed, 

as the main source of emitted CO2 could not be determined and so may be the PyOM rather 

than the SOC. 

Maestrini et al. (2014) recently analysed priming effects by biochar on SOC decomposition, 

based on studies with stable C isotope-labelled substrates. They concluded that positive priming 

occurs shortly after soil-PyOM incubations (especially within periods <20 days) and negative 

priming in incubations lasting for >200 days. While their data are not directly comparable with 

ours (their priming effect was not expressed as a response ratio and they did not separate studies 

with high and low relative biochar addition rates), they noted that a major cause for positive 

priming was the occurrence of a labile fraction in PyOM. In cases where negative priming was 

observed, they proposed sorption of SOC onto the PyOM surface as a major mechanism. 
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The surface area of PyOM is likely to increase over time as particles weather and break up. 

Furthermore, evidence suggests that the surface of PyOM may become more reactive over time, 

increasing in properties such as cation exchange capacity (Cheng et al., 2006). As such, it is 

also possible that the CO2 adsorption capacity of PyOM in soil may increase over time. Indeed, 

our meta-analysis shows that CO2 emission significantly decreased after periods >200 days 

compared to the first 200 days, especially at PyC:SOC ratios >2 (Tab. 2.3). However, while 

time-dependent changes in PyOM surface area properties should not be excluded as a 

mechanism, it is also possible that exhaustion of labile C contributed for decreased CO2 

emission after periods >200 days. This is likely to be the case especially because no time-

dependent negative priming was detected (Tab. 2.3). 

We noted significant reductions in CO2 emission when PyOM with low-C content (<50%; Tab. 

2) and when PyOM produced at high temperatures (>550°C; Fig. 2) was applied, both at 

relatively low addition ratios. Data from our meta-analysis partially agree with those from 

Maestrini et al. (2014), who showed that negative priming was strongest with more stable 

PyOM. However, the authors suggested a strong decrease in CO2 emission with PyOM 

containing high C content, which is not supported by our data. Further research is needed 

regarding the importance of pyrolysis processes (especially temperature) and PyOM C content, 

as well as sorption processes as mechanisms for negative priming. There is also a need for 

standardization in determining data on PyOM C content, as it has not likely always been 

consistently reported with potential corrections (e.g. for ash content). 

An increase in CO2 emission (RR= 1.99, i.e., almost a doubling; Fig. 2.1) at high PyC:SOC 

ratios (> 2) and the lack of responses at low PyC:SOC rations (<2) indicates that only a small 

part of the char is relatively labile, otherwise significant increases in CO2 emission would also 

be evident at low PyC:SOC ratios. Support for a major recalcitrant fraction of the biochar comes 

from an alternative calculation where we expressed our CO2 flux data per unit of C, from both 

SOC and PyOM. Conversion of the data to respired CO2 per unit of C results in a significant 

relative decrease in the response ratios, irrespective of PyC:SOC ratios (Tables S2.1, S2.2 and 

S2.3 at Supporting information). This decrease is due to the higher recalcitrance, and therefore, 

lower decomposition rate of PyOM compared to that of SOC, as also observed by Cross and 

Sohi (2011). However, such information must be interpreted with caution as it could easily lead 

to the wrong suggestion that PyOM additions result in strong negative priming. 

 

 

 

 

 

 



Chapter 2 

30 

 

The way-forward in research on PyOM and SOC decomposition 

The studies used in our meta-analysis were predominantly from laboratory experiments (82%), 

compared to field (10%) and greenhouse experiments (8%). Moreover, laboratory experiments 

accounted for 90% of data points with PyC:SOC ratio >2. In fact, there was a significant 

difference in relative PyC addition rates between laboratory and field studies (Fisher’s exact 

test, two-sided; P = 0.001). Laboratory experiments with high PyC:SOC ratios are useful for 

identifying potential mechanisms driving changes in CO2 emission. However, such ratios likely 

result in overestimation of the effect size. Furthermore, they are unrealistic representations of 

expected results under field conditions. It is necessary, therefore, that future research utilises 

experimental designs with realistic PyOM treatments rather than the large amounts often used 

in laboratory experiments. Such experiments should include multiple controls. This implies that 

not only treatments without addition of PyOM should be used, but also additional treatments 

that are designed to test non-PyOM mechanisms (effects of ash, pH increases, nutrient additions 

if charred manure is used, etc.) that are due to co-variation of these factors with PyOM (Jeffery 

et al., 2013). This approach would allow for unequivocal conclusions to be drawn regarding the 

effects exclusively inherent to PyOM. 

Experimental details were often incompletely reported, for example, regarding soil disturbance 

across PyOM treatments and control. Soil disturbance due to mixing PyOM into soil, especially 

in laboratory experiments, can destroy soil aggregates, thus stimulating decomposition of 

organic matter (Salinas-Garcia et al., 1997) and thereby enhancing CO2 emission. Therefore, 

adequately reporting experimental details is a necessary aspect for: (i) a standardization process 

for future research aimed at quantifying (interactive) effects of PyOM on SOC dynamics; (ii) a 

straightforward way of avoiding confounding results and (iii) the repeatability of results under 

similar experimental conditions. 

Research on PyOM has recently emphasized areas that deserve particular attention. Effects of 

PyOM additions on the decomposition rate of SOC are among these research priorities 

(Verheijen et al., 2014). Most data in our meta-analysis are from short-term studies. But some 

mechanisms responsible for physical and chemical protection of PyOM and SOC take place 

only in the long-term, for example as PyOM ages in the soil and its surface gains charge. This 

process of oxidation and charging of PyOM surface may occur over long periods of time 

(Brodowski et al., 2005). Therefore, there is a need for long-term experiments, especially under 

field conditions. Such experiments, associated with stable isotope techniques would permit an 

effective testing of the potential mechanisms controlling the decomposition and potential 

interactions between PyOM and native SOC. 
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Table S2.1. Meta-analysis of the effects of PyOM on soil CO2 emissions relative to SOC units, grouped 

by soil and environment characteristics. 

Categories RR 95% CI n P Fail safe N 

Soil C content  (g kg-1)    0.32 7859 

10.1-30.0 0.57 0.45-0.72 90   

<10.0 0.49 0.35-0.68 61   

>30.0 0.45 0.34-0.60 0.58   

Soil C:N ratio    0.27 315 

>10.0 0.76 0.60-0.94 52   

<10.0 0.60 0.33-1.00 35   

Soil pH    <0.01 6825 

5.1-6.0 0.66 0.35-1.09 32   

>7.0 0.61 0.50-0.74 60   

6.1-7.0 0.49 0.38-0.65 78   

<5.0 0.30 0.18-0.50 26   

Soil fertilization background    <0.01 7304 

N 1.86 1.03-3.28 8   

NPK 0.57 0.31-0.85 13   

Nutrient solution 0.46 0.38-0.57 4   

None 0.43 0.35-0.52 151   

Soil texture     0.01 2420 

Medium 0.71 0.55-0.92 61   

Fine 0.68 0.48-0.93 28   

Coarse  0.44 0.29-0.66 58   

Soil provenance    <0.01 7811 

Temperate 0.56 0.47-0.66 178   

Subtropical 0.30 0.17-0.48 29   

For each category we calculated: weighted mean of the response ratio (RR) back transformed from lnRR, the 95% 

confidence interval (CI) for RR, and the number (n) of observations. P indicates the probability of the model 

heterogeneity test and the Fail safe N indicates the minimum number of studies necessary to shift the P value from 

significant to non-significant. Data refer to CO2 emission converted to a soil C basis. Differences in the division of 

sub-groups within categories compared to the Tables in the main body text are due to limitations for conversion of 

data. 
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Table S2.2. Meta-analysis of the effects of PyOM on soil CO2 emissions relative to SOC units, grouped 

by PyOM characteristics. 

Categories RR 95% CI n P Fail safe N 

PyOM C content (%)    0.74 5356 

>80.0 0.54 0.34-0.91 25   

50.1-80.0 0.52 0.44-0.64 151   

<50.0 0.45 0.32-0.61 29   

PyOM C:N ratio    0.51 1845 

<50.0 0.63 0.44-0.89 56   

>50.0 0.56 0.44-0.71 96   

PyOM pH    <0.01 0 

<6.0 1.63 1.31-2.07 17   

6.1-8.0 1.28 0.91-1.76 17   

>8.0 0.66 0.52-0.82 54   

PyOM ash content (%)    0.07 5074 

>10.0 0.55 0.42-0.71 75   

<10.0 0.43 0.32-0.57 59   

PyOM surface area (m2 g-1)    <0.01 8817 

<50.0 0.50 0.36-0.69 59   

>50.0 0.33 0.26-0.40 63   

PyOM volatile matter (%)    0.13 1129 

<10.0 0.58 0.31-1.14 12   

>10.0 0.34 0.27-0.42 52   

PyOM pyrolysis temperature (ToC)    <0.01 6109 

<350 0.98 0.73-1.26 43   

>550 0.41 0.31-0.54 53   

351-550 0.37 0.29-0.47 98   

Pyrolysis type and residence time    <0.01 3591 

Hydrochar 1.44 0.98-2.08 13   

<0.5 1.20 0.82-1.86 14   

>0.5 0.33 0.26-0.42 92   

PyOM feedstock    <0.01 7886 

Manure 0.78 0.52-1.10 21   

Herbaceous 0.64 0.50-0.82 71   

Lignocellulosic waste 0.58 0.29-1.13 15   

Wood 0.44 0.35-0.54 95   

Biowaste 0.09 0.01-0.43 7   

PyOM application rate (Mg ha-1)    <0.01 5344 

<20.0 0.85 0.70-1.01 65   

>100.0 0.46 0.33-0.64 63   

20.1-60.0 0.45 0.24-0.74 28   

60.1-100.0 0.31 0.23-0.43 47   

For each category we calculated: weighted mean of the response ratio (RR) back transformed from lnRR, the 95% 

confidence interval (CI) for RR, and the number (n) of observations. P indicates the probability of the model 

heterogeneity test and the Fail safe N indicates the minimum number of studies necessary to shift the P value 

from significant to non-significant. Data refer to CO2 emission converted to a soil C basis. Differences in the 

division of sub-groups within categories compared to the Tables in the main body text are due to limitations for 

conversion of data. 
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Table S2.3. Meta-analysis of the effects of PyOM on soil CO2 emissions relative to SOC units, 

grouped by experimental conditions. 

Categories RR 95% CI n P Fail safe N 

PyC:SOC ratio    0.09 7877 

<1 0.63 0.47-0.80 78   

>5 0.47 0.32-0.72 39   

1-2 0.47 0.35-0.61 50   

2-5 0.42 0.28-0.63 42   

Experiment duration    <0.01 7878 

31-200 days 0.67 0.56-0.81 141   

>200 days 0.34 0.26-0.42 56   

<30 days 0.16 0.05-0.50 12   

Incubation temperature (ToC)    <0.01 3805 

Variable 0.72 0.60-0.91 8   

<20.0 0.71 0.48-1.02 28   

20.1-30.0 0.64 0.47-0.83 81   

>30.0 0.29 0.22-0.38 40   

Soil moisture (% WHC)    0.69 8663 

<40.0 0.53 0.23-1.11 23   

>80.0 0.47 0.34-0.64 56   

40.1-80.0 0.44 0.37-0.52 108   

Experiment type    0.45 7890 

Field  0.65 0.55-0.74 9   

Laboratory 0.51 0.42-0.60 199   

For each category we calculated: weighted mean of the response ratio (RR) back transformed from lnRR, the 

95% confidence interval (CI) for RR, and the number (n) of observations. P indicates the probability of the 

model heterogeneity test and the Fail safe N indicates the minimum number of studies necessary to shift the P 

value from significant to non-significant. Data refer to CO2 emission converted to a soil C basis. Differences 

in the division of sub-groups within categories compared to the Tables in the main body text are due to 

limitations for conversion of data. 

 



 

 

 

 

 

  



 

 

 

 

Chapter 3 

 

Biochar decomposition under field conditions depends on its 

application rate 

 

Edvaldo Sagrilo, Tatiana Francischinelli Rittl, Ellis Hoffland, Bruno J. R. Alves, Herony 

U. Mehl, Thomas W. Kuyper 

 

 



Chapter 3 

38 

 

Abstract 

Soil amendment with pyrogenic organic matter (PyOM) has been claimed as an option for 

carbon (C) sequestration in agricultural soils. Most studies presented so far rely on PyOM in 

the lab. Here we tested the effects of PyOM locally produced in traditional kilns on native SOC 

and PyOM stability under field conditions. Soybean was cultivated over four cropping seasons 

(CS) in a sandy Ferralsol amended with 0, 5, 10, 20 and 40 Mg ha-1 of PyOM in a randomized 

complete block design with four replications. Soil samples from the 0-10 cm top layer were 

taken at the end of first and fourth CS and analysed for CO2 emissions, isotopic C abundance 

(13C/12C ratio) and enzymatic activity (FDA and DGH). We showed that decomposition of 

locally produced PyOM is faster (25-60% within first year) than normally assumed (10-20% 

within 5-10 years), which was higher than that of native SOC (5-14%). Our data evidence that 

there is a preferential decomposition of PyOM compared to native SOC and that the intensity 

of such effect depends on the rate of PyOM applied to the soil. Only on the longer term (>1 yr) 

addition of PyOM stabilizes soil C. Based on our findings we propose that new models should 

be re-shaped in order to incorporate potential variability in PyOM decomposition. 
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3.1 Introduction 

Pyrogenic organic matter (PyOM), also named biochar, is the solid product of biomass 

combustion at low oxygen concentration. Soil amendment with PyOM has been advocated as 

a carbon (C) negative technology, reducing atmospheric concentrations of carbon dioxide 

(Woolf et al., 2010), thereby attracting the interest of the global carbon market (Lehmann, 

2007). When incorporated into the soil, PyOM is expected to contribute to the recalcitrant soil 

organic carbon (SOC) pool (Lehmann et al., 2006; Knicker et al., 2013) and to decelerate the 

decomposition of SOC (Glaser et al., 2000). The decomposition rate of PyOM depends on the 

soil environment to which PyOM is applied and on its chemical characteristics. The 

decomposition rate of PyOM has shown to be faster in incubation experiments than under field 

conditions (Kuzyakov et al., 2009). In well-aerated tropical soils PyOM can be degraded in 

decades to centuries (Bird et al., 1999). Moreover, PyOM produced at higher temperatures 

(>500°C) under controlled conditions is more recalcitrant than PyOM produced at lower 

temperatures (Sun et al., 2014). To apply and scale up PyOM production in the field, local and 

traditional kilns will have to be used. There are, however, no field data on decomposition rates 

of PyOM produced in traditional kilns and its effect on SOC. 

Soil additions of PyOM can affect the decomposition rate of native SOC through a priming 

effect. Priming refers to changes in SOC decomposition rate after additions of organic 

amendments (Bingeman et al., 1953). It can result from various types of interaction. Changes 

in availability of C and nutrients (e.g. nitrogen) due to organic amendments may affect the 

microbial activity, altering the rate of SOC decomposition (Knicker et al., 2013). Recent studies 

(Luo et al., 2011; Ameloot et al., 2013; Farrell et al., 2013; Maestrini et al., 2014) evidenced 

enhanced SOC loss from PyOM-amended soils (positive priming). Increases in CO2 emission 

following PyOM additions may also result from the decomposition of PyOM labile fractions, 

rather than from increased SOC decomposition (Hilscher et al., 2009; Smith et al., 2010; Cross 

and Sohi, 2011; Jones et al., 2011; Zimmerman et al., 2011; Méndez et al., 2013), suggesting 

that some PyOM may be less recalcitrant than expected (Knicker et al., 2013). However, SOC 

stabilization in PyOM-amended soils (negative priming) was also shown (Keith et al., 2011; 

Knicker et al., 2013). Sorption of enzymes (Singh and Cowie, 2014) and labile SOC 

(Zimmerman et al., 2011) to PyOM could also decelerate decomposition of SOC. 

In most studies it is not possible to distinguish whether PyOM-induced efflux of CO2 originated 

from PyOM and SOC. Isotope analysis is an effective way to discriminate the origin of C in 

PyOM-amended soils or the origin of its evolved CO2. Differences in 13C/12C ratios can be 

estimated from individual 13C/12C ratios relating to photosynthetic pathways of the plants 

generating the PyOM feedstock, and the pathways of plants historically associated with the soil 

amended with PyOM. Despite the usefulness of this technique, few studies (Smith et al., 2010; 

Cross and Sohi, 2011; Hilscher and Knicker, 2011; Luo et al., 2011; Zimmerman et al., 2011; 

Méndez et al., 2013) used it to distinguish the origin of evolved CO2 from PyOM-amended soils 

or the origin of remaining C in the soil. Moreover, most research aiming at studying priming 
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effects in PyOM-amended soils is performed under laboratory conditions and in a short-term 

period. 

There is a lack of data originating from longer-term decomposition field experiments especially 

in soil amended with different rates of locally produced PyOM. Such experiments could 

produce more reliable results and comprehensive insights regarding the mechanisms leading to 

changes in SOC turnover after PyOM additions. In this field study, we aimed to quantify 

changes in the PyOM and SOC stocks over four soybean cropping seasons (CS) in a C4 sandy 

Ferralsol amended with different rates of PyOM. The PyOM was produced from C3 woody 

species using traditional pyrolysis methods employed in the region. We used 13C isotopic 

analysis to discriminate the origin of the C in the soil and quantify the decomposition rates of 

native SOC and PyOM, as well as to better understand the mechanisms controlling the changes 

in native SOC (potential priming effects) under field conditions.  

 

3.2 Materials and methods 

Study site 

An experiment was carried out at the field station of the Embrapa Mid-North in Parnaiba (UEP-

Parnaiba), Brazil (3o05’18’’S; 41o47’00’’W; 52 m altitude). Regional climate is ‘Aw’ type 

(tropical with a dry season), according to Köppen classification. Local annual mean temperature 

is 27 oC, mean precipitation is 1,079 mm and relative humidity is 76.5% (Andrade Junior et al., 

2005). Potential evapotranspiration (PET) was calculated using the software LocClim 1.10 (Fig. 

3.1). Crops are generally planted in February-March and harvested in June or July. The soil was 

a Ferralsol (Oxisol in the USDA Soil Taxonomy), overlaid by around 40 cm of sand, where 

most plant roots grow. The textural distribution of the topsoil revealed 886 g kg-1 of sand and 

86 g kg-1 of clay dominated by kaolinite (1:1). The native vegetation was a Caatinga-coastal 

phase (Melo et al., 2004). From 1995 to 2007 an experiment with tropical grass species was set 

up in the area. From 2007 to the beginning of this experiment (September of 2011), the area 

remained under fallow, with grass-dominated spontaneous vegetation, which was cut once per 

year and the residues maintained on soil surface. 

In early September 2011, the soil was harrowed twice with a heavy harrow. Four blocks were 

distinguished in which experimental plots of 2.0 x 3.0 m were established allowing sprinklers 

lines between blocks 1-2 and 3-4. Additional sprinklers lines were maintained at each side of 

the experimental area. Excess of grass residues on the plots was removed from the top 10 cm 

with hoes and rake in order to facilitate the PyOM mixing with soil and opening of furrows for 

planting. Seeds of soybean cultivar BRS-Tracajá, inoculated with a commercial 

Bradyrhizobium japonica product were planted at a density of 14 plants m-1, in five rows spaced 

0.40 m from each other. Plots were 2.0 m apart. Soybean sowing took place at each 4-month 

interval (120 days), for four successive cropping seasons (CS1 - CS4), which was made possible 

due to irrigation. Potassium (KCl) was applied each CS, and micronutrients were applied only 
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in CS3 and CS4. The year of 2012 was unusually dry, with total rainfall of 624.6 mm - much 

lower than the average of 1,079 mm for the region - and for this reason, even at the rainy season, 

irrigation took place regularly, except at February and March (Fig. 3.1). Plant traits and 

management were done according to Sfredo (2008). 

Pyrogenic C production 

The PyOM was produced from native woody savannah C3 plants using a slow pyrolysis process 

(~48h) in regionally used traditional kilns at a temperature of 500°C (Tab. 3.1). These kilns 

(approximately 2.8m high, 4-6m diameter) are made from mud bricks and have a loading 

capacity ranging between 18 to 25 m3 of feedstock. 

Experimental design and characteristics of treatments 

Five rates of PyOM (0, 5, 10, 20 and 40 Mg ha-1) were applied once (in September 2011) to the 

respective plots sorted out in a randomized complete blocks design with four replications. Prior 

to its application, PyOM was crushed into small pieces and forced to pass in a 2 mm sieve. 

During its field application, plastic canvases were used as wind barriers to prevent dispersion. 

PyOM was immediately incorporated to the top 10 cm of soil with hoes prior to soybean 

sowing. Also the control plots (0 Mg ha-1 PyOM) were hoed. 

 
Figure 3.1. Monthly temperatures (minimum, maximum and average) and total monthly precipitation 

from rainfall and irrigation during the experimental period. ∆ indicates the sowing events; ▲ indicates 

the harvest events. * indicates the sowing of CC1; ** indicates the sowing of CC4.  

 

 

       ∆*                     ▲∆                      ▲∆                      ▲∆**                   ▲ 

    2011                  2012                                                                        2013 
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Soil sampling 

After soybean harvest at CS1 and CS4, soil samples were collected from the 0-10 cm layer with 

an auger. From the three central planting lines within each plot, 12 soil cores were collected 

and pooled to form a composite sample for each treatment plot. These samples were sieved 

through a 2-mm screen to remove soybean roots, air-dried and stored at room temperature prior 

to chemical analyses. Undisturbed soil samples were also taken from the 0-10 cm layer in order 

to determine the soil bulk density as described by Sisti et al. (2004) for the calculation of SOC 

stocks. 

Enzymatic activity 

Fluorescein diacetate (FDA) hydrolysis was determined according to the method of Swisher 

and Carroll (1980). Dehydrogenase (DHA) activity was determined using the method described 

in Casida et al. (1964), which is based on the spectrophotometric determination of 

triphenyltetrazoliumformazan (TTF) released by 5 g of soil during 24 h at 37°C. 

Field CO2 emission measurements using IRGA 

To quantify the soil CO2 flux in the field, 10.3 cm diameter and 6 cm height PVC collars were 

inserted 2 cm into the soil at each field plot. Collars were inserted monthly from October-2012 

to January-2013 (CS4) on the eve of each measurement event to ensure that no overestimation 

of CO2 emissions would occur due to recent soil disturbance. Irrigation of the plots ceased 

always on the afternoon at same day of collars insertion, in order to ensure similar water content 

at every measurement. CO2 flux measurements were performed always from 6:00 to 9:00 

o’clock in the morning, to avoid excessive variations in soil temperature. A portable infrared 

gas analyser (IRGA) LI-6400/LI-6400XT Version 6 (LI-COR, Lincoln, NE, USA) coupled to 

a Soil CO2 Flux Chamber was used to quantify soil CO2 emissions (Norman and Kucharik, 

1997) at 15, 43, 71 and 106 days after plant emergence throughout CS4. At each measurement, 

values were corrected for ambient CO2 concentration. The relative decomposition rate of 

PyOM-soil mixtures in the CS4 were calculated using the average of the four soil CO2 emission 

measurements. 

  

Table 3.1. Chemical properties of the pyrogenic organic matter applied to the experimental site. 

...... pH ...... Ca Mg Al H+Al P(Melich 1) Exchangeable K Cu 

H2O KCl(1M)  ......................... g kg-1 ......................... ........................ mg kg-1 ....................... 

7.2 6.15 1.86 0.37 0 0 126.5 1547 0.39 

         

Zn Fe Mn Ctot Ntot NH4
+ NO3

- EC* 

  ................ mg kg-1 ................   ..............% ............... ........... mg kg-1 ........... µs cm-1 

2.94 25.20 4.50 74.3 1.18 17.4 0 3573 
* EC= Electrical conductivity (micro siemens cm-1) 
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Carbon isotopic analysis 

After removing soybean plant fragments coarser than 2mm by sieving, bulk soil samples were 

oven dried at 65ºC, ground in ball mill, and analysed for C content and 13C abundance. The 13C 

abundance of the soil samples was determined on aliquots containing between 200 and 400 µg 

total C using an elemental analyser coupled to a mass spectrometer Finnigan Mat Model delta-

E. Results of natural abundance of 13C were expressed in delta units, calculated as δ13C 

[(Rsample/Rstandard)-1] X 1000 (‰), where Rsample and Rstandard are the ratios of 13C/12C of the study 

sample and the reference standard, respectively. The current δ13C value of the atmosphere was 

considered as −8‰.  

The relative contribution (%) of C derived from native SOC (CSOC) and pyrogenic C (PyC) 

derived from PyOM was estimated from the 13C abundance of the soil samples from the 

following formula (Balesdent and Mariotti, 1996): 

 

CSOC= (δ13CM -δ13PyC)/(δ13CSOC-δ13PyC) 

 

where CSOC is the proportion of C derived from the native SOC, δ13CM is the 13C abundance of 

the PyOM-amended soil, δ13PyC is the 13C abundance of PyC and δ13CSOC is the 13C abundance 

of the soil with soybean crop in CS1 (January 2012) or CS4 (January 2013).  

We also calculated the stock of native SOC – presumed as being mainly C4-derived (SC4) - by 

the following formula: 

 

SC4 = ST ×CSOC 

 

where SC4 is the stock of C4-derived carbon (Mg ha-1), ST the total C stock (Mg ha-1). 

Statistical analyses and calculations 

Statistical analyses were performed using SAS 9.2 (SAS Institute, 2009). For the individual 

stocks of native SOC and PyC (Mg ha-1), the effects of PyOM application rates and CS were 

analysed using a two-way ANOVA with the PROC GLM (α = 0.05). The relative 

decomposition rate of both fractions was estimated using the formula -k = (ln SCS4 - ln SCS1)/(t4-

t1), where SCS4 is the C stock after CS4, SCS1 is the C stock after CS1 and t4-t1 is the time passed 

between the two sampling moments (yr). For the CO2 emissions, an average value was 

calculated across the measurements and divided by the SOC content of each treatment. The 

values are expressed as µg C s-1 g soil C-1. 
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3.3 Results 

Native SOC and PyC stocks 

The soil collected at the end of CS1 and CS4 showed an average isotopic signature, 

respectively, of -18.51‰ and -20.31‰ (+0.2‰) in the controls without PyOM addition. The 

PyOM showed an isotopic signature of -28.66‰. The soybean production was not affected by 

biochar treatments (unpublished results), and therefore, we assumed that soybean did not affect 
13C abundance differently among treatments. 

Native SOC stocks were not significantly (P<0.138) affected by PyOM addition rates over the 

experimental period (Fig. 3.2). Stocks of native SOC did not change significantly (P= 0.6) 

across the cropping seasons. Stocks of PyC significantly increased (P<0.01) with PyOM 

additions rates in both cropping seasons (Fig. 3.2). They decreased significantly from CS1 to 

CS4 at all PyOM application rates. 

Native SOC and PyOM decomposition rates 

The relative rates of SOC decomposition were not affected by PyOM additions (Fig. 3.3). On 

the other hand, the relative rate of PyOM decomposition in the soil showed a consistent decrease 

with increasing rates of PyOM addition to the soil, up to 20 Mg ha-1. The relative rates of 

decomposition were higher for PyOM, compared to the native SOC, especially at lower PyOM 

addition rates. 

CO2 emissions from PyOM-amended soils 

There was a significant decrease in the average CO2 emission per unit of soil C with increasing 

rates of PyOM added to the soil measured in CS4 (Fig. 3.4). This indicates a proportional 

reduction in C decomposition driven by increases in soil PyOM addition rates. 

Enzymatic activity 

There was no significant effect of PyOM rates, CS or their interaction for dehydrogenase (Fig. 

3.5A). For FDA, there was a significant (P<0.01) effect of the CS only (Fig. 3.5B). The FDA 

activity was higher at the end of the 1st CS, compared to the 4th CS. No significant effects of 

PyOM or the PyOM x CS interaction were observed. 
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Figure 3.2. Soil organic carbon (SOC) and pyrogenic carbon (PyC) stocks at 1st and 4th cropping 

seasons in soil amended with different rates of pyrogenic organic matter (PyOM). Vertical bars are 

standard error of the mean (n=4). 

 

 

 
Figure 3.3. Relative decomposition rate (-k) between the 1st and 4th cropping cycle of soil organic 

carbon (SOC) and pyrogenic carbon (PyC) in soils amended with different rates of pyrogenic organic 

matter (PyOM). Vertical bars are standard error of the mean (n=4). 

 

 



Chapter 3 

46 

 

 

3.4 Discussion 

Pyrogenic C decomposition  

We have shown that locally produced PyOM decomposes faster than native SOC under field 

conditions in the first one and a half year after application (Fig. 3.2). So locally produced PyOM 

may be less recalcitrant than usually proposed (Lehmann et al., 2006). Pyrogenic organic matter 

produced in traditional kilns are commonly assumed to be as stable as those produced under 

optimal conditions in laboratory (Lehmann et al., 2006). When PyOM-soil mixtures were 

incubated under laboratory conditions, PyOM has shown to lose between 0.25 (Farrell et al., 

2013) to 2.8% (Zavalloni et al., 2011) of its total C within weeks or months. However, locally 

produced PyOM evaluated under field conditions in our study lost between 25 to 60% of the 

total PyOM within one and a half year, depending on the amount of PyOM applied (Fig. 3.3), 

a loss much higher than 10 to 20% within 5-10 years as proposed by Lehmann et al., (2006). 

Faster PyOM decomposition rates compared to native SOC is consistent with the claim that 

labile fractions of newly applied PyOM are preferentially decomposed, rather than native SOC 

(Cross and Sohi, 2011). After one and a half year, soils with higher application rates of PyOM 

decompose slower (Fig. 3.4), indicating that labile compounds are responsible for high initial 

loss of PyC. 

 

Figure 3.4. Relative CO2 flux from soils amended with different rates of pyrogenic organic matter 

(PyOM) one year after application. Vertical bars represent the standard error of the mean (n= 4). 
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The great losses of PyOM found in our study cannot have been caused by physical movement 

(e.g. leaching or runoff) as suggested by Major et al. (2010). In a two-year field experiment, 

these authors found a loss of PyOM ranging from 53% in low PyOM application rates (11.6 

Mg ha-1) to 20% in high application rates (116.1 Mg ha-1). These losses were attributed at a 

lesser extent to leaching (up to 1%), but especially to surface runoff, although they did not 

measure the runoff intensity in their study. However, it is unlikely that surface runoff was the 

main cause of PyOM loss in their study, as it was incorporated in the soil. Their values are 

comparable to the PyOM losses observed in our experiment and expressed the same trend of 

decreasing PyOM disappearance rate with increasing PyOM applications rates.  

In our study, decomposition of PyOM was the most likely cause for the observed decreased in 

PyC stocks (Fig. 3.2). The experimental period as a whole was unusually dry, and except for 2 

months (February and March of 2012), water supply was complemented by irrigation (Fig. 3.1). 

This avoided both excess water (and PyOM) leaching and surface runoff, as only enough water 

 

Figure 3.5. Enzymatic activity at different PyOM rates in the 1st and 4th cropping seasons. A= 

Dehydrogenase (DHG); B= Fluorescein diacetate (FDA). Vertical bars are standard error of the mean 

(n= 4). 
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to meet the crop requirements was applied. The absence of leaching is confirmed by potential 

evapotranspiration rates similar to the amount of water available to the crop (Fig. 3.1). 

Furthermore, if the physical movement had occurred, its magnitude should have been kept 

constant across the treatments with different PyOM addition rates and therefore, would have 

been proportional to the amount of applied PyOM. Bird et al. (1999) also assumed proportional 

PyOM surface movement for plots with different PyOM amounts. Differences in the magnitude 

of PyOM disappearance across treatments were evident, and therefore, cannot be explained by 

leaching or runoff.  

In addition to the quality of PyOM, its decomposition rate will depend on ecosystem properties, 

as it has been suggested for SOC (Schmidt et al., 2011). In our field conditions, soil 

temperatures were high, there was no water limitation and the soil was sandy. Bird et al. (1999) 

estimated that the PyOM half-life (for large particles, i.e >2000 µm) in sandy soils is <50 yr. 

On the other hand, Pessenda et al. (2001) estimated a residence time of thousands of years for 

PyOM found in fine-textured fossil soils. In fine-textured soils, PyOM may be chemically and 

physically protected against decomposition similar to SOC (Schmidt et al., 2011), through 

interactions with clay surfaces and aggregate formation. Lack of protection in sandy soils may 

explain the higher decomposition rates of PyOM we found. 

Pyrogenic C interactions with native soil organic carbon 

The decomposition of SOC was not affected by addition of PyOM (Fig. 3.3), declining the 

possibility that PyOM addition would cause loss of native SOC through priming. Negative 

priming was also not observed, which is consistent with absence of any effect of PyOM addition 

to activities of enzymes indicative for microbial activity (Fig. 3.5). 

On the other hand, the decomposition of PyOM was highly dependent on the application rate 

(Fig. 3.3), which could indicate interactions between PyOM and SOC or other soil components. 

Any interactive effect would be stronger at low PyOM rates (5 and 10 Mg ha-1) than at high 

PyOM rates (20 and 40 Mg ha-1). Available soil N could play a role in this interaction: When 

an abundant source of C is added to the soil, soil microbes scavenge available soil N to offset 

organic C assimilation into their tissue (Novak et al., 2010). Nitrogen input in the biochar 

treatments (through crop residues, only) must have been similar because grain yields were also 

similar (unpublished results). Available soil N may have limited more decomposition of PyOM 

at higher addition rates (20 and 40 Mg ha-1) than at low addition rates (5 and 10 Mg ha-1; Fig. 

3.4).  

For the first time we demonstrate, under field conditions, that PyOM can have decomposition 

rates comparable or even higher than that of the native SOC. Furthermore, the decomposition 

rate of PyOM decreases at high PyOM application rates, probably as a result of limited soil N 

supply. On the longer term (>1 yr) addition of this PyOM does stabilize total SOC. We further 

conclude that to scale-up biochar projects to attend the demand of increasing soil carbon 

sequestration, there is a need for data originating from field experiments, in which locally 

produced PyOM was tested. 



 

 

 

 

Chapter 4 

 

Mechanisms affecting mycorrhizal dynamics in soils amended with 

pyrogenic organic matter 

 

Edvaldo Sagrilo, Ellis Hoffland, Thomas W. Kuyper 

 

 

 



Chapter 4 

50 

 

Abstract 

Amending soils with pyrogenic organic matter (PyOM), also named biochar, can stimulate 

arbuscular mycorrhizal fungal (AMF) activity and increase soil nutrient availability, especially 

P. However, most studies do not consider temporal changes in AMF associations and nutrient 

status of PyOM-amended soils. We tested the effects of PyOM rates and P fertilization on 

soybean root colonization by AMF, soil P and plant performance over four cropping cycles 

(CC) under field conditions. Soybean was cultivated in a sandy Ferralsol amended with 0, 5, 

10, 20 and 40 Mg ha-1 of PyOM, with and without mineral P fertilization. Soybean plant 

material and rhizosphere soil were sampled at initial flowering at 1st and 4th CC (CC1 and CC4). 

Analysis of variance showed a major effect of cropping cycle and P on mycorrhizal 

colonization. The interaction PyOM x cropping cycle was also a significant source of variation. 

We observed a linear decrease in root colonization by AMF in CC1 with increasing PyOM rates 

in contrast to a consistent linear increase in CC4. Plant performance was mainly affected by 

CC, and significant interactions P x CC were observed for shoot biomass and PyOM × P for 

grain yield. Grain yield was highest at high PyOM rates (20 and 40 Mg ha-1), in the P-fertilized 

treatments in CC4. Soil pH increased in CC1 with increasing PyOM rates, but no effects were 

observed in CC4. Path analysis indicated that PyOM effects on root colonization by AMF were 

not mediated by changes in soil pH or P content. Our data are consistent with the hypothesis 

that interference of PyOM in signalling processes is an important driver of change in AMF 

activity and that positive effects of PyOM on AMF and crop yield develop with time. 

  



PyOM & mycorrhizal dynamics 

51 

 

4.1 Introduction 

Pyrogenic organic matter (PyOM), also known as biochar, is the product of thermal 

transformation of organic materials under limited oxygen supply (Lehmann and Joseph, 2009). 

It is characterized by a high C content (often more than 65%) with aromatic compounds that 

are relatively stable in soil (Glaser et al., 2000; Novotny et al., 2009). Soil amendment with 

PyOM in agricultural systems can ameliorate soil fertility, increase plant production (Jeffery et 

al., 2011), stimulate microbial populations in bulk and rhizosphere soil, including mutualistic 

root symbionts such as rhizobia (Rondon et al., 2007; Mia et al., 2014; See also Chapter 5) and 

arbuscular mycorrhizal fungi (AMF) (Ohsowski et al., 2012). 

The interest in PyOM as a means to improve symbiotic relationships between plants and AMF 

was first reported in Japanese studies (Saito, 1989, Ishii and Kadoya, 1994). More recently, 

several studies have confirmed the positive effects of PyOM on root colonization by AMF, 

although mixed and negative effects have also been reported (Tab. 4.1). Changes in root 

colonization by AMF in PyOM-amended soils do not necessarily result in a similar pattern in 

terms of plant performance (Tab. 4.1). Mechanistic explanations for PyOM effects on 

mycorrhizal functioning have remained elusive. Warnock et al. (2007) listed four possible 

mechanisms for changes in mycorrhizal functioning in PyOM-amended soils: 1) alteration of 

soil physicochemical properties which can lead to modifications in nutrient availability. 

Nutrient availability can be improved directly by PyOM additions or through changes in soil 

properties as pH or cation exchange capacity, thus indirectly affecting AMF; 2) alteration of 

the activity of other micro-organisms that have effects on AMF activity. Such micro-organisms 

(e.g. mycorrhization helper bacteria) can facilitate growth of fungal hyphae and root 

colonization by AM fungi; 3) alteration of the signalling dynamics between plants and 

mycorrhizal fungi or detoxification of allelochemicals on PyOM surface. PyOM can serve as 

signal reservoir or as a sink, both for signalling compounds and for inhibitory compounds, and; 

4) PyOM can serve as refuge for colonizing fungi providing physical protection of AMF against 

fungal grazers. Tab. 4.1 summarizes studies with PyOM, its effects on root colonization by 

AMF and on plant performance and mechanisms proposed to explain such changes. 

In spite of the efforts to find a mechanistic explanation, the direct or indirect pathways through 

which PyOM affects AMF and plant performance were not analysed in these studies. In this 

regard, path analysis (Mitchell, 1993) can represent a suitable tool to test hypotheses associated 

to specific mechanisms. Path analysis is a statistical method that involves multiple regression 

analysis for modelling the correlation structure among exogenous and endogenous variables, 

from an a priori established conceptual model (path diagrams). For each connecting path 

between variables, a path coefficient can be calculated allowing quantification of direct and 

indirect effects of one variable on another (Mitchell, 1993). Therefore, such approach can be 

useful for excluding or confirming mechanisms associated to direct and/or mediated effects of 

PyOM on AMF and plant performance. 
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Changes in soil pH following PyOM applications putatively play an important role in the extent 

of AMF root colonization. Soil pH controls the availability of several nutrients in the soil (e.g. 

phosphorus), which may affect the development of AMF (Warnock et al., 2007). A positive 

correlation between soil pH (original soil pH of 6.4) and concentrations of a PLFA specific for 

AMF in a PyOM-amended soil found by Ameloot et al. (2013) suggests that the increase in 

AMF biomass would be a consequence of liming potential of the PyOM. Decreases in 

mycorrhizal abundance (external hyphal length and root colonization) have been observed with 

higher P availability in soil (Gryndler et al., 2006). In its turn, P availability could be increased 

by PyOM through soil pH change (Warnock et al., 2007; Lehmann et al., 2011) or by direct 

additions of P together with PyOM (Lehmann et al., 2003). 

Changes in soil pH following PyOM additions seem to be transient (Jones et al., 2012), 

especially because the major driver of soil pH increases is ash (Stewart et al., 2013; Jeffery et 

al., 2013) that is added to soil together with the PyOM and leaches easily. On the other hand, 

effects of PyOM on soil P availability that lasted more than one or a few cropping cycles 

indicate that other mechanisms could be involved. Pyrogenic organic matter from different 

feedstock varies in P content (Warnock et al., 2010), which can affect soil P availability and 

AMF performance.  

Table 4.1. Summary of PyOM and hydrochar* effects on root colonization by AMF and plant 

performance. 

Author Experiment 

duration 

(weeks) 

AMF 

colonization 

P 

uptake 

Plant 

shoot 

Plant 

root 

Grain 

yield 

Mechanisms 

proposed** 

Ishii and Kadoya (1994) 24  I I I I NA 1, 3 

Ezawa et al. (2002) 6  I NA I NA NA 1 

Matsubara et al. (2002) 22  I NA NA I NA 1 

Yamato et al. (2006) 12  I NA NA I I 1 

Rondon et al., 2007 11  NE I I/D D I NA 

Blackwell et al. (2010) 20  I/D NA NA NA I/D NA 

Solaiman et al. (2010) 10  I NE NA I I NA 

Habte and Antal (2010) 11-15  D/NE NE NE NA NA 1, 3 

Warnock et al. (2010) 4  D/NE NA NE NA NA 1, 3 

Elmer and Pignatello 

(2011) 

12  I NA NA I NA 1, 2 

Rillig et al., 2010† 5-8  I/D NA D D NA 1, 3, 4 

George et al., 2012† 12  D NA NE NE NA 1 

Salem et al., 2013† 16  I NA I/D I/D NA 1, 4 

LeCroy et al., 2013 4  I NA D D NA 3 

Quilliam et al., 2013†† 156 NE NE NE NA NA NA 

* Produced by hydrothermal carbonization (in this method biomass is suspended in water and heated under slightly 

acidic conditions in a pressure reactor at temperatures of around 200◦C; George et al., 2012); ** According to 

Warnock et al. (2007); alteration of 1) soil physicochemical properties; 2) activities of other microorganisms; 

3)signalling or detoxification or 4) providing physical protection. 

† Studies with hydrochar; †† Study with re-application of PyOM after three years. 

I – Increase; D – Decrease; NE – No effect; NA – Non-assessed. 
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In spite of PyOM effects on root colonization by AMF and plant performance, the ways PyOM 

affects mycorrhizal associations still represent a scientific challenge (Lehmann et al., 2011). In 

this study we aimed to address the effects of PyOM on root colonization by AMF and on 

soybean performance over four cropping cycles (CC). Our goal was to explore the major 

mechanisms controlling AMF activity and crop yield in PyOM-amended soils under 

realistic/practical management conditions, through use of path analysis. 

 

4.2 Material and methods 

Study site 

An experiment was carried out at the field station of Embrapa Mid-North in Parnaiba (UEP-

Parnaiba), Brazil (3o05’18’’S; 41o47’00’’W; 52 m altitude). According to Köppen classification 

regional climate is Aw’ type (tropical with a dry season). Local annual mean temperature is 27 
oC, mean precipitation is 1,079 mm and air moisture is 76.5% (Andrade Junior et al., 2005). 

Crops are generally planted in February-March and are harvested in June or July. The soil is a 

Ferralsol (Oxisol in the USDA Soil Taxonomy), overlaid by around 40 cm of sand, where most 

plant roots grow. Soil chemical characteristics at 0-20 cm layer were determined according to 

Embrapa (1997): organic carbon= 6.6 g kg-1; pH (H2O1:2.5)= 5.9; K= 0.07 cmolc kg-1; Ca= 2.0 

cmolc kg-1; Mg= 0.94 cmolc kg-1; Na= 0.01 cmolc kg-1; Al= 0.03 cmolc kg-1; H+Al= 2.08 cmolc 

kg-1; sum of bases= 3.01; CEC= 5.09 cmolc dm-3; base saturation= 59.1%; Al saturation= 0.99 

%. Micronutrients have not been assessed. Soil phosphorus content (Mehlich 1) was high at the 

beginning of the experiment (33.4 mg kg-1). The textural distribution of the topsoil revealed 

886 g kg-1 of sand and 86 g kg-1 of clay dominated by kaolinite (1:1). The native vegetation was 

a Caatinga-coastal phase (Melo et al., 2004). From 1995 to 2007 an experiment with tropical 

grass species was executed on the same field. From 2007 to the beginning of this experiment 

(September of 2011), the field remained under fallow, with grass-dominated spontaneous 

vegetation, which was cut once per year and the residues maintained on soil surface. 

In early September of 2011, the soil was harrowed twice with a heavy harrow. Experimental 

plots 2.0 m width and 3.0 m long were established allowing sprinklers lines between blocks 1-

2 and 3-4. Additional sprinklers lines were maintained at each side of the experimental area. 

Excess of grass residues at the plots were removed from the top 10 cm with hoes and rake in 

order to facilitate the PyOM mixing with soil and opening of furrows for planting.  

Experimental design and characteristics of treatments  

Plots with five rates of PyOM (0, 5, 10, 20 and 40 Mg ha-1), with and without P fertilization 

were evaluated in a randomized complete blocks design, in a factorial scheme of 5 x 2 with four 

replications. The PyOM was derived from nearby-growing woody vegetation and produced 

under slow pyrolysis in traditional kilns at a temperature of 500oC (Tab. 4.2). Chemical 

characteristics of the PyOM (pH, Ca, Mg, Al, H+Al, P, K, Cu, Zn, Fe, Mn and oxidizable C) 
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were measured according to the same methods applied to soil chemical analysis (Embrapa, 

1997). NO3
- and NH4

+ were extracted with 1 M KCl followed by flow injection analysis (Tyson, 

1985), using the colorimetric methods reaction of Berthelot for NH4
+ and Griess reaction for 

NO3
-. Total C and N were analyzed by dry combustion with an elemental analyzer (PerkinElmer 

CHNS/O 2400 Series II configured with the CHN mode), using helium as carrier gas (Nelson 

and Sommers, 1996). 

Prior to its application, PyOM was crushed into small pieces, in order to pass through a 2 mm 

sieve. Pyrogenic organic matter was applied to the soil in early September. During its 

application, plastic canvases were used as barriers to prevent wind dispersion. Pyrogenic 

organic matter was immediately incorporated in the top 10 cm of soil with hoes prior to soybean 

sowing.  

Seeds of soybean (Glycine max (L.) Merr.) cultivar BRS-Tracajá, which is recommended for 

soils with a high fertility status, were planted at a density of 14 plants m-1, in five rows spaced 

0.40 m from each other. Plots were 2.0 m spaced from each other. Soybean sowing took place 

at each 4-month interval, in four successive CC, which was made possible by irrigation. The 

year of 2012 was unusually dry, with total rainfall of 625 mm - much lower than the average of 

1,079 mm for the region - and for this reason irrigation took place regularly, even during the 

rainy season, except in February and March (Fig. 4.1). 

Fertilization and seed inoculation 

Phosphorus fertilization rate was defined based on soil chemical status and following 

recommendations for soybean cropping at Brazilian low latitudes (Sfredo, 2008). Treatments 

subjected to P fertilization received 20 kg ha-1 of P for each expected 1000 kg of grains yielded. 

We expected a 3000 kg ha-1 of grain yield and therefore, 60 kg ha-1 of P was applied as single 

superphosphate before each cropping cycle (CC). 

Potassium chloride (KCl) was applied to all plots at a rate of 20 kg ha-1 of K during sowing. 

Additionally, a basal fertilization with 40 kg ha-1 of K was performed 30 days after plant 

emergence. In CC3 and CC4, 50 kg ha-1 of a mixture of macro- and micronutrients (Ca= 7.1%; 

S= 5.7%; Bo= 1.8%; Cu= 0.8%; Mn= 2.0%; Mo= 0.1%; Zn= 9.0%) was applied to all plots at 

sowing, in accordance with current common management for intensive soybean production in 

Brazil (Sfredo, 2008). Fertilizers were applied in the sowing furrows and covered with a thin 

Table 4.2. Chemical properties of the PyOM applied to the experimental site. 

...... pH ...... Ca Mg Al H+Al P(Melich 1) Exchangeable K Cu 

H2O KCl(1M)  ......................... g kg-1 ......................... ........................ mg kg-1 ....................... 

7.2 6.15 1.86 0.37 0 0 126.5 1547 0.39 

         

Zn Fe Mn Ctot Ntot NH4
+ NO3

- EC* 

  ................ mg kg-1 ................   ..............% ............... ........... mg kg-1 ........... µs cm-1 

2.94 25.20 4.50 74.3 1.18 17.4 0 3573 
* EC= Electrical conductivity 
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layer of soil prior to sowing. Basal fertilization with K was applied on the soil surface close to 

the planting rows. Seeds of soybean were inoculated with the Bradyrhizobium japonicum 

strains SEMIA-5079 and SEMIA-5080 (RELARE, 1995) at a rate of 150 ml[6x109 cells ml-1] 

50 kg-1 of seed, using the commercial inoculant Rizoliq-Top™ (Rizobacter do Brasil). 

Plant and soil sampling 

At stage R1 (initial flowering) of each CC, three soybean plants from the centre of each field 

plot were removed from the soil with intact roots. For this purpose, 20 x 20 x 20 cm3 monoliths 

were removed with a shovel. Plants were clipped at soil surface level and stored in plastic bags. 

Soil was carefully removed from the roots. Roots were cleaned and cut into 2.0 cm pieces with 

a scissor and stored in 100 ml plastic pots containing a solution of ethanol 50% for subsequent 

analysis of AMF colonization. Shoot samples were brought to the laboratory and oven-dried in 

paper bags at 65oC for 48 h and weighed. Shoots were ground to pass through a 1.0 mm screen 

and stored in plastic pots for further chemical analyses. 

At plant maturity, soybean pods were harvested from two 2.0-m-long rows (1.6 m2) from the 

centre of each plot. The pods were oven-dried at 65oC for 48 h, threshed manually and weighed. 

Total grain yield per hectare was calculated for each treatment on a 13% moisture basis. After 

harvest of plants in CC1 and CC4, soil samples were collected from the 0-10 cm layer with an 

auger. From the three central planting lines within each plot, 12 soil sub-samples were collected 

and mixed to form a composite sample for each treatment plot. These samples were transported 

to the laboratory in thermic boxes with ice, sieved through a 2.0 mm screen and separated into 

 
Figure 4.1. Monthly temperatures (minimum, maximum and average) and total monthly precipitation 

from rainfall and irrigation during the experimental period. ∆ indicates the sowing events; ▲ indicates 

the harvest events. * indicates the sowing of CC1; ** indicates the sowing of CC4. 

 

 

       ∆*                     ▲∆                      ▲∆                      ▲∆**                   ▲ 

    2011                  2012                                                                        2013 
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two 300 g-aliquots. One aliquot of each sample was placed in plastic bags and immediately 

stored at 4 oC for analysis of phosphatase. The other was air-dried and stored at room 

temperature prior to chemical analyses. 

AMF colonization 

Soybean roots were washed in cold tap water and cleared using 2.5% KOH in an autoclave at 

90oC for 30 min (Koske and Gemma, 1989). Roots were stained with methyl blue (Grace and 

Stribley, 1991). The percentage of root length colonized was evaluated by the slide intersect 

method (Giovannetti and Mosse, 1980). For this purpose, 99 fields of view were observed for 

each sample (33 root segments) in a microscope at 200x magnification, and the number of views 

in which hyphae, vesicles or arbuscules were present was recorded and converted into 

percentage. 

Plant and soil chemical analyses 

Soybean shoot P content of samples was determined by spectrophotometry with molybdenum-

blue technique (Murphy and Riley, 1962). 

Air-dried soil samples were ground and passed through a 0.21-mm sieve. Soil pH was estimated 

in water (1:2.5 v:v) and measured by potentiometry (Tedesco et al., 1995). Phosphorus 

fractionation was carried out according to a procedure modified by Kelly et al. (1983). Briefly, 

the soil was initially treated with a 1 M NH4Cl solution for 30 min and shaken, for the extraction 

of easily-available, soluble inorganic P. Thereafter, the soil material was centrifuged and the 

supernatant was separated. A neutral 0.5 M NH4F solution (pH 7.0 adjusted with NH4OH) was 

added to the soil. The mixture was shaken for 1 h, centrifuged and P-Al in the supernatant 

determined. After double washing with a NaCl saturated solution to eliminate excess NH4F, a 

0.1 M NaOH solution was added, and the washed sample shaken for 17 h. The solution was 

acidified with a few drops of concentrated H2SO4 until the humic and fulvic acids flocculated, 

and then centrifuged. An aliquot was collected to determine P-Fe. After washing with saturated 

NaCl and adding a 0.25 M H2SO4 solution, P-Ca was determined. 

Acid phosphatase activity 

The procedure of Tabatabai and Bremner (1969) was followed for the assay of acid 

phosphatases (phosphate mono-esterase; EC 3.1.3), using modified universal buffer (MUB; pH 

6.5) and 0.25 ml of toluene, respectively, with p-nitrophenol phosphate (p-NPP) as the 

substrate, after reaction for 30 min at 37°C in closed 50 mL erlenmeyers. Phosphatase activity 

is expressed as the amount of enzyme required to hydrolyse 1.0 mg of p-NPP h-1 at 37°C. 
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Statistical analyses 

Statistical analyses were conducted using SAS 9.2 (SAS Institute, 2009). After the requirements 

for normality and variance homogeneity were met, the effects of PyOM rates, P fertilization, 

CC and their interactions were analysed using a triple factorial approach (three-way ANOVA; 

P<0.05). When significant effects for PyOM rates were found, regression models were fitted 

to the data where appropriate, otherwise data were explained by the post hoc LSD test. 

Differences between treatments with P fertilization and CC were discriminated by F test.  

Additionally, structural equation models (path analysis) were applied to a priori established 

conceptual models (path diagrams) of hypothesized relationships linking the exogenous 

variables (PyOM and P fertilization) and endogenous measured variables within each CC (soil 

P, soil pH and AMF root colonization) (Mitchell, 1993). The aim was to explore the direct and 

indirect effects of the variables on AMF root colonization. The same procedure was repeated 

but (i) with AMF root colonization being replaced by crop yield and (ii) including both AMF 

and crop yield in the same diagram within each CC. However, for that model pH had to be 

excluded from the diagram because a complete diagram would not comply with the need to 

have a minimum of 10 times as many observations as variables (Harris, 2001; Stevens, 1996). 

The significance level of the P values for the path coefficients in each diagram was adjusted 

through a Sequential Bonferroni Procedure, allowing for multiple tests (Holm, 1979). We tested 

absolute fit of our models using the maximum likelihood 2 goodness-of-fit test and Jöreskog’s 

goodness-of-fit index (GFI) (Hayduk, 1987), using PROC CALIS in SAS. In these 2 tests, 

contrary to most statistical tests, high P-values (i.e. P-values >0.05) are considered a desirable 

fit. 

 

4.3 Results 

Root colonization by AMF  

Root colonization by AMF was not significantly affected by CC and PyOM. However, there 

was a significant effect of P fertilization (P= 0.04) and for the PyOM x CC interaction 

(P<0.001) (Tab. 4.3). On average (for CC1 and CC4), P fertilization reduced root colonization 

from 41% (control without P) to 37% (Tab. 4.4). 

In CC1, fractional root colonization by AMF linearly declined with increasing PyOM amounts 

from 48% in the control to 29% in the treatment of 40 Mg PyOM ha-1 (Fig. 4.2A). In contrast, 

PyOM application caused a significant linear increase in AMF root colonization in CC4, with 

values ranging, on average, from 32% in the treatments without PyOM, to 50% in the treatment 

with 40 Mg ha-1 of PyOM (Fig. 4.2B). 
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Shoot P content 

Cropping cycle and P fertilization were significant sources of variation in shoot P content. In 

CC1, average shoot P content was 3.3 mg g-1. In CC4, average shoot P content decreased to 2.2 

mg g-1 (Tab. 4.5). Phosphorus fertilization significantly increased soybean shoot P content to 

3.2 mg kg-1, compared to treatments without P fertilization (2.3 mg kg-1) (Tab. 4.4).  

Plant performance 

Shoot dry mass and grain yield were significantly affected by CC and were higher in CC4 than 

in CC1. There was a significant P x CC interaction for shoot dry mass (Tab. 4.3). Fertilization 

with P decreased plant dry mass in CC1, but no effects were evident in CC4 (Fig. 4.3; see also 

Chapter 5). A significant PyOM x P interaction was observed for soybean grain yield (Tab. 

4.3). 

 

 

Table 4.3. ANOVA outputs (P-values) for the main and interactive effects of PyOM, P fertilization and 

cropping cycle for measured variables. 
 

Measured  

Variables 

Source of variation 

Cropping 

cycle (CC) 

PyOM  P fertilizer 

(P) 

PyOM x 

CC 

PyOM x  

P 

P x 

CC 

PyOM x P  

x CC 

Root colonization (%) 0.71 0.76 0.04* <0.001* 0.88 0.75 0.11 

Shoot P (%) <0.001* 0.09 <0.001* 0.25 0.57 0.49 0.13 

Shoot dry mass (kg ha-1) † <0.001* 0.76 0.21 0.41 0.22 0.02 0.37 

Grain yield (kg ha-1) <0.001* 0.22 0.06 0.34 0.01* 0.58 0.13 

Soil pH <0.001* <0.001* 0.02* <0.001* 0.34 0.17 0.96 

Soil P content (mg kg-1) 0.01* 0.85 <0.001* 0.05* 0.78 0.42 0.03* 

Soil P-Al (mg kg-1) 0.12 0.79 <0.001* 0.67 0.72 0.27 0.36 

Soil P-Fe (mg kg-1) <0.001* 0.24 0.35 0.51 0.51 0.93 0.47 

Soil P-Ca (mg kg-1) <0.001* 0.41 0.31 0.19 0.21 0.01* 0.24 

Acid phosphatase (mg p-NPP 

kg soil-1 h-1) †† 

  

0.10 

 

0.15 
  

0.51 
  

* Significant at P<0.05; †= Discussed in detail in Chapter 5; †† Analyses performed only in CC4. 

 

Table 4.4. Mean values and standard errors (n= 40) of plant and soil variables as affected by P 

fertilization. Values refer to averages across treatments with different PyOM addition rates in the first 

and fourth cropping cycle. 

P fertilization Root colonization 

(%) 

Shoot P 

(mg g-1) 

Soil pH Soil P-Al 

(mg kg-1) 

No-P 40.5 +1.8 a 2.3 +0.1 b 6.46 +0.1 a 10.7 +0.1 b 

P 36.5 +1.8 b 3.2 +0.1 a 6.34 +0.1 b 16.6 +0.1 a 

Means followed by the same letters in columns do not differ significantly (P<0.05). 
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No significant effect of PyOM or P fertilization on grain yield was recorded in CC1 (Fig. 4.4). 

In CC4, however there was a significant increase in grain yield at P-fertilized treatments, with 

increasing PyOM addition rates. Crop grain yield varied from 2.0 Mg ha-1 at the non-PyOM 

treatment, to 3.0 Mg ha-1 at 20 Mg ha-1 of PyOM. No further significant increase was observed 

at 40 Mg ha-1 (2.5 Mg ha-1. A significantly higher crop yield in the P-fertilized treatments 

compared to the non P-fertilized was evident only at 20 and 40 Mg ha-1 of PyOM. 

 

 

 

 
Figure 4.2. Root colonization by arbuscular mycorrhizal fungi in the first (A) and fourth (B) cropping 

cycle. Error bars indicate standard errors (n = 8). 
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Table 4.5. Mean values and standard errors (n= 40) of plant and soil variables as affected by the cropping 

cycle. Values refer to averages across treatments with different PyOM addition rates and P fertilization. 

Cropping 

cycle 

Shoot P 

(mg g-1) 

Grain yield 

(kg ha-1) 

Soil P content (Melich-1) 

(mg kg-1) 

Soil P-Fe 

(mg kg-1) 

CC1 3.3 +0.2 a 1.5 +0.08 b 24.8 +2.2 a 17.2 +1.1 a 

CC4 2.2 +0.1 b 2.2 +0.09 a 20.5 +2.3 b 11.7 +0.4 b 

Means followed by the same letter in columns do not differ significantly (F-test; P<0.05). 
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Figure 4.4. Pyrogenic organic matter effects on soybean grain yield after the first cropping cycle (A) 

and PyOM x P interaction for soybean grain yield after the fourth cropping cycle (B). Different letters 

on the top of grey bars indicate significant differences among PyOM addition rates within P-fertilized 

treatments in the first cropping cycle. * indicates significant differences between P fertilized and non P-

fertilized treatments within PyOM rates. Error bars indicate standard errors (n= 4). 

 

 
Figure 4.3. Means of shoot dry mass as affected by the interaction Cropping cycle x P fertilization. 

Different lowercase letters on the top of opened bars and uppercase letters on the top of grey bars 

indicate significant differences between CC at P-fertilized and non P-fertilized treatments, 

respectively. * indicates significant differences between treatments with P fertilizer, within each CC. 

Error bars indicate standard errors (n = 20). 
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Soil pH 

Soil pH was significantly affected by CC, PyOM, P fertilizer and by the PyOM x CC interaction 

(Tab. 4.3). In general, soil pH increased with CC, but decreased with P fertilization. In CC1, 

there was a consistent linear increase in soil pH with increasing rates of PyOM addition (Fig. 

4.5). The averages ranged from 5.9 to 6.6. The effect was transient and after CC4 soil pH no 

longer varied among PyOM addition rates. Fertilization with P reduced soil pH slightly but 

significantly. Average soil pH ranged from 6.5 at non P-fertilized treatments, to 6.3 in P-

fertilized treatments (Tab. 4.4). 

Soil P pools 

Soil P content was significantly affected by CC, P fertilization, PyOM x CC and by the PyOM 

x P x CC interaction (Tab. 4.3). Average P content decreased from CC1 to CC4, but increased 

with P fertilization. In CC1, no effects of PyOM were observed for soil P content in the 

treatments without P fertilization (Fig. 4.6). A significant increase in soil P availability was 

observed at the P-fertilized plots, compared to those non-fertilized, within different PyOM 

addition rates. No significant effects of PyOM were recorded in CC4. 

Irrespective of CC or PyOM additions rates, P fertilization significantly increased the amount 

of P adsorbed to aluminium (P-Al). There was a significant effect of CC on P-Fe and P-Ca 

fractions and a significant P x CC interaction for P-Ca (Tab. 4.3). In general, P-Fe values 

decreased from CC1 to CC4. In the treatments without P fertilization, P-Ca did not change over 

the cropping cycles. However, at P-fertilized treatments P-Ca was higher in CC4, compared to 

CC1 (Fig. 4.7). The amount of P-Ca in CC4 was also higher at P-fertilized treatments, compared 

to the non P-fertilized treatments. 

 
Figure 4.5. Pyrogenic organic matter effects on soil pH at the first cropping cycle. Error bars indicate 

standard errors (n = 8). 
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Acid phosphatase in CC4 was not significantly (Tab. 4.3) affected by PyOM, P fertilization or 

their interaction at P<0.05. 

 

 

 

 

 

Figure 4.6. Pyrogenic organic matter x P interaction on soil P after the first cropping cycle (A) and 

PyOM effects on soil P after the fourth cropping cycle (B). * indicates significant differences 

between P-fertilized and non P-fertilized treatments within PyOM addition rates. Error bars 

indicate standard errors (n= 4 for A and n = 8 for B). 

 

 

Figure 4.7. Means of P-Ca as affected by the interaction between cropping cycle x P fertilization. 

Different letters on the top of grey bars indicate significant differences between cropping cycles at P-

fertilized treatments. * indicates significant differences between treatments at P-fertilized and non P-

fertilized treatments, within each cropping cycle. Error bars indicate standard errors (n = 20). 
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Path analysis 

All path models satisfactorily fitted the data of CC1, regarding AMF root colonization (Fig. 

4.8A; 2= 0.02; DF 2= 1.0; P> 2= 0.89; GFI= 0.99), soybean grain yield (Fig. 4.8C; 2= 0.07; 

DF 2= 1.0; P> 2= 0.79; GFI= 0.99) and both variables integrated in the same diagram (Fig. 

4.8E; DF 2= 2.0; 2= 1.44; P2= 0.49; GFI= 0.98). The models also showed a satisfactory fit 

to the data of CC4, regarding AMF root colonization (Fig. 4.8B; 2= 0.04; DF 2= 1.0; P> 2= 

0.84; GFI= 0.99), soybean grain yield (Fig. 4.8D; 2= 0.04; DF 2= 1.0; P>2= 0.84; GFI= 

0.99) and both variables integrated in the same diagram (Fig. 4.8F; DF 2= 2.0; 2= 62; P2= 

0.73; GFI= 0.99). 

In CC1 changes in AMF colonization were significantly and negatively driven directly by 

PyOM applications. Soil P content was positively affected by P fertilization. In CC4 the direct 

pathway from PyOM to AMF colonization became significantly positive, while the non-

significant pathway from soil P content to AMF was maintained (Fig. 4.8A and 4.8B). 

Soybean grain yield was not significantly affected by PyOM or P fertilization both in CC1 and 

CC4 (Fig. 4.8C and 4.8D). In the diagrams combining AMF and crop yield, the significance of 

pathways correlating PyOM and AMF, P fertilization and soil P content and, in CC4, soil P and 

AMF remained constant. No significant pathway correlations were observed between AMF and 

crop yield (Fig. 4.8E and 4.8F). 

 

4.4 Discussion 

Our data demonstrated a significant effect of CC in most plant/AMF and soil characteristics. 

Most previous studies reporting PyOM effects on root colonization by AMF are performed for 

periods no longer than one cropping cycle (Tab. 4.1). This limits our ability to identify and 

understand potential factors that affect interactions between plant, AMF and soil properties over 

time. As PyOM is supposedly recalcitrant one would have expected small PyOM x CC 

interaction effects on the studied variables. However, there was a significant effect of CC for 

most variables. Furthermore, the significant PyOM x CC interaction effect on root colonization 

by AMF shows that there is a temporal dynamic for this variable, which is dependent of PyOM 

additions rates. 

High overall crop yield in CC4 compared to CC1 can be ascribed to a differential management 

over time, such as fertilization with micronutrients in CC4. Such hypothesis is reinforced by 

the relatively high yield observed in CC3 (3.0 Mg ha-1; data not shown), when the same 

micronutrients mixture was also applied. However, the significant PyOM x P interaction for 

crop yield also indicates that PyOM exerts an effect on crop yield which depends on the P-

fertilizer management (Fig. 4.4B). These PyOM effects occur irrespective of micronutrients 

addition. 
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Figure 4.8. Path diagrams of relationships among treatment and response variables. Each arrow 

indicates direct relationships. Indirect effects occur when one variable is linked to another via an 

intermediate variable. Numbers above each arrow represents standardized path coefficients (partial 

regression). Numbers in bold above or below dependent variables (boxes) are standardized errors. A 

and B represents the effects on AMF in the first and fourth cropping cycle, respectively. C and D 

represent the effects on crop yield in the first and fourth cropping cycle, respectively. E and F integrate 

the effects of AMF and crop yield in the first and fourth cropping cycle, respectively. * indicates 

significant pathway correlations (P<0.017 after Bonferroni correction). 
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Effects on plant performance 

Increased root colonization by AMF due to PyOM additions was not responsible for increases 

in crop yield in CC4. The lack of significant path coefficients linking AMF to crop yield 

supports this statement (Fig. 4.8E and 4.8F). Soybean grain yield was positively affected by 

PyOM additions in CC4, especially in the P-fertilized plots and at high PyOM rates (20 and 40 

Mg ha-1). Our data suggest that the mechanisms through which PyOM improves plant 

performance may have become more relevant with time. Arbuscular mycorrhizal fungi 

effectively absorbs and transfers macro and key micronutrients as zinc to plants (Lehmann et 

al., 2014). The negative effect of PyOM on root colonization by AMF in CC1 may have 

hampered the acquisition of micronutrients by plants. Micronutrients deficiency may have 

constrained plant performance despite the adequate levels of other nutrients like P, K and N. 

Adequate supply of micronutrients to the plants in CC4 was ensured by fertilization to all 

treatments. High root colonization by AMF with increasing PyOM additions rates may have 

further improved availability of these nutrients to the plants. Unfortunately, an eventual role of 

AMF on crop yield through increased absorption of micronutrients is an indirect effect that 

cannot be tested in our pathway models. Such indirect effect would explain the lack of 

significant direct path coefficients linking AMF and crop yield. Other indirect effects not 

considered in our study, such as improved water availability by PyOM additions also remain as 

potential explanation for increased crop yield at high PyOM rates (Liu et al., 2013; Cornelissen 

et al., 2013). Further research in this field of study is still necessary to confirm such hypotheses, 

especially over periods of time longer than that comprised in our study. 

Effects on soil P 

In our study PyOM had no effects on the dynamics of P fractions associated to Al and Fe oxides 

or Ca, or on acid phosphatase activity (Tab. 4.3). It is noteworthy that the soil was highly sandy 

and with a low clay fraction dominated by kaolinite - in which Al oxides predominate (Melo et 

al., 2002). This very low clay content (86 g kg-1) may have hampered a clear distinction of 

significant PyOM effects on P fractions. 

Increased shoot P content driven by P fertilization (Tab. 4.4) was not translated into higher crop 

shoot dry mass and grain yield in CC1, but did on CC4. Fertilization with P also reduced shoot 

dry mass in CC1. This luxury P uptake indicates that P was not a limiting factor for plant 

performance at the beginning of the experiment in contrast to CC4. After micronutrients were 

added in CC4, micronutrient limitation was alleviated, allowing plants to translate additional P 

uptake into larger plant biomass and larger grain yield. Crop yield was enhanced in CC4 at the 

highest PyOM treatments when P fertilization was included. It is possible that successive 

cropping cycles led to a partial depletion of original soil P pool (measured with Melich-1) in 

CC4 (9.6 mg kg-1 in the non P-fertilized treatments), and that P fertilization efficiently replaced 

original soil P pool (31.8 mg kg-1 in the P-fertilized treatments). 
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Effects on root colonization by arbuscular mycorrhizal fungi 

Effects of PyOM on AMF across the cropping cycles were not driven by changes in pH resulting 

from PyOM additions, as demonstrated by the lack of significant correlation between soil pH 

and root colonization by AMF in both CCs (Fig. 4.8A and 4.8B). Pyrogenic organic matter 

increased soil pH only at the CC1 (Fig. 4.5), concomitant with decreases in AMF root 

colonization. However, no significant effects of PyOM on soil pH remained after four cropping 

cycles (Tab. 4.3), but were evident for AMF root colonization (Fig. 4.2B). The only effect on 

soil pH in CC4 was a reduction caused by P fertilization (Tab. 4.4). This decrease in soil pH at 

P-fertilized treatments may have been cause by a (cumulative) residual effect of the acid 

reaction to produce single superphosphate from phosphate rocks. It may also be a consequence 

of the positive effect of P fertilization on BNF (see Chapter 5). N-fixing plants absorb more 

cations than anions and protons are released to balance the plant’s internal pH, thus leading to 

soil acidification especially in the rhizosphere (Köpke and Nemecek, 2010). The transient 

nature of increased soil pH in PyOM-amended soils has been reported elsewhere (Jones et al., 

2012), and is likely a result of additions of basic cations present in the ash fraction of PyOM 

(Stewart et al., 2013). In CC4 soil pH values were higher than in CC1 in the no-PyOM 

treatment. Although we could not find a clear explanation for this increase, it is possible that 

fertilization with (micro) nutrients before CC3 and CC4 had some impact on raising soil pH. 

Pyrogenic organic matter also did not affect root colonization by AMF through changes in soil 

P content, despite the considerably high concentrations of P in the PyOM (Tab. 4.2). As 

commonly reported (Gryndler et al., 2006) soil P fertilization exerted a negative effect on AMF 

at both cropping cycles (Tab. 4.4). However, the path coefficients shown in Fig. 4.8A and 8B 

indicated that although P fertilization increased soil P availability in CC1 (P<0.001) and CC4 

(P<0.001) there were no significant effects of soil P content on root colonization by AMF after 

correction of P-values by conservative Bonferroni’s procedure. Moreover, path coefficients 

associated with soil P content were not significantly correlated with PyOM.  

The PyOM used in our study added micronutrients (Tab. 4.2) which may somehow have 

contributed to decrease root colonization by AMF (Liao et al., 2003) in CC1. Fertilization with 

micronutrients in CC4 may have been responsible for lower fractional colonization in the non-

PyOM treatment in CC4, compared to the non-PyOM treatment in CC1. However, adequate 

supply of micronutrients in CC4 through fertilization may have neutralized any potential effect 

of PyOM on supplying these nutrients. Therefore, it is likely that positive effects of PyOM on 

root colonization by AMF in CC4 and the contrasting effects between CC1 and CC4 cannot be 

ascribed to the supply of micronutrients by PyOM. Our data suggest, therefore, that changes in 

soil chemical aspects driven by PyOM additions had a minor effect on root colonization by 

AMF. 

The highly significant path coefficients linking PyOM and AMF, although negative in CC1 and 

positive in CC4 (Fig. 4.8A and 4.8B, respectively), suggest that a mechanism intrinsically 

related to PyOM characteristics exerts a stronger role on AMF root colonization than through 
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indirect physicochemical changes in soil properties. We propose that changes in the patterns of 

adsorption and/or release of signals and chemical compounds by PyOM (Warnock et al., 2007) 

provide the best explanation for these results found in our experiment. Although we did not 

measure the presence of potential signalling compounds, our data provide support for the 

relevance of such mechanism. Pyrogenic organic matter may, during CC1, have reduced 

signalling capacity by adsorbing molecules from the soil that play a critical role in the 

host/fungus signalling events that precede the establishment of symbiosis, as observed for 

activated charcoal (Rutto and Mizutani, 2006). Over four cropping cycles, adsorption of 

signalling molecules was reduced or completely eliminated. The most likely reasons may have 

been either saturation of PyOM particles with these molecules, surface blocking with other 

organic molecules (Zackrisson et al., 1996) or continuous adsorption/deactivation of other 

chemical molecules that can have detrimental effects on AMF activity (Ishii and Kadoya, 1994). 

Our data do not allow for testing the other major mechanisms proposed by Warnock et al. 

(2007) (viz. interaction between AMF and other microorganisms and protection against fungal 

grazers). However, protection against fungal grazers may also be useful to explain changes 

driven by PyOM on AMF activity under certain circumstances, as AMF hyphae can grow on 

PyOM surface and can access microsites within PyOM pores (Hammer et al., 2014). Pyrogenic 

organic matter could, therefore, become relevant as a carrier of AMF inoculum (Lehmann et 

al., 2011), as AMF progressively colonizes PyOM pores with time. 

The lack of field studies over periods longer than one CC is a likely explanation for the lack of 

evidence of mechanisms affecting AMF activity (Verheijen et al., 2010; Rillig et al., 2010; 

Warnock et al., 2010). Our study fills in this gap and indicates that major mechanisms 

controlling root colonization by AMF result in distinct effects even in relatively short time 

periods (a few years). 
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Abstract 

Pyrogenic organic matter (PyOM), also named biochar, can increase biological nitrogen 

fixation (BNF). But there are currently few field studies that assessed effects of PyOM on BNF. 

We assessed the effects of PyOM rates (0, 5, 10, 20 and 40 Mg ha-1) and P fertilization on BNF 

over four soybean cropping cycles (CC) in a randomized block design with four replications 

under field conditions in the Brazilian Northeast. Plant material and rhizosphere soil were 

sampled at initial flowering in CC1 and CC4 and analysed for N derived from air (Ndfa; both 

total amounts of N fixed and fraction of total plant N), plant nodulation and soil N. We observed 

that cropping cycle was a significant factor in almost all cases, while PyOM was not a 

significant source of variation. We also observed a significant PyOM x P fertilization 

interaction for soybean grain yield, and a significant PyOM x cropping cycle interaction for 

shoot N content. In CC1 shoot N concentration after application of 5 Mg PyOM was 

significantly lower than that of plants where 10 and 20 Mg PyOM were applied. In CC4 shoot 

N concentration was not affected by PyOM. Shoot N was significantly higher in CC4 than in 

CC1 in the treatment with 5 Mg PyOM. Phosphorus application reduced N uptake from soil but 

not N from BNF (hence increasing %Ndfa), and plant biomass in CC1, but not in CC4. We 

conclude that under conditions of adequate management PyOM application does not improve 

soybean performance. 
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5.1 Introduction 

Soil amendment with pyrogenic organic matter (PyOM), also named biochar, has been 

suggested as a promising option for soil carbon sequestration (Lehmann, 2007), while 

simultaneously improving soil fertility (Powlson et al., 2011) and crop yield (Jeffery et al., 

2011). Pyrogenic organic matter as a soil amendment may increase crop production by 

stimulating root symbioses: it positively affects root colonization by arbuscular mycorrhizal 

fungi (AMF) (Yamato et al., 2006; Solaiman et al., 2010; See also Chapter 4 in this Thesis) and 

biological nitrogen fixation (BNF) (Rondon et al., 2007; Mia et al., 2014). 

Pyrogenic organic matter may increase plant dry mass due to quicker nodulation (Turner, 1955). 

Early studies attributed higher plant production in PyOM-amended soils to increased BNF 

resulting from higher nodule number and size. However, high nodule number and size may not 

necessarily indicate a high effectiveness in BNF (Howieson and Ballard, 2004; Salvagiotti et 

al., 2008). Increased BNF in Phaseolus vulgaris due to PyOM additions has been demonstrated 

in a short-term experiment in a clay-loam soil, with the 15N isotope dilution method (Rondon 

et al., 2007). The authors found that the total N derived from the atmosphere (Ndfa) through 

BNF increased with PyOM additions, up to the rate of 60 g kg-1 of soil, and decreased with 

higher PyOM application rates. 

Adsorption of compounds toxic to N2-fixing bacteria by PyOM is suggested as one of the main 

mechanisms for increased BNF in PyOM-amended soils (Vantsis and Bond, 1950; Turner, 

1955; Hely et al., 1956). The adsorption by PyOM of molecules responsible for signal exchange 

between plant roots and rhizobia has also been proposed in recent studies (DeLuca et al., 2009; 

Verheijen et al., 2010; Atkinson et al., 2010). However, no attempts to test these hypotheses 

have been made especially over longer-term periods. This would be relevant because PyOM 

particles can get saturated with phenols, or can have its surface blocked with other organic 

molecules (Zackrisson et al., 1996), potentially influencing PyOM effects on BNF. Changes in 

nutrient availability (alleviation of nutrient limitation or reduction of excess amounts) have 

been proposed as an alternative explanation. Rondon et al. (2007) suggested, without providing 

data, that the higher Mo and B availability in PyOM-amended soils and, to a lesser extent, 

decreased soil N availability (immobilization of N in high C:N PyOM) stimulates BNF. 

Another explanation for positive effects of PyOM on BNF refers to increased P availability 

after PyOM addition. Biological nitrogen fixation has a high P requirement since P is an 

important element in nodule metabolism (Vance, 2001). High P content in PyOM produced 

from carbonized chicken manure compared to the non-carbonized feedstock was pointed out as 

the main cause of high grain yield and nodule growth of soybean (Glycine max) (Tagoe et al., 

2008). Increases in K availability through soil PyOM additions have also been suggested as 

causing increases in BNF (Mia et al., 2014). 

Except for one paper, studies of PyOM effects on BNF reported data from one cropping cycle 

only. In the only longer-term study so far (more than two years), no evidence of PyOM effects 

on clover nodule number and shoot production after three cropping cycles (CC) was found 
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(Quilliam et al., 2013). However, the authors observed increased nitrogenase activity of 

individual nodules in the PyOM treatments. Unfortunately, N2 fixation by BNF was not 

measured. Therefore, there is a need for additional studies that include legume performance 

under realistic field conditions (including regular management of soil and rhizobial inoculum) 

over several cropping cycles where the amount of N fixed (through 15N stable isotope data) is 

quantified. We aimed with this field study to test the effects of PyOM application rates and P 

fertilization on BNF in soybean inoculated with Bradyrhizobium japonicum strains over four 

cropping cycles under realistic field conditions. 

 

5.2 Material and methods 

Study site 

The experimental design and site characteristics have been described before (see Chapter 3 and 

4 in this thesis). The experiment was carried out at the field station of Embrapa Mid-North in 

Parnaiba (UEP-Parnaiba), Brazil (3o05’18’’S; 41o47’00’’W; 52 m altitude). According to 

Köppen local climate is Aw’ (tropical with a dry season). Local annual mean temperature is 

27oC, mean precipitation is 1,079 mm and air moisture is 76.5% (Andrade Junior et al., 2005). 

Crops are generally planted in February-March and harvested in June or July. The soil is a 

Ferralsol, overlaid by a layer of around 40 cm of sand, where most plant roots grow. Soil 

chemical characteristics at 0-20 cm layer were determined according to Embrapa (1997): 

organic carbon= 6.6 g kg-1; pH(H2O1:2.5)= 5.9; K= 0.07 cmolc kg-1; Ca= 2.0 cmolc kg-1; Mg= 

0.94 cmolc kg-1; Na= 0.01 cmolc kg-1; Al= 0.03 cmolc kg-1; H+Al= 2.08 cmolc kg-1; sum of 

bases= 3.0 cmolc kg-1; CEC= 5.1 cmolc dm-3; base saturation= 59%; Al saturation= 0.99 %. Soil 

phosphorus content (Mehlich 1) was high at the beginning of the experiment (33.4 mg kg-1). 

The textural distribution of the topsoil revealed 886 g kg-1 of sand and 86 g kg-1 of clay 

dominated by kaolinite (1:1). The native vegetation was a Caatinga-coastal phase (Melo et al., 

2004). From 1995 to 2007 an experiment with tropical C4-grass species was set up in the area. 

From 2007 till the beginning of this experiment (September 2011), the area remained under 

fallow, with C4-grass-dominated spontaneous vegetation, which was cut once per year and the 

residues maintained on the soil surface. 

In early September 2011, the soil was harrowed twice with a heavy harrow. Experimental plots 

of 2.0 m width and 3.0 m long were established. The distance between blocks was 2.0 metres, 

which allowed sprinkler lines between blocks 1-2 and 3-4. Additional sprinkler lines were 

maintained at each side of the experimental area. Excess grass residues at the plots were 

removed from the top 10 cm with hoes and rake in order to facilitate PyOM mixing with soil 

and opening of furrows for planting. At first week of September, seeds of soybean cultivar 

BRS-Tracajá were planted at a density of 14 plants m-1, in five rows spaced 0.40 m from each 

other. Soybean sowing took place at each 4-month interval, in four successive CC made 

possible by irrigation. The year of 2012 was unusually dry, with total rainfall of 625 mm (much 
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lower than the average of 1,079 mm for the region) and for this reason, even at the rainy season, 

irrigation took place regularly (Fig. 5.1). 

Experimental design and characteristics of treatments  

Five rates of PyOM (0, 5, 10, 20 and 40 Mg ha-1) with and without P fertilization were applied 

in a randomized complete block design, in a factorial 5 x 2 scheme with four replications. The 

PyOM was derived from nearby-growing woody vegetation and produced under slow pyrolysis 

in traditional kilns at 500oC (Tab. 5.1). Chemical characteristics of the PyOM (pH, Ca, Mg, Al, 

H+Al, P, K, Cu, Zn, Fe, Mn and oxidizable C) were measured according to the same methods 

applied to soil chemical analysis (Embrapa, 1997). Nitrate and NH4
+ were extracted with 1 M 

KCl followed by flow injection analysis (Tyson, 1985), using the colorimetric methods reaction 

of Berthelot for NH4
+ and Griess for NO3

-. Total C and N were analysed by the Dumas method 

(Nelson and Sommers, 1996). Prior to its application, PyOM was crushed into small pieces, in 

order to pass through a 2 mm sieve. During its application to the soil, plastic canvases were 

used as barriers to prevent against wind dispersion. Pyrogenic organic matter was immediately 

incorporated in the top 10 cm of soil with hoes prior to soybean sowing.  

Fertilization and seed inoculation 

Phosphorus fertilization rate was defined based on soil chemical status and following 

recommendations for soybean cropping at Brazilian low latitudes (Sfredo, 2008). Treatments 

subjected to P fertilization received 20 kg ha-1 of P for each expected 1000 kg of grains yielded. 

We expected a 3000 kg ha-1 of grain yield and therefore, 60 kg ha-1 of P was applied as single 

superphosphate at each CC immediately before sowing. 

 
Figure 5.1. Monthly temperatures (minimum, maximum and average) and total monthly precipitation 

from rainfall and irrigation during the experimental period. ∆ indicates the sowing events; ▲ indicates 

the harvest events. * indicates the sowing of CC1; ** indicates the sowing of CC4.  
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At each CC, additional K fertilization was provided to all plots as KCl at a rate of 20 kg ha-1 of 

K2O at sowing and 40 kg ha-1 of K2O, 30 days after plant emergence. As part of common 

practice, 50 kg ha-1 of a mixture containing macro and micronutrients (Ca= 7.1%; S= 5.7%; B= 

1.8%; Cu= 0.8%; Mn= 2.0%; Mo= 0.1%; Zn= 9.0%) was applied to all plots at sowing of CC3 

and CC4 to avoid possible micronutrient deficiencies commonly observed in Brazilian sandy 

ferralsols, fertilizers were applied in the sowing furrows (except for basal fertilization with K) 

and covered with a thin layer of soil prior to sowing. 

Seeds of soybean were inoculated at each CC with the Bradyrhizobium japonicun strains 

SEMIA-5079 and SEMIA-5080. These strains are recommended for the manufacture of 

commercial inoculants in Brazil (Guimarães et al., 2008) and were applied at a rate of 150 ml 

(6x109 cells ml-1) / 50 kg of seed, using the commercial inoculant Rizoliq-Top™ (Rizobacter 

do Brasil). 

Plant sampling and analysis 

During CC1 and CC4, three soybean plants from the centre of each field plot were removed 

from the soil with intact roots at initial flowering stage (R1 stage; Ritchie et al., 1982). For this 

purpose, 20 x 20 x 20cm3 monoliths were removed with a shovel. Plants were clipped at soil 

surface level and stored in plastic bags. Soil was carefully removed from the roots and the 

nodules were collected. Great care was taken to recover all nodules from the root system and 

eventually from the soil, by slowly sieving the complete soil volume from the monoliths 

through a 2 mm sieve and searching for detached nodules. Plant shoot and nodule samples were 

brought to the laboratory and oven-dried separately in paper bags at 65oC for >72 h and 

weighed. 

We choose non-N2-fixing reference plants within the experimental area to serve as control 

plants of the 15N natural abundance of plant-available soil N. We collected three plant species 

during CC1 (Turnera ulmifolia [Passifloraceae], Hyptis umbrosa [Lamiaceae] and Amaranthus 

viridis [Amaranthaceae]) and two plant species during CC4 (T. ulmifolia and H. umbrosa). 

Amaranthus viridis was not found during CC4. These plant species were chosen duo to their 

similarity in shoot growth and root system pattern and growth, compared to soybean. This 

ensured that a similar soil layer was explored either by soybean or reference plant roots, with a 

similar timing (Giller, 2001). 

Table 5.1. Chemical properties of the PyOM applied to the experimental site. 

...... pH ...... Ca Mg Al H+Al P K Cu 

H2O KCl(1M)  ..................... g kg-1 ..................... ................ mg kg-1 ............... 

7.2 6.15 1.86 0.37 0 0 126.5 1547 0.39 

         

Zn Fe Mn Ctot Ntot NH4
+ NO3

- EC* 

................ mg kg-1 ................ ..........% ........... ..... mg kg-1 ..... µs cm-1 

2.94 25.20 4.50 74.3 1.18 17.4 0 3573 
* EC= Electrical conductivity. 

 



PyOM & biological nitrogen fixation 

75 

 

Shoot samples from soybean and reference plants were ground to a fine powder in a roller mill 

similar to that described by Arnold and Schepers (2004). All plant samples were analysed for 

total N content using the semi-micro Kjeldahl procedure as described by Urquiaga et al. (1992). 

Analyses were performed at the Embrapa Mid-North facilities in Teresina, Brazil. 

Soil sampling and analysis 

After harvest of plants from CC1 and CC4, soil samples were collected from the 0-10 cm layer 

with an auger. From the three central planting lines within each plot, TWELVE soil sub-samples 

were collected and pooled to form one composite sample from each plot. These samples were 

air-dried and sieved through a 2.0 mm screen and stored at room temperature prior to chemical 

analysis. 

Soil samples were ground to pass a 0.21 mm sieve to determine total nitrogen (TN). This was 

achieved using sulphuric acid digestion and the N was measured by the Kjeldahl distillation 

method (Bremmer, 1996).  

Isotopic 15N analysis 

The 15N abundance in aliquots of plant sub-samples containing approximately 35 mg N was 

determined using an automated continuous-flow isotope-ratio mass spectrometer consisting of 

a Finnigan DeltaPlus mass spectrometer coupled to the output of a Carlo Erba EA 1108 total C 

and N analyser (Finnigan MAT, Bremen, Germany) in the “John Day Stable Isotope 

Laboratory” at Embrapa Agrobiology facilities in Rio de Janeiro, Brazil. The proportion of N 

in the soybean plants derived from the air (%Ndfa) was calculated using the equation of Shearer 

and Kohl (1986): 

%𝑁𝑑𝑓𝑎 =  
100(𝛿15𝑁 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑙𝑎𝑛𝑡 − 𝛿15𝑁 𝑙𝑒𝑔𝑢𝑚𝑒)

(𝛿15𝑁 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑙𝑎𝑛𝑡 − 𝐵)
 

where B is the natural abundance of 15N derived from air in soybean (BNF). The B value (-

1.85‰) was obtained from Guimarães et al. (2008) for soybean shoot tissue (Bs) inoculated 

with the same B. japonicum strains used as in our research. We calculated independent %Ndfa 

values for each reference plant species and averaged the values to obtain final values based on 

reference plants collected in each CC. 

Statistical analyses 

Statistical analyses were conducted using SAS 9.2 (SAS Institute, 2009). The effects of PyOM 

rates, P fertilizer and CC were analysed using a three-way ANOVA (α = 0.05) in a randomized 

block design. We also split the statistical analysis within each CC and performed a two-way 

ANOVA taking PyOM and P fertilization as factors. When significant effects of PyOM rates 

were found, data were explained by the post hoc LSD test. Differences between P fertilization 

treatments or between CC were discriminated by F test. We performed Pearson correlation test 

to investigate the correlation of variables associated to nodulation and Ndfa. 
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5.3 Results 

Plant performance 

Shoot dry mass, grain yield and N content were significantly affected by cropping cycle, but 

not by PyOM or P fertilization. There were significant interactions for shoot dry mass (P x CC), 

grain yield (PyOM x P), shoot N content (PyOM x CC) and total amount of N acquired (P x 

CC) (Tab. 5.2). Fertilization with P decreased plant dry mass in CC1, but no effects were 

evident in CC4. Plant dry mass was higher in CC4 compared to CC1, both at no-P and P-

fertilized treatments (Tab. 5.3). No effects of PyOM on grain yield were evident in CC1, but 

treatments with 20 and 40 Mg ha-1 of PyOM significantly increased grain yield in the P-

fertilized treatments in CC4 (Fig. S5.1; see also Chapter 4). 

A slight decrease in plant N concentration was noted at 5 Mg ha-1 of PyOM, and shoot N 

concentrations after application of 10 and 20 Mg of PyOM were slight but significantly higher 

than after 5 Mg PyOM (Fig. 5.2). In CC1 total shoot N acquisition was higher (56.6 kg ha-1) at 

non P-fertilized treatments compared to the P-treatments (40.2 kg ha-1), but no differences were 

observed in CC4. There was also a greater total N acquisition in CC4 compared to CC1, both 

at non-P and P-fertilized treatments (Tab. 5.3). 

Similarly, there was a significantly higher N uptake from the soil in CC4, compared to CC1. 

However, differently of total N uptake, fertilization with P significantly reduced the amount of 

N derived from the soil (Tab. 5.4).  

 

Table 5.2. ANOVA outputs (P-values) for the main and interactive effects of PyOM, P fertilization and 

CC for measured variables. 
 

Measured  

Variables 

Source of variation 

PyOM  P fertilizer 

(P) 

Cycle 

(CC) 

PyOM x 

 P 

PyOM x 

CC 

P x 

CC 

PyOM x P  

x CC 

Shoot dry mass (kg ha-1) 0.76 0.21 <0.001 0.22 0.41 0.02 0.37 

Grain yield (kg ha-1)† 0.22 0.06 <0.001 0.01 0.34 0.58 0.13 

Shoot N concentration (%) 0.31 0.91 0.02 0.24 0.04 0.47 0.59 

Total shoot N (kg ha-1) 0.97 0.30 <0.001 0.32 0.30 0.01 0.38 

Ndfa (%) 0.98 0.06 0.01 0.28 0.45 0.94 0.47 

Total plant Ndfa (kg ha-1) 0.99 0.68 <0.001 0.20 0.33 0.01 0.24 

Total N derived from soil (kg ha-1) 0.92 0.02 0.05 0.34 0.23 0.17 0.72 

Nodule number (n° plant-1) 0.95 0.09 <0.001 0.49 0.70 0.22 0.94 

Nodules dry mass (g plant-1) 0.87 <0.001 <0.001 0.44 0.88 0.03 0.91 

Individual nodule dry mass (mg) 0.47 0.01 0.46 0.58 0.50 0.65 0.76 

Soil N content (g kg-1) 0.18 0.08 <0.001 0.99 0.59 0.23 0.95 

Effects with P values in bold face are considered significant (P<0.05); †= Discussed in detail in Chapter 4; Ndfa= 

Nitrogen derived from air. 
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Biological nitrogen fixation 

The average 𝛿15N abundance in the reference plants collected both during CC1 and CC4 was 

5.5‰. 

In the three-way ANOVA CC was a significant source of variation, whereas PyOM, P 

fertilization and the PyOM x P interaction were not significant, both for the total amount of N 

fixed and the fractional contribution of N fixation (%Ndfa). There was a significant P x CC 

interaction effect on the total amount of N fixed (Fig. 5.3), but not on %Ndfa (Tab. 5.2). The 

total amount of N fixed was higher in CC4 (48.9 kg ha-1) than in CC1 (29.2 kg ha-1); fractional 

 
Figure 5.2. Shoot nitrogen concentration in plants harvested after CC1 and CC4 per pyrogenic organic 

matter application rate. Different letters on the top of open bars indicate significant differences among 

PyOM addition rates in CC1. Error bars indicate standard errors (n = 8). * indicates significant 

differences between CC1 and CC4 within PyOM rates. 
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Table 5.3. Mean values and standard errors (n= 40) of variables affected by the CC. 

Cropping 

cycles 

Ndfa 

(%) 

Total N derived from 

soil (kg ha-1) 

Nodule number  

(n° plant-1) 

Soil N content  

(g kg-1) 

CC1 60.2 + 1.7  b 19.2 + 1.9 b 25.3 + 2.5 b 0.12 + 0.002 a 

CC4 67.3 + 2.1 a 24.2 + 1.7 a 57.8 + 3.8 a 0.08 + 0.001 b 

Means followed by the same letter in columns do not differ significantly (F-test; P<0.05). 

 

 

Table 5.4. Mean values and standard errors (n= 40) of variables affected by P fertilization. 
 

P fertilization 
Total N from soil 

(kg ha-1) 

 Individual nodule  

dry mass (mg) 

No-P 24.8 + 0.2 a  4.28 + 0.004 b 

P 18.6 + 0.3 b  5.36 + 0.003 a 

Means followed by the same letter in columns do not differ significantly by F-test (P<0.05). 
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contribution of N fixation (%Ndfa) also increased from 60.2% in CC1 to 67.3% in CC4 (Tab. 

5.5). Phosphorus somewhat reduced the amount of N fixed in CC1 but increased that amount 

in CC4. A two-way ANOVA carried out within each CC showed that during CC1 there was a 

significant PyOM x P fertilization interaction for %Ndfa (P=0.04; Tab. S5.1) but not for total 

amount of N fixed. In the P-fertilized treatments, %Ndfa was 63% in the absence of PyOM, 

and increased to 73% in the treatment with 20 Mg ha-1 of PyOM. No further increase in %Ndfa 

was observed at 40 Mg ha-1 PyOM. In the absence of P fertilizer, %Ndfa increased from 47% 

in the no-PyOM treatment, to 65% in the treatment with 10 Mg ha-1 of PyOM. Application rates 

higher than 10 Mg ha-1 of PyOM did not increase the %Ndfa any further in the absence of P 

fertilizer (Fig. 5.4). Treatments with P fertilization resulted in significantly greater %Ndfa at 

the no-PyOM treatment and at 20 Mg ha-1 of PyOM, compared to treatments without P-

fertilizer. 

Nodule number and nodule dry mass were significantly affected by CC. Nodule dry mass and 

individual nodule dry mass were significantly affected by P; for total dry mass of nodules the 

interaction P × CC was also significant (Tab. 5.2). Nodule number was higher in CC4 than in 

CC1 (Tab. 5.3). Nodule dry mass was higher in CC4 compared to CC1, both at P-fertilized and 

no P-fertilized treatments (Tab. 5.5). Fertilization with P also resulted in higher nodule dry mass 

than no-P treatments in CC4. Dry mass of individual nodules increased from 4.28 mg at non P-

fertilized treatments, to 5.36 mg at P-fertilized treatments (Tab. 5.4). 

We observed significant Pearson correlations between total plant Ndfa (kg ha-1) and nodules 

number in both CC (r= 0.34; P= 0.03 and r= 0.47; P= 0.002 for CC1 and CC4, respectively). 

No significant correlation was observed between total plant Ndfa and total nodule dry mass in 

CC1 (r= -0.08; P= 0.61), but a significant correlation in CC4 (r= 0.53 P= 0.0004). 

 
Figure 5.3. Total nitrogen in the soybean shoot (kg ha-1) and its origin during CC1 (A) and CC4 (B), 

at different PyOM addition rates. Error bars indicate standard errors (n = 8). 
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Soil N 

Soil N content was not affected by PyOM additions or P fertilization, but there was a significant 

effect of CC (Tab. 5.2). Soil N content declined from 0.12 g kg-1 in CC1, to 0.08 g kg-1 in CC4 

(Tab. 5.3). 

 

5.4 Discussion 

Cropping cycle was the main source of variation in the ANOVA. We consider micronutrient 

addition as the most likely cause for the effects on crop performance and root symbiosis. Weed 

management and irrigation were the same in all cropping cycles. Seed and inoculum quality 

were also unlikely to vary over the CC. In support for our explanation we noted that similarly 

for CC4, the overall crop yield in CC3 (data not shown) was higher than those obtained in CC1 

and CC2. Consistent with that explanation are observations of luxury P-uptake after P 

fertilization in CC1 (see Chapter 4), a negative effect of P on total shoot N in CC1 and a lack 

of effect of P on Ndfa in CC1 (but a positive P effect in CC4) (Tab. 5.5). In our experiment we 

 
Figure 5.4. %Ndfa in plants harvested during CC1 at (A) non-P fertilized and P fertilized treatments and 

(B) average %Ndfa in plants during CC1 and CC4. Error bars indicate standard errors (n = 4). * indicates 

significance differences between CC (P<0.05) within PyOM rates. 

 

Table 5.5. Mean values and standard errors (n= 20) of variables affected by the interaction between CC 

x P fertilization. 

Cropping  

cycles 

Shoot dry mass  

(Mg ha-1) 

 Total shoot N 

(kg ha-1) 

 Total plant Ndfa 

(kg ha-1) 

 Nodules dry mass  

(g plant-1) 

 No-P P  No-P P  No-P P  No-P P 

CC1 1.5  b A 

(+ 1.6) 

1.2  b B 

(+ 0.8) 

 56.6  b A 

(+ 6.8) 

40.2  b B 

(+ 3.2) 

 32.6  b A 

(+ 4.4) 

25.8  b A 

(+ 2.5) 

 0.1  b A 

(+ 0.01) 

0.1  b A 

(+ 0.01) 
 

CC4 1.8  a A 

(+ 0.8) 

2.0  a A 

(+ 0.7) 

 69.8  a A 

(+ 4.2) 

76.5  a A 

(+ 3.5) 

 44.2  a B 

(+ 3.0) 

53.6  a A 

(+ 2.8) 

 0.2  a  B 

(+ 0.02) 

 0.3  a  A 

(+ 0.03) 

Means followed by the same lower case letter in columns and upper case letter in rows within each variable do not 

differ significantly (F-test; P<0.05). 
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tried to mimic conditions in which plants would be grown as part of high-intensive soybean 

cropping systems, testing at the same time whether PyOM could contribute in enhancing crop 

productivity through improved performance of root symbioses. In such systems soybean is re-

inoculated at every CC with highly efficient Bradyrhizobium; and micronutrients are added as 

well (as happened in CC3 and CC4). It is, therefore, plausible that the effects of CC are to a 

large extent caused by the specific (micro-)nutrient and rhizobia management rather than by 

temporal changes in the PyOM properties. The design of our experiment had the disadvantage 

that testing of PyOM effects over time became problematical. On the other hand, it provided a 

more realistic assessment of the effects of PyOM on BNF under conditions of soil and soybean 

management that are currently practiced and close to optimal. The results of our experiment 

suggest that under such conditions the effects of PyOM on BNF are not relevant, as there were 

no significant PyOM effects on BNF in CC4. However, is it possible that under conditions of 

management that are not optimal (for instance by more resource-constrained farmers) PyOM 

can make an important contribution? While we cannot directly address that question, data from 

CC1 (where micronutrients had not been added) could be helpful. 

In the absence of adequate management PyOM could impact soybean performance through two 

mechanisms: (i) PyOM (or the ash that goes together with PyOM application) adds (micro-

)nutrients or, through pH effects, increases (micro-)nutrient availability; (ii) PyOM provides a 

habitat that enhances survival of rhizobia thereby reducing the need for re-inoculation at each 

CC.  

It is unlikely that P addition through biochar enhanced soybean performance in CC1. Original 

soil P content was high at the beginning of the experiment (33.4 mg P_Mehlich-1 kg-1), but 

decreased over the cropping seasons (9.8 mg P_Mehlich-1 kg-1 in the non P-fertilized 

treatments). It is likely that there was P sufficiency at the start of the experiment, and further P 

application in CC1 reduced N uptake from the soil. High P availability could also have 

constrained acquisition of essential micronutrients – especially after additional P fertilizer 

application due to negative P effects on the mycorrhizal symbiosis (Chapter 4). But there is no 

evidence that in this experiment PyOM application in CC1 contributed to alleviation of 

micronutrient deficiency. A separate ANOVA on the data of CC1 (S1) indicated only a PyOM 

effect on shoot N concentration in CC1 (Fig. 5.2; see also Tab. 5.2 where this is shown as a 

significant interaction CC × PyOM). However, no consistent pattern with rates of PyOM is 

visible. Our data did not show significant effects of PyOM on shoot dry mass, total Ndfa or on 

nodulation.  

The second potential mechanism for increased N fixation due to PyOM additions refers to its 

possible effects at improving the survival of the inoculated rhizobia. Although the way this 

mechanism works is not clear, PyOM could act as a carrier that increases the short-term 

performance of inoculated strains (Hely et al., 1956; see also Chapter 4 for a comparable 

mechanism for AMF), by adding signalling compounds with PyOM that trigger BNF (Quilliam 

et al., 2013) or by removing toxic molecules harmful for BNF through adsorption on PyOM 

surface (Masiello et al., 2013). Hely et al. (1956) found highest rhizobia population and clover 
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establishment in areas affected by fire and hypothesized that this was caused because charcoal 

acted as an adsorbent that removed toxic factors and reduced the clover antagonists. Soybean 

seeds were re-inoculated every new CC with the same rhizobia strains which increased 

inoculum potential in CC4 compared to CC1. Despite seed inoculation, initial legume 

establishment under unfavourable conditions (i.e. under competition between inoculum strains 

and autochthonous strains) may limit BNF efficiency (Howieson and Ballard, 2004). The 

potentially increased abundance of the applied rhizobia may contribute to higher amounts of 

BNF, irrespective of PyOM additions (Rajput et al., 1983). Further research in this field seems 

necessary. 

In conclusion, our data indicated a dominant role of plant (inoculation by elite inocula) and 

(micro-)nutrient management practices on BNF over four soybean cropping cycles. Effects of 

PyOM on BNF were small at best and PyOM additions did not increase BNF. There is a need 

for further research seeking to understand conditions under which PyOM amendment could 

enhance BNF. Understanding those conditions is crucial for optimizing effects of PyOM on 

BNF, especially when there are limitations for the use of appropriate agronomical practices. 
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5.5 Supporting information 

 

  

Figure S5.1. Pyrogenic organic matter effects on soybean grain yield after CC1 (A) and PyOM x P 

interaction for soybean grain yield after CC4 (B). Different letters on the top of grey bars indicate 

significant differences among PyOM addition rates within P-fertilized treatments in CC1. * indicates 

significant differences between P fertilized and non P-fertilized treatments within PyOM rates. Error 

bars indicate standard errors (n= 8 for A and n= 4 for B). 

 

Table S5.1. Two-way ANOVA outputs (P-values) for the main and interactive effects of biochar and 

P fertilization for measured variables. 
 

Measured  

Variables 

Source of variation 

Biochar  P fertilization (P) Biochar x P 

CC1 

Shoot dry matter (g plant-1) 0.49 0.04* 0.20 

Shoot N content (%) 0.06 0.68 0.50 

Total shoot N (kg ha-1) 0.49 0.04* 0.20 

Ndfa (%) 0.35 0.11 0.04* 

Total plant Ndfa (kg ha-1) 0.75 0.21 0.23 

Total N from soil (kg ha-1) 0.29 0.009* 0.29 

Nodule number 0.58 0.69 0.54 

Nodule dry mass (g plant-1) 0.68 0.08 0.83 

Individual nodule dry mass (g) 0.42 0.08 0.76 

Soil N content (g kg-1) 0.31 0.11 0.99 

 CC4 

Shoot dry matter (g plant-1) 0.88 0.18 0.93 

Shoot N content (%) 0.30 0.52 0.26 

Total shoot N (kg ha-1) 0.88 0.18 0.93 

Ndfa (%) 0.94 0.26 0.89 

Total plant Ndfa (kg ha-1) 0.37 0.008* 0.18 

Total N from soil (kg ha-1) 0.81 0.49 0.99 

Nodules number 0.99 0.19 0.39 

Nodule dry mass (g plant-1) 0.73 0.002* 0.44 

Individual nodule dry mass (g) 0.95 0.006* 0.31 

Soil N content (g kg-1) 0.66 0.52 0.87 

* Significant at P<0.05.    
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6.1 Introduction 

In this final chapter I summarize the main findings from the previous chapters, which address 

the research objectives listed in the General Introduction. I also discuss these findings in a more 

general context and try to establish a link among them based on the data presented in Chapters 

2 to 5 and on further data from an additional decomposition experiment with litter bags. The 

main topics covered in this final chapter consist of (i) the impact of PyOM additions on native 

SOC decomposition and on PyOM decomposition and on (ii) the role of soil-PyOM 

amendments in the establishment of symbiotic relationships in soybean and the implications for 

crop yields. This chapter ends with a proposal for a mechanistic explanation and suggestions 

for future research. Finally, I make an effort to position our findings in a context of societal 

relevance contributing to the “biochar” debate and reflecting on the practical applicability of 

the results. 

 

6.2 Main findings 

PyOM effects on soil C decomposition 

In Chapter 2 I demonstrated highly significant differences in CO2 emission between soils 

amended with PyOM at PyC:SOC ratios >2 (increase of 99%) and <2 (no significant increase). 

Such observation guided me towards the possibility of splitting these ratios within individual 

categories associated with PyOM, soil and experimental conditions. By using this approach I 

was able to explore relevant aspects of changes in CO2 emission patterns, which allowed me to 

make inferences about the origin of (additional) CO2 emitted even in the absence of isotope 

data. An insufficiently critical analysis of the overall increases of 29% in CO2 emission could 

lead to erroneous conclusions about the occurrence of positive priming caused by PyOM 

additions. 

Based on the patterns found in the meta-analysis I demonstrated that the increases in CO2 

emission are likely a consequence of the preferential decomposition of labile PyOM fractions 

rather than accelerated SOC decomposition (Chapter 2 and 3). Further analysis showed that 

even at PyC:SOC ratios >2, significant increases were only evident when PyOM produced at 

temperatures <550°C was used, suggesting that high pyrolysis temperatures (>550°C) remove 

labile C forms, as experimentally demonstrated by Sun et al. (2014). When PyOM produced at 

temperatures >550°C was applied at PyC:SOC ratios <2, there was even a significant reduction 

in CO2 emission (Chapter 2). These data provide strong support for the claim that only when 

relatively high amounts of labile PyC are applied, increases in CO2 emission become 

significant, but such increases are not related to priming of SOC. 

Data from our field experiment over four cropping seasons (Chapter 3) - where the sources of 

CO2 could be separated through isotope analysis - agreed with the results of Chapter 2 and 

demonstrated that PyOM does not cause positive priming of SOC, as suggested by Maestrini et 
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al. (2014). It further demonstrated that PyOM decomposition under field conditions can be 

much higher than usually assumed (e.g. Lehmann et al., 2006), especially when PyOM is 

produced under traditional conditions such as those that still predominate in Brazil (Duboc et 

al., 2007). PyOM is assumed to be highly recalcitrant due to presence of stable polycyclic 

aromatic hydrocarbons (Atkinson et al., 2010). Production of PyOM under conditions that 

involve the control of aspects such as pyrolysis method and temperature can result in highly 

stable PyOM. In our experiment, the decomposition rate of PyOM decreased as more PyOM 

was applied. The PyOM loss during the experimental period indicated preferential 

decomposition of PyOM labile fractions and results suggested that the decomposition rates 

depended on specific local ecosystem properties including high soil temperature and permanent 

water availability. I rejected the hypothesis of physical movement of PyOM (e.g. leaching) 

being responsible for observed losses as only enough water to meet the crop requirements was 

applied in the experiment (Fig. 3.1). Taking into account the data from Chapter 2 and 3 together, 

we can state that SOC decomposition is not stimulated by PyOM. Moreover, SOC can be further 

stabilized by applying PyOM produced under pyrolysis conditions that result in high PyOM 

recalcitrance, e.g. high temperature (Chapter 2). 

PyOM effects on symbiotic aspects 

Under field conditions, we observed a short-term negative effect of PyOM on root colonization 

by arbuscular mycorrhizal fungi (AMF), a pattern shown in other studies (e.g. Warnock et al., 

2010). However, a summary of such experiments (after one crop has been grown) indicates a 

variety of outcomes, although positive effects tend to be overrepresented (Tab. 4.1). I 

demonstrated that a short-term negative effect can turn into positive effects over time (Chapter 

4). The use of path analysis allowed me to indicate the most likely cause of this shift from 

negative to positive effects and to link that to the various mechanisms proposed by Warnock et 

al. (2007). Path analysis indicated that changes in root colonization by AMF are not caused by 

PyOM effects on soil chemical properties (e.g. soil pH and P content), but that PyOM 

interference with the chemical signalling by which plant roots and AMF communicate may be 

the likely cause, and therefore, should be further explored in future research. A further 

explanation is that PyOM acts as a source (reservoir) of inoculum that allows higher inoculum 

potential over time (Hammer et al., 2014).  

Our data showed that soil amendments with PyOM did not affect BNF (expressed as total Ndfa 

or %Ndfa) in both cropping cycles (Chapter 5). Supply of P through fertilization was relevant 

for BNF in cropping cycle 4 (CC4), which is compatible with the high P demand for N fixation. 

In CC1 P fertilization did not impact BNF, but reduced N uptake from the soil. Plants also 

showed luxury P uptake. The contrasting effects were likely due to severe micronutrient 

deficiency in CC1, alleviated through addition of these elements in CC3 and CC4. A positive 

effect of P after alleviation of micronutrient deficiency also suggests a positive role of AMF on 

the amounts of Ndfa due to the role of AMF in supplying P to the plant (Chalk et al., 2006). 

However, such a relationship was not confirmed by our data.  
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6.3 PyOM as a tool to mitigate global CO2 emission/climate change 

From the results in Chapter 2 and 3, a general finding that arises is that soil additions with 

PyOM do not lead to significant acceleration of native SOC decomposition. Although we do 

not exclude that some positive priming of SOC may occur, increases in CO2 emission after 

PyOM additions seem to be largely dominated by the decomposition of PyOM labile fractions. 

There is now a growing body of studies that share similar findings (e.g. Cross and Sohi, 2011; 

Keith et al., 2011; Knicker et al., 2013; Lu et al., 2014). Conversely, a recent meta-analysis 

(Maestrini et al., 2014) showed that PyOM accelerates native SOC decomposition through a 

positive priming effect. Data from both meta-analyses (Maestrini et al., 2014 and ours) are not 

comparable. The approach used by Maestrini et al. (2014) seems to fit in a broader definition 

of a quantitative literature review, rather than a meta-analytical approach, which is based on 

calculation of the relative response ratios with confidence intervals calculated on the basis of a 

measure of variance, such as standard error or standard deviation (Gurevitch and Hedges, 2001). 

One major issue in both studies is that short-time studies may be especially affected by what 

has been called demonic intrusion (Hurlbert, 1984), which refers to changes in other factors 

unrelated to the factor under study. For instance, if the control treatment is not as well mixed 

as the PyOM treatment where char is incorporated, the data may incorrectly suggest priming 

(Chapter 2; see also Jeffery et al., 2014). Nevertheless, the study of Maestrini et al. (2014) 

indicated that positive priming occurred only over the first 20 days, and the cumulative effect 

of priming lasted less than one year. It is therefore likely that positive priming makes only a 

small contribution to the additional CO2 flux. 

In our meta-analysis, data from studies where the origin of CO2 was not determined by isotopic 

tools were also included unlike in the analysis of Maestrini et al. (2014). This prevented us from 

drawing conclusions about the origin of increased CO2 emitted (whether from PyOM or soil). 

However, our data collection allowed us to use a larger number of studies, ensuring a wide 

range of data regarding soil and PyOM characteristics (for instance SOC content, PyOM 

pyrolysis temperature and PyC:SOC ratio). The pattern that emerged from our analysis 

highlighted the usefulness of the PyC:SOC ratio as the best predictor for changes in CO2 

emissions after PyOM additions. By managing the PyC:SOC ratios through the addition of 

PyOM produced under specific temperatures, it is possible to avoid or potentially decrease CO2 

emissions (Fig. 2.2). Under such conditions, PyOM could result in a net sequestration of carbon, 

thereby helping to mitigate global climate change (Woolf et al., 2010). 

I demonstrated in Chapter 2 that emissions of CO2 from PyOM-amended soils tend to stabilize 

after periods longer than 200 days (Tab. 2.3). A shift from short-term positive priming effect, 

into a negative priming effect 200 days after PyOM additions was also suggested by Maestrini 

et al. (2014). One major issue in determining interactions between PyOM and native SOC is 

the short-term and laboratory nature of most available studies. Data from our field experiment 

partially fill in this gap by showing that native SOC decomposition was not positively primed 

by PyOM over four successive cropping cycles (Chapter 3). However, our data do not allow 

for any prediction of the impacts either on PyOM decomposition or on non-pyrogenic organic 
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matter dynamics over several years. Modelling could be applied, but a lack of knowledge of the 

rate of change of PyOM under a range of environmental and edaphic conditions makes such 

models premature. Three different approaches are possible. Criscuoli et al. (2014) proposed to 

directly estimate amounts of PyOM in soils historically affected by PyOM additions. While this 

approach enabled the authors to estimate the rate of PyOM decomposition over a 150-year 

period, many assumptions had to be made (e.g. original amount of wood and conversion to 

PyOM, differences in 𝛿13C atmospheric CO2 concentrations due to fossil fuel burning, presence 

of organic debris or micro-organisms in PyOM pores, etc.). Such assumptions impose limits to 

generalization of this method (Criscuoli et al., 2014). Alternatively, Cross and Sohi (2013) 

proposed an experimental approach where different chars are subjected to oxidative treatments 

by heating to 80°C in the presence of hydrogen peroxide, attempting to mimick the natural 

ageing or development of functional groups over time. They claimed that their method could 

be used as a proxy for natural PyOM ageing of approximately one century. However, the 

relation between their parameter of C stability and char decomposability needs further study. 

Finally, another approach would derive its inspiration from the method proposed by Janssen 

(1984) and Freschet et al. (2012), which consists of a combination of direct short-term 

measurements of materials of different ages whose dynamics can be described and fitted into 

one general decay function. This method has not yet been applied for studying long-term PyOM 

dynamics. 

I used a similar approach as Freschet et al. (2012) in a litterbag decomposition experiment 

performed under field conditions in Brazil, with the aim of testing possible differential 

interactions of fresh and aged PyOM with non-pyrogenic organic matter. The treatments 

included: 1) pure fresh PyOM (produced from wood); 2) pure fresh organic material (Crotalaria 

retusa dry mass) and; 3) their mixture (each at equal amounts). Treatments 1 and 3 were 

repeated using aged PyOM, collected in 2011, from an area where a charcoal-producing plant 

had been deactivated in 1996, in Northeast Brazil (3°40’S; 42°48’W; 106 m; average rainfall 

around 2000 mm year-1). PyOM and C. retusa material were dried and milled to produce 

particles <2 mm. Litterbags with a mesh size of 100 µm - allowing entrance of microorganisms 

only - were filled with 20 g of either the pure materials or their mixture (10 g of PyOM + 10 g 

of C. retusa dry mass) and placed on the soil surface. The amount remaining in each litterbag 

was recorded over two years (at 3, 6, 12, 18 and 24 months). I found that the loss of mass in the 

mixtures was similar to what could be expected from the mass loss of their individual 

components (Fig. 6.1). There was no evidence for any strong interaction as observed by Wardle 

et al. (2008) in their study on decomposition of charcoal and forest humus. My data support the 

lack of significant positive priming. Data further showed a lack of significant differences in 

mass loss between fresh and aged PyOM. The aged PyOM was much richer in oxidizable 

carbon (147 g kg-1) compared to fresh PyOM (33 g kg-1), which was quantified through a 

modified Walkley-Black method (Embrapa, 1997). The amount of oxidizable C may indicate a 

more advanced oxidation stage. It is also possible that with ageing humic substances could 

adsorb to this material. Disturbance of aged PyOM particles during collection and its 

preparation may have exposed both PyOM and its associated humic components, leading to 
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similar mass loss as that observed for fresh PyOM (around 10%). If sorption of humic 

substances onto aged char is a quantitatively important process (and data from ADE suggest 

that PyOM increases stabilization of SOC resulting in a large negative priming effect over the 

long term), it is unlikely that the latter approach can be applied to study long-term 

decomposition of PyOM. The underlying assumption of the model by Janssen (1984) and 

Freschet et al. (2012) is that the decomposing material does not interact with the environment 

(soil matrix or other forms of dissolved organic material). Whereas litterbags likely exclude the 

interaction of the decomposing material with the soil matrix, they cannot exclude interactions 

(adsorption) between PyOM and DOC, which can result in mass gain, as suggested by Fig. 6.1. 

Therefore, we cannot yet apply a model that accurately describes or predicts changes in char 

properties over time 

 

6.4 Integrating carbon sequestration and symbiotic patterns in PyOM-

amended soils 

The stability of SOC has been considered as an ecosystem property rather than a consequence 

of recalcitrance, but this suggestion excluded PyOM (Schmidt et al., 2011). However, the 

debate on PyOM stability is also shifting towards a focus on the influence of environmental 

factors and data from Chapter 2 and 3 further suggest that the stability of PyOM is influenced 

by the soil environment. 

 

 
Figure 6.1. Changes in cumulative mass losses in litterbags over a 24-month period. Treatments 

correspond to fresh and aged PyOM, crop residues (crotalaria) and 50:50 mixture of PyOM and 

crotalaria. Vertical bars denote standard errors (n= 4). 
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One question that remains is: What would be the main factors associated with long-term 

stabilization of both PyOM and SOC? In Chapters 2 and 3 I proposed that short-term increases 

in CO2 emissions are likely a result of the decomposition of labile C fractions from PyOM, as 

a consequence of increased microbial activity. Microbial saprotrophic communities may benefit 

from the C source that labile fractions of PyOM represent. However, this extra source of C did 

not benefit other microbial groups in a similar manner in the short-term, as root colonization by 

AMF initially decreased (Chapter 4). Arbuscular mycorrhizal fungi rely on soil N and their N 

requirements are high (Hodge and Fitter, 2010). Although AMF have a greater ability to use 

soil N compared to other soil microbes (Veresoglou et al., 2012), they are obligate symbionts 

and obtain organic C from their plant partners (Veresoglou et al., 2012). This means that a more 

competitive use of N by AMF shortly after PyOM addition (and consequently high root 

colonization) may have been constrained by the early phase of development of their plant 

partners. The increased short-term competitiveness of microbial saprotrophs for acquiring the 

available N from the soil, compared to AMF, led to the high decomposition rate of PyOM. This 

context changed over the four cropping cycles and at CC4 root colonization had significantly 

increased in treatments with PyOM additions (mechanisms are discussed in Chapter 4). Such 

increase may have had an impact on SOC and PyOM decomposition rate. 

I propose that increased mycorrhizal activity at CC4 played a role in stabilization both for SOC 

and PyC. I performed an alternative path analysis including SOC content, total Ndfa and 

fractional root colonization by AMF as endogenous variables and PyOM and P fertilization as 

exogenous variables (Fig. 6.2), in order to address such hypothesis. Data on SOC content used 

in this model differed from those used in Chapter 3. In this analysis I assessed organic C through 

the Walkley-Black method, which bears little relation with PyOM additions due to incomplete 

oxidation of elemental C forms (Schumacher, 2002) as present in PyOM (Bremner and 

Jenkinson, 1960). There was no significant correlation between root colonization by AMF and 

SOC in CC1, but I found a significant positive path coefficient (R2= 0.61; P<0.001) linking 

root colonization by AMF and SOC in CC4 (Fig. 6.2B2= 0.19; DF 2= 1; P> 2= 0.89; GFI= 

0.99). This model suggests that soil C stabilization may have been affected by positive effects 

of PyOM on AMF (Chapter 4). This hypothesis assumes that the amount of extraradical 

mycelium is correlated with fractional root colonization, both being positively affected by 

PyOM (cf thesis by Muriithi-Muchane, 2013). 

Mycorrhizal hyphal turnover is considered an important process for C input into soil organic 

matter (Godbold et al., 2006) and C sequestration and soil aggregation are tightly correlated 

with the abundance of AMF in soil (Wilson et al., 2009). Therefore, if increased AMF hyphal 

biomass further stabilized SOC (or contributed to stable SOC), a similar effect may have 

influenced PyOM stabilization. These data suggest that depletion of labile PyOM fractions is 

not the only cause of PyOM stabilization over the longer-term and that physical protection 

within aggregates may have contributed to the slow PyOM decomposition rates (Brodowski et 

al., 2006). The data provide further support for the hypothesis that PyOM stability is also 

influenced by ecosystem properties, as opposed by Schmidt et al. (2011). Possible interactions 

between extra-radical hyphal growth and PyOM stabilization have not been demonstrated, and 
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therefore, should be included in future studies aimed at understanding the mechanisms involved 

in long-term PyOM and SOC stability in PyOM-amended soils. 

I speculated in Chapter 5 about possible  effects of PyOM on BNF that could occur in the 

absence of micronutrient addition as part of regular management. I mentioned that under such 

conditions PyOM might supply these micronutrients. PyOM could also remove toxic 

compounds, or add signalling compounds that trigger BNF. However, if changes in signalling 

aspects would represent a major mechanism responsible for increases in BNF, the way PyOM 

additions act upon BNF may differ from its effect on mycorrhizal activity (Chapter 4), although 

from the evolutionary point of view they share similar pathways (Provorov et al., 2002). 

Within each CC responses of BNF and AMF to PyOM additions were different from each other. 

This pattern is not consistent with potentially synergistic relationships between AMF and 

rhizobia. Arbuscular mycorrhizal fungi can improve BNF in legumes under conditions where 

N-fixation is P-limited, due to their ability to improve P acquisition by plants (Chalk et al., 

2006). However, P availability was sufficient in CC1 (and even in excess after P fertilization) 

and this may have ensured nodulation and BNF irrespective of mycorrhizal activity. The 

synergistic relationships between AMF and N-fixing bacteria are not always straightforward 

and the effects are not necessarily positive for host plant growth and production (Kaschuk et 

al., 2010, Larimer et al., 2010; Veresoglou et al., 2012). In a meta-analysis, Kaschuk et al. 

(2010) noted an absence of further plant responses when plants were simultaneously colonized 

with both AM fungi and rhizobia N2-fixing bacteria, despite positive responses to individual 

inoculation with either AMF or rhizobia. This lack of correlation between root colonization by 

AMF and BNF was also noted in a path analysis, both in CC1 and CC4 (Fig. 6.2). 

 

Figure 6.2. Path diagrams of relationships among treatment and response variables. Each arrow indicates 

direct relationships. Indirect effects occur when one variable in linked to another via an intermediate 

variable. Numbers on each arrow represents standardized path coefficients (partial regression; P<0.05). 

Numbers in bold above or below dependent variables (boxes) are standardized errors. A and B represent the 

effects on CC1 and CC4, respectively. * indicates significant pathway correlations. For the contrasting 

effects of P on BNF see Chapter 5. 
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Very little attention has been paid to mechanisms affecting changes in symbiotic aspects in 

PyOM-amended soils in general (Fig. 1.1) and data are scarcer for BNF than for AMF. There 

is a risk that studies demonstrating no treatment effect are less likely to be published than those 

that produce statistically significant effects. If a lack of effects of PyOM on BNF has also been 

observed in other studies, this could at least in partly explain the much lower number of papers 

dealing with rhizobial than with AMF symbioses (Fig. 1.1). Future experiments should be 

carefully designed in order to access the role of PyOM on BNF and possible mechanisms 

involved, especially under sub-optimal conditions for rhizobial activity. Negative results (lack 

of effects) should then also be reported. 

In order to further explore effects of PyOM on BNF I performed a pot experiment in a 

greenhouse using soil collected from the field plots (0-10 cm layer) prior to the sowing of the 

CC4. The soil samples (4 kg per treatment) were maintained in plastic bags in a side-open 

glasshouse at room temperature (~40°C) for 60 days. Differently from the field experiment, 

soybean seeds were not re-inoculated for the pot experiment. Otherwise the experiment was 

similar to the field experiment. Although Ndfa was not measured, there was a significant 

positive effect of PyOM on nodule dry mass plant-1 and on individual nodule dry mass (mg 

nodule-1), a significant effect of P fertilization and a significant PyOM x P fertilization 

interaction for individual nodule mass. Total nodule dry mass plant-1 was highest at 20 and 40 

Mg ha-1 of PyOM (Fig. 6.3A). A similar trend was observed for individual nodule dry mass, 

both in the treatments with P fertilization and in non P-fertilized plots (Fig. 6.3B). However, at 

P-fertilized treatments nodules were smaller than at non P-fertilized treatments. Nodules size at 

up to 10 Mg ha-1 of PyOM was, on average, comparable to that obtained under field conditions 

(4.8 mg nodule-1), but at 20 and 40 Mg ha-1, the values were much higher, both in non P-

fertilized and P-fertilized treatments. 

When comparing these effects with that of the field experiment I noted an opposite effect of P 

fertilizer on nodule mass (in Chapter 5 I reported an increase in nodule mass after P fertilization) 

and a positive effect of biochar of nodule mass (both individual mass and total biomass per 

plant) in the greenhouse but not in the field. In Chapter 5 I speculated on the role of PyOM as 

a carrier of rhizobial inoculum that could enhance its survival (and thereby reduce the need for 

annual re-inoculation) when soil conditions are unfavourable for inoculum establishment or 

survival. Data on Fig. 6.4 support the hypothesis that PyOM impacts on rhizobial inoculum. 

The high temperatures to which the soil was exposed before the start of this experiment may 

have limited the survival of certain rhizobia (Hungria et al., 2000). I suggest further studies on 

the role of PyOM affecting establishment and survival of commercial inoculum and its 

interactions with autochthonous inoculum. Such studies should also take into account that the 

relation between nodule size and biomass and rates of BNF is not straightforward (Howieson 

and Ballard, 2004; Salvagiotti et al., 2008).  
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6.5 Implications for the use of PyOM and future challenges 

Data from our research showed that low application rates of PyOM result in relatively higher 

decomposition rates under field conditions than high PyOM application rates. From a practical 

point of view, an apparent logical conclusion from our findings is that it is more advantageous 

to apply high amounts of PyOM to the soil if the purpose is to sequester C. This is not only a 

consequence of higher input of recalcitrant C into the soil, but also due to the reduced relative 

rates of PyOM decomposition at high application rates. However, such a conclusion is 

simplistic and would conflict with the practical limitation that is the costs for applying high 

amounts of PyOM to the soils, especially compared to the immediate incomes that selling the 

PyOM as fuel would represent. Therefore, the costs and benefits of applying PyOM to the soil 

must be carefully taken into account before any decision is made. For such analysis, potential 

increases in crop yield over time (Chapter 4) should also be included in the equation, especially 

if such increases are maintained over several years. 

The original purpose of using PyOM as a soil amendment was an attempt to reproduce 

characteristics of ADE, mainly inspired by the large presence of PyOM in ADE. Despite 

potentially beneficial aspects of PyOM, current research has failed in faithfully reproducing 

ADE characteristics through PyOM additions. It is likely that the PyOM used during the 

formation of ADE had characteristics more similar to the PyOM used in our experiment than 

the PyOM produced under controlled/laboratory conditions that predominate in most studies. 

Furthermore, the formation process of ADE probably included many successive additions of 

small amounts of PyOM (and also of other compounds like Ca and P through faeces, carcasses, 

fish bones, manioc peel, etc.). If we assume that such PyOM was more labile than those 

produced under controlled conditions (e.g. under high temperatures), and that application of 

small amounts of PyOM result in high decomposition rates (Chapter 3), it is possible that PyOM 

applied in ADE sites underwent a considerable decomposition process at least over the short 

 
Figure 6.3. Effects of PyOM on total nodules dry mass per plant-1 (A) and the effects of the PyOM x P 

interaction for individual dry mass (B). Different letters on the top of bars indicate significant differences 

among PyOM additions rates. * indicate significant differences (P<0.05) between P-treatments within 

each PyOM rate. Error bars indicate standard errors (n= 8 for A; n= 4 for B).  
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term following application to soil. This approach implies that partial decomposition of PyOM 

(together with development of charges on PyOM surface and increased nutrient retention) was 

part of the process for ADE formation and should be taken into account when defining the goals 

of using PyOM as soil amendment (whether focused solely on C sequestration or on soil 

improvement and crop yield). 

The current worldwide dominant discourse for using PyOM has been focused on its potential 

for C sequestration, whereas the Brazilian discourse is more geared towards crop residue 

management, improvement of soil fertility and agronomic benefits (Tatiana Rittl, personal 

communication). Data from my thesis suggest that both goals may be attained with PyOM 

additions, as improved crop yields are likely to occur simultaneously with increases in C stocks. 

However, my data also demonstrate that increased crop yield is not an immediate consequence 

of PyOM additions itself, but arises and is established in a more consistent pattern over time. 

This time-dependent pattern is consistent with the claim that long-term oxidation of PyOM 

surface plays a relevant role in the build-up of soil fertility (Glaser et al., 2002). These data 

taken together suggest that the “carbon dilemma” (Janzen, 2006) can be partially solved by 

adding PyOM to the soil. Although some benefits can be “simultaneously obtained” (C 

sequestration and increased crop yield), they cannot be “simultaneously maximized” (Jeffery 

et al., 2013). Improved crop performance over time will be a consequence of partial 

decomposition of PyOM, but concomitant oxidation/functionalization of remaining PyOM will 

likely promote favourable conditions for nutrient retention and survival of beneficial organisms 

as AMF (Hammer et al., 2014) and possibly rhizobia. Whereas biological nitrogen fixation can 

also be favoured by PyOM additions, my results (Chapter 5) imply that potential benefits of 

PyOM can be overcome by appropriate agronomic practices, such as soil fertilization with 

mixtures of micronutrients and re-inoculation. Such practices predominate in large-scale 

soybean production areas in Brazil, and therefore, PyOM additions would not represent an 

advantage for BNF under such conditions. 

Although research on PyOM has now accumulated an appreciable volume of data regarding 

SOC and PyOM decomposition, much less has been done for symbiotic relationships (Fig. 1.1). 

As most research on these topics is dominated by short-term laboratory experiments, the results 

cannot be scaled up for practical purposes. Our data partially fill in these gaps and provide 

insights about the establishment of a pattern for these three aspects over time. However, if 

PyOM as soil amendment is to be eligible as a formal component of public policies for future 

C-trading schemes, the design and implementation of other long-term field experiments under 

realistic conditions (e.g. realistic PyOM rates) are urgently required. I demonstrated that PyOM 

rates of 20 and 40 Mg ha-1 were responsible for the lowest PyOM decomposition rates (Chapter 

3) and the highest crop yields (Chapter 4), as well as high root colonization by AMF. Such 

PyOM amounts can, therefore, be considered realistic for a multitude of benefits and should be 

considered in future field research. 
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Finally, a noteworthy aspect is that all plant residues produced in the field experiment were 

systematically removed from the area after every CC. Under deprivation of fresh organic 

materials, SOC was not positively primed by PyOM. However, the impact of permanent 

additions of new fresh organic materials in PyOM-amended soils is expected to increase the 

SOC pool, as this form of organic matter can be stabilized by PyOM (Maestrini et al., 2014). 

To what extent PyOM could stabilize newly added fresh organic materials and increase SOC 

stocks is still a topic for future research but some preliminary calculations suggest that three 

units of C can be further stabilized by one unit of PyOM (Van Hofwegen et al., 2009). Such 

aspect would represent an additional benefit of amending soils with PyOM and ensure the 

delivery of relevant environmental services, such as the mitigation of CO2 emission. Only if, 

next to other benefits of PyOM, its addition to soil leads to long-term sustainable increase in 

SOC pools, together with increases in cation exchange capacity, then the “carbon dilemma” 

(Janzen, 2006) would be solved. 
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Summary 

Pyrogenic organic matter (PyOM), also known as biochar, is the product of biomass combustion 

under low oxygen concentration. There is currently a growing interest in research on the use of 

PyOM as a soil amendment, inspired by the existence of highly fertile, PyOM-rich 

anthropogenic soils in the Amazon basin. The presence of PyOM in these so-called Amazonian 

Dark Earths (ADE) in quantities larger than in the non-anthropogenic surrounding soils is 

considered one of the main reasons for their high fertility. 

Soil additions of PyOM have been suggested to increase soil fertility and crop yields, 

simultaneously providing additional important environmental services. The offset of CO2 

emissions through sequestration of a larger pool of recalcitrant soil organic carbon (SOC) is 

one of these services. This would at the same time sustain soil microbial activity, which is 

directly associated to soil quality, for instance, nutrient cycles and plant growth. This multiple 

win scenario suggests that the addition of PyOM to the soil would be the solution for the 

“carbon dilemma”. The dilemma states that the main biological benefits from soil organic 

matter are a consequence of its decay. Therefore, it is unlikely that increased C sequestration 

and the benefits from its decay can be simultaneously maximized. Rather than win-win, PyOM 

would then also be subjected to inevitable trade-offs. 

Additions of PyOM can modify the turnover rate of native SOC by either accelerating or 

decelerating its decomposition through a mechanism known as priming. Although positive 

priming by PyOM has been reported, negative priming has also been found. The higher amount 

of non-pyrogenic C in ADE, compared to non-anthropogenic surrounding soils has been 

considered evidence that PyOM can stabilize SOC in the long-term. A complicating issue in 

studies is that short-term increases in CO2 emission can be due to decomposition of labile 

PyOM fractions, erroneously suggesting positive priming of SOC. Addition of PyOM can also 

lead to modifications in the microbial activity and assemblages. Changes in microbial 

populations can have impacts on their functionality, favouring mutualistic root symbioses such 

as the arbuscular mycorrhizal fungal (AMF) symbiosis and the rhizobial symbiosis with 

legumes that is responsible for biological nitrogen fixation (BNF). Although soil amendments 

with PyOM can stimulate AMF and BNF, results are contrasting and mechanisms are not clear. 

Most studies of PyOM effects on SOC and on mutualistic root symbioses are from short-term 

experiments, often conducted in greenhouse or laboratory. Although such studies provide 

insights in potential factors driving changes in SOC and symbiotic relationships in PyOM-

amended soils, they do not assess changes under realistic conditions over periods of time longer 

that one or a few cropping cycles. Therefore, there is still a gap in our understanding regarding 

the duration and magnitude of effects over time under field conditions and possible mechanisms 

involved. This thesis addresses these gaps. 

The aim of this research was to provide a better understanding of interactions between PyOM 

and SOC and the factors controlling symbiotic patterns in a tropical soil amended with PyOM. 
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To reach this aim, I combined greenhouse and field studies. I also used meta-analytic methods 

in order to quantitatively synthesize data in literature. 

In Chapter 2, I combined the results of 46 studies in a meta-analysis. I investigated changes in 

CO2 emission patterns from an array of PyOM-amended soils and identified the causes of these 

changes and the possible factors involved. I showed an overall increase of 29% in CO2 emission 

from PyOM-amended soils. Such increases were only evident in soils amended with a PyOM-

C (PyC):SOC ratio >2. These data are consistent with the hypothesis that increased CO2 

emission after PyOM addition is additive and mainly derived from PyOM’s labile C fractions 

rather than from SOC. Therefore, positive priming is not a main driver of increases in CO2 

emission in PyOM-amended soils. This PyC:SOC ratio provided the best predictor of increases 

in CO2 production after PyOM addition to soil. This meta-analysis indicates (i) the importance 

of taking into account the amount of applied PyC in relation to SOC for designing future 

decomposition experiments and that (ii) the recalcitrance of PyOM in soil-PyOM mixtures may 

be less than usually assumed. 

A technical problem of separating PyOM-induced priming on SOC from other non-additive 

interactions is the uncertainty regarding the origin of the respired CO2 (whether from SOC or 

PyOM). This issue can only be solved with the use of isotopes. In a field study (Chapter 3), I 

quantified changes in the PyOM and SOC stocks over four soybean cropping cycles (CC) in a 

sandy Ferralsol, previously supporting a vegetation with C4 plants, amended with different 

rates of PyOM (0, 5, 10, 20 and 40 Mg ha-1). The PyOM was produced from C3 woody species 

using traditional pyrolysis methods employed in Northeast Brazil. I used 13C isotopic analysis 

to discriminate the origin of the C in the soil and quantify the decomposition rates of native 

SOC and PyOM. I showed that decomposition of traditionally produced PyOM is faster (25-

60% within first year) than normally assumed (10-20% within 5-10 years), which was higher 

than that of native SOC (5-14%). The data indicate preferential decomposition of PyOM 

compared to native SOC. The intensity of that effect depends on the rate of PyOM applied to 

the soil. Only on the longer term (>1 yr) addition of PyOM seems to stabilize SOC.  

In Chapter 4 I explored mechanisms controlling AMF activity and crop yield in PyOM-

amended soils through the use of path analysis. I tested the effects of PyOM rates and P 

fertilization on soybean root colonization by AMF, soil P and plant performance over four 

cropping cycles (CCs). Data showed a major effect of CC and P, as well an interaction effect 

of PyOM x CC on mycorrhizal colonization. There was a linear decrease in root colonization 

by AMF in CC1 with increasing PyOM rates in contrast to a consistent linear increase in CC4. 

Plant performance was mainly affected by CC, but a significant interactive effect of PyOM x P 

was also observed on grain yield. Grain yield was highest at high PyOM rates (20 and 40 Mg 

ha-1) in the P-fertilized treatments in CC4. Soil pH increased in CC1 with increasing PyOM 

rates, but no effects were observed in CC4. Path analysis indicated that PyOM effects on root 

colonization by AMF were not mediated by changes in soil pH or P content. My data are 

consistent with the hypothesis that interference of PyOM in signalling processes is an important 
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driver of change in AMF activity and that positive effects of PyOM on AMF and crop yield 

develop with time. 

In Chapter 5, I assessed the effects of PyOM application rates and P fertilization on BNF in 

soybean inoculated with Bradyrhizobium japonicum over four cropping cycles. Again I 

observed that CC had a significant main effect on most dependent variables, while PyOM was 

not a significant source of variation. There was a significant PyOM × CC interaction effect on 

shoot N concentration. In CC1 shoot N concentration after application of 5 Mg PyOM was 

significantly lower than that of plants grown on plots to which 10 or 20 Mg PyOM was applied. 

In CC4 shoot N concentration was not affected by PyOM. The major effect of CC was explained 

through changes in nutrient management, more specifically the addition of micronutrients in 

CC3 and CC4. Alleviation of micronutrient deficiency increased BNF and also resulted in a 

positive effect of P on BNF. I conclude that under conditions of adequate management, PyOM 

application does not improve BNF in soybean. 

In Chapter 6 (General Discussion) I synthesize the findings of the previous chapters and use 

data from additional greenhouse and litterbag field experiments to integrate the results. Data 

from Chapters 2 and 3 show that if any positive priming occurs due to PyOM addition, it is a 

small short-term event and does not lead to significant losses of native SOC in the long-term. 

This was confirmed by data from a 2 yr litterbag experiment, which showed no interaction 

between decomposition of PyOM and fresh organic matter. 

Stability of SOC has been considered an ecosystem property rather than a consequence of 

recalcitrance, but this definition has not yet been extended to PyOM. In this thesis I 

demonstrated that stability of PyOM can also be influenced by the soil environment. In order 

to link PyOM effects to SOC and on root symbioses, I performed path analysis integrating root 

colonization by AMF, SOC content and Ndfa in one model. We found no significant path 

coefficients linking AMF and BNF. The model indicated a significant positive path coefficient 

linking AMF root colonization and SOC in CC4, but not in CC1. The data suggest that PyOM 

may increase SOC stability through increased AMF activity. Soil aggregation and C 

sequestration are tightly correlated with abundance of AMF in the soil. I propose that the same 

mechanism through which AMF stabilizes native SOC may also positively influence PyOM 

stabilization in the long-term. 

In conclusion, I have shown that main beneficial effects of PyOM on AMF and crop yield 

develop with time, but in well-managed soils increased crop yield is not a direct consequence 

of increased AMF due to PyOM addition. Finally, although PyOM additions represent an 

effective form of sequestering C, positive effects of PyOM on crop yield are likely to occur 

after partial decomposition of PyOM. Therefore, although some benefits of adding PyOM can 

be simultaneously obtained (C sequestration and increased crop yield), they cannot be 

simultaneously maximized. This means that the carbon dilemma can only be partially solved 

by adding PyOM to the soil. 
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Samenvatting 

Verkoolde organische stof1 is het product dat ontstaat wanneer biomassa verbrand wordt bij 

lage zuurstofbeschikbaarheid. In het vervolg van deze samenvatting wordt de term biochar 

gebruikt. Er is thans sprake van een grote belangstelling voor onderzoek naar de gebruiks-

mogelijkheden van biochar ten behoeve van bodemverbetering. Dit onderzoek vindt zijn 

inspiratie in het bestaan van zeer vruchtbare bodems die onder menselijke invloed ontstaan zijn 

in het Amazonegebied. De aanwezigheid van biochar in deze Zwarte Aarde van de Amazone 

(ook bekend als Terra Preta de Indio) in hoeveelheden die veel groter zijn dan in niet door de 

mensen beïnvloede tropische bodems elders wordt verondersteld een belangrijke verklaring te 

vormen voor de hoge bodemvruchtbaarheid. 

Toevoeging van biochar aan de bodem zou leiden tot verhoogde bodemvruchtbaarheid en 

hogere gewasopbrengsten, terwijl tegelijkertijd aanvullende belangrijke ecosysteemdiensten 

geleverd worden. Het verminderen van uitstoot van CO2 door het vastleggen van koolstof in 

een grote voorraad van zeer slecht afbreekbaar materiaal in bodemorganische koolstof vormt 

een van deze ecosysteemdiensten. Tegelijkertijd wordt door deze toepassing de activiteit van 

micro-organismen in de bodem bevorderd en dit is rechtstreeks gekoppeld aan belangrijke 

bodemeigenschappen zoals bodemvruchtbaarheidskringlopen. Deze omstandigheid, vaak 

beschreven als een win-win situatie, suggereert dat toevoegen van biochar aan de bodem dé 

oplossing vormt voor wat omschreven wordt als het koolstofdilemma. Dit dilemma geeft aan 

dat het voornaamste voordeel van bodemorganische stof een rechtstreeks gevolg is van zijn 

afbraak. Om die reden gaat men er vaak van uit dat toegenomen koolstofvastlegging in de 

bodem en de voordelen van afbraak van diezelfde koolstof niet tegelijkertijd gemaximaliseerd 

kunnen worden. In plaats van dat biochar een win-win situatie creëert, is ook biochar onder-

hevig aan onvermijdelijke trade-offs tussen maximaliseren van de voorraad en maximaliseren 

van de omzettingssnelheid. 

Toevoegen van biochar aan de bodem kan de afbraaksnelheid van de oorspronkelijke bodem-

organische stof zowel versnellen als vertragen. Dit verschijnsel wordt priming genoemd. In de 

literatuur zijn zowel voorbeelden van positieve priming (versnelde afbraak) als negatieve 

priming (vertraagde afbraak) gerapporteerd. De grotere hoeveelheid (niet-verkoolde) koolstof 

(die dus niet van biochar afkomstig is) in deze door de mens beïnvloede zwarte aarde ten op-

zichte van de omringende bodems wordt als sterke aanwijzing beschouwd dat biochar op 

langere termijn bodemorganische stof kan stabiliseren. Maar men dient te bedenken dat bewijs 

niet gemakkelijk is. In korte-termijnproeven wordt soms een verhoogde productie van CO2 

gevonden na toevoegen van biochar. Deze toename kan het gevolg zijn van een relatief 

gemakkelijk afbreekbare fractie in de biochar. Deze verhoogde productie kan, zonder nader 

                                                 
1 Organische stof die ontstaan is na verbranden of verkolen van organisch materiaal; ook wel bekend 

als houtskool als algemeen begrip, of specifiek bekend als biochar wanneer dat gebruikt wordt voor 

bodemtoepassingen 
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onderzoek, echter gemakkelijk geïnterpreteerd worden als positieve priming (versnelde afbraak 

van de oorspronkelijke bodemorganische stof). Toevoegen van biochar aan de grond kan ook 

leiden tot verandering in de microbiële activiteit of in de samenstelling van de microbiële 

gemeenschappen. Veranderingen in populaties van micro-organismen kunnen het functioneren 

van bodemecosystemen beïnvloeden; een bekend voorbeeld is een effect op micro-organismen 

die in plantenwortels voorkomen en die de plantengroei bevorderen. Voorbeelden hiervan zijn 

rhizobia (stikstofbindende bacteriën bij vlinderbloemigen) en arbusculaire-

mycorrhizaschimmels (die bij vrijwel alle planten voorkomen). Hoewel beschreven is dat toe-

voegen van biochar aan de bodem positieve effecten heeft op biologische stikstofbinding en op 

arbusculaire mycorrhiza, is het totaalbeeld nog onduidelijk, doordat ook tegengestelde 

resultaten zijn gerapporteerd. De mechanismen van de reactie van deze micro-organismen op 

biochar zijn nog niet of nauwelijks bekend. Het merendeel van het onderzoek naar de effecten 

van biochar op bodemorganische stof en op zulke voordelige wortelsymbioses betreft onder-

zoek met kortdurende proeven, dikwijls uitgevoerd in het lab en in de kas en maar zelden in het 

veld. Hoewel zulk onderzoek zeker inzicht geeft in mogelijke factoren die veranderingen in 

bodemorganische stof en in deze wortelsymbioses veroorzaken, geeft het onvoldoende inzicht 

in veranderingen over de langere termijn (meer dan een of enkele oogsten) onder meer 

realistische omstandigheden. Er is daarom sprake van een gebrek aan kennis met betrekking tot 

de duur en de grootte van het effect van biochar in de tijd onder veldomstandigheden, in het 

bijzonder waar het mogelijke mechanismen betreft. Mijn proefschrift levert een bijdrage aan 

het onderzoek naar deze kennisleemte. 

Het doel van mijn onderzoek was het verkrijgen van een beter begrip van de wisselwerking 

tussen biochar en bodemorganische stof en de factoren die van invloed zijn op het functioneren 

van deze voordelige wortelsymbioses na toevoeging van biochar in een tropische bodem. In 

mijn onderzoek combineerde ik studies in de kas en in het veld. Ik voerde ook een zogenaamde 

meta-analyse uit om de gepubliceerde onderzoeksresultaten kwantitatief te kunnen 

samenvatten. 

In hoofdstuk 2 combineer ik de resultaten van 46 wetenschappelijke artikelen in een meta-

analyse. Ik onderzocht de veranderingen in de uitstoot van CO2 van een groot aantal verschil-

lende gronden waaraan biochar was toegevoegd, en identificeerde de oorzaken van deze ver-

anderingen en de mogelijk betrokken factoren. Het onderzoek liet zien dat gemiddeld over alle 

studies toevoegen van biochar aan de grond leidde tot een toename in CO2 uitstoot van de grond 

met 29%. Een nauwkeuriger analyse liet echter zien dat een toename alleen waarneembaar was 

in bodems waarin relatief grote hoeveelheden biochar waren toegevoegd, dat wil zeggen 

bodems waar de verhouding tussen de koolstof van de toegevoegde biochar en de koolstof van 

de bodemorganische stof groter dan twee was. Mijn gegevens zijn in overeenstemming met de 

hypothese dat de toegenomen productie van CO2 na toevoegen van biochar hoofdzakelijk 

veroorzaakt wordt door de afbraak van de labiele component in biochar en dat er geen sprake 

is van een interactie tussen de afbraak van biochar en bodemorganische stof (priming; 

versnellen of vertragen van de afbraak als gevolg van die interactie). Ik concludeer daarom dat 
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positieve priming niet de oorzaak is van toename in CO2-emissies uit gronden waaraan biochar 

is toegevoegd. Deze verhouding tussen koolstof uit biochar en koolstof van bodemorganische 

stof vormde de beste voorspeller van de toename van CO2 productie na toepassing van biochar. 

Mijn meta-analyse leidt tot de conclusies dat (i) het belangrijk is rekening te houden met de 

hoeveelheid biochar die aan grond wordt toegevoegd ten opzichte van de voorraad 

bodemorganische stof wanneer proeven worden opgezet; en dat (ii) de veronderstelde zeer 

slechte afbreekbaarheid van biochar niet geheel juist is, doordat biochar een aanzienlijke 

hoeveelheid meer labiele koolstof kan bevatten. 

Het onderzoek naar wederzijdse interactie tussen afbraak van biochar en bodemorganische stof 

wordt bemoeilijkt doordat we in het veld, zonder speciale technieken, niet kunnen vaststellen 

of de extra geproduceerde CO2 hoofdzakelijk afkomstig is van biochar of van de 

bodemorganische stof. Dit technische probleem kan echter worden opgelost door gebruik te 

maken van stabiele isotopen van koolstof. In een veldproef, die beschreven wordt in hoofdstuk 

3, kwantificeerde ik veranderingen in de voorraden van biochar en bodemorganische stof na 

vier cycli van groei van het gewas sojaboon. De proef werd uitgevoerd in een zandige, 

voedselarme bodem (een ferralsol met de voor tropische gronden kenmerkende roestkleur), 

waar voordien een vegetatie groeide die bestond uit zogenaamde C4-planten. De biochar, die 

werd toegevoegd in hoeveelheden van 0, 5, 10, 20 en 40 ton per hectare), was afkomstig van 

zogenaamde C3-planten. De biochar werd geproduceerd met behulp van traditionele pyrolyse-

technieken zoals die thans nog gebruikt worden door de arme boerenbevolking in noordoost 

Brazilië. Ik maakte gebruik van de analyse van de stabiele isotoop 13C om onderscheid te maken 

tussen de twee bronnen van koolstof in de grond (biochar en organische stof). Ook 

kwantificeerde ik de relatieve afbraak van zowel biochar als bodemorganische stof. De resul-

taten van dit experiment lieten zien dat de afbraak van traditioneel geproduceerde biochar veel 

sneller is (25-60% werd afgebroken in één jaar) dan meestal in de literatuur wordt verondersteld 

(10-20% afbraak in een periode van vijf tot tien jaar). De afbraak van biochar was ook veel 

sneller dan van bodemorganische stof (5-15% per jaar). De resultaten laten dus zien dat biochar 

preferentieel wordt afgebroken ten opzichte van bodemorganische stof. De intensiteit van dat 

effect lijkt een functie van de hoeveelheid toegevoegde biochar. Op de langere termijn (periodes 

langer dan één jaar) lijkt biochar wel bodemorganische stof te stabiliseren.  

In hoofdstuk 4 verken ik mechanismen die het effect verklaren van toevoegen van biochar op 

de activiteit van arbusculaire-mycorrhizaschimmels en opbrengst van soja. Ik maak daarbij 

gebruik van pad-analyse. Ik testte de effecten van de toegevoegde hoeveelheid biochar en van 

bemesting met fosfaat (doordat gedacht werd dat de vruchtbaarheid van de zwarte aarde 

samenhangt met de grotere hoeveelheden fosfaat die in deze biochar-rijke bodems worden 

gevonden) op de kolonisatiegraad van wortels van de sojaboon, de hoeveelheid en beschik-

baarheid van fosfaat in de bodem en de gewasgroei gedurende vier cycli. De resultaten wezen 

op een groot verschil in effect tussen de eerste gewasgroeicyclus en de vierde cyclus; daarnaast 

was er een sterk effect van fosfaat. Voor mycorrhizakolonisatie was er een statistisch 

significante interactie tussen biochar en gewascyclus. In de eerste oogst was er een lineaire 
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afname in wortelkolonisatie met toenemende hoeveelheid biochar. Maar in de vierde cyclus 

vond ik daarentegen een lineaire toename tussen hoeveelheid biochar en wortelkolonisatie. 

Gewasgroei was ook verschillend tussen de eerste en vierde cyclus; de opbrengst aan sojabonen 

liet een statische significant effect zien van de interactie tussen biochar en fosfaat. De 

boonopbrengst was het grootst in de vierde cyclus na toepassen van grote hoeveelheden biochar 

(20 en 40 ton per hectare) in behandelingen waaraan fosfaat was toegevoegd. In de eerste cyclus 

nam de bodem-pH toe met toenemende hoeveelheden biochar; dit effect was in de vierde 

gewascyclus niet meer waarneembaar. Pad-analyse maakte aannemelijk dat de effecten van 

biochar op de wortelkolonisatie door arbusculaire-mycorrhizaschimmels niet verliepen via 

veranderingen in de bodem-pH of fosfaatbeschikbaarheid als gevolg van toepassing van 

biochar. Mijn gegevens zijn in overeenstemming met de hypothese dat biochar aanvankelijk de 

uitwisseling van signaalmoleculen tussen mycorrhizaschimmel en plant negatief beïnvloedt. 

Ook vond ik steun voor de hypothese dat de positieve effecten van biochar op mycorrhiza en 

gewasgroei zich pas in de loop van de tijd voordoen. 

In hoofdstuk 5 bestudeerde ik de effecten van toepassen van biochar en fosfaatbemesting op 

biologische stikstofbinding gedurende vier gewascycli door de sojaboon, die was beënt met een 

commercieel beschikbare variant van de bacterie Bradyrhizobium japonicum. Ook hier bleek 

dat het effect van cyclus (het verschil tussen de eerste en vierde cyclus) de grootste bijdrage 

leverde tot het verklaren van variatie in resultaten tussen de verschillende behandelingen. 

Biochar was geen statistisch significante bron van variatie. Wel was er een significante 

interactie tussen biochar en gewascyclus voor wat betreft het stikstofgehalte van de sojaboon. 

In de eerste cyclus was het stikstofgehalte na toepassing van een geringe hoeveelheid biochar 

(5 ton per hectare) significant lager dan dat van planten waarbij een grotere hoeveelheid biochar 

(10 of 20 ton per hectare) werd toegepast. Maar in de vierde cyclus was er geen effect van de 

hoeveelheid biochar op het stikstofgehalte. Het grote effect van gewascyclus werd verklaard 

door veranderingen in beheer, in het bijzonder doordat aan het einde van de proef essentiële 

micronutriënten werden toegevoegd. Door toevoegen van deze micronutriënten kon de 

biologische stikstofbinding toenemen en was de sojaboon in staat gebruik te maken van het 

extra fosfaat dat werd toegevoegd. Mijn conclusie uit dit experiment is dat onder omstandig-

heden van goed of optimaal beheer het toevoegen van biochar aan de bodem de biologische 

stikstofbinding van sojaboon niet bevordert. 

In hoofdstuk 6 vat ik de resultaten van de afzonderlijke hoofdstukken samen en combineer ik 

die in een synthese. Ik maak ook gebruik van resultaten van aanvullende proeven, die niet in 

het proefschrift worden gerapporteerd, zoals proeven in de kas met biologische stikstofbinding 

en proeven naar de afbraak van biochar met behulp van strooiselzakjes. De resultaten van 

hoofdstukken 2 en 3 laten zien dat, als er al sprake is van positieve priming van de afbraak van 

bodemorganische stof door biochar, dit effect klein en kortdurend is, en dat er geen sprake is 

van grote verliezen van bodemorganische stof door toepassen van biochar. De proef naar 

afbraak van biochar en van organisch materiaal (bladstrooisel van een vlinderbloemige) over 
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een periode van twee jaar in strooiselzakjes was daarmee in overeenstemming; er werd geen 

interactie tussen de afbraak van biochar en bladstrooisel waargenomen. 

De stabiliteit van bodemorganische stof werd vroeger beschouwd als een eigenschap van de 

organische stof zelf die gedacht werd slecht afbreekbaar te zijn. In de afgelopen jaren is dit 

concept (van intrinsiek slechte afbreekbaarheid of recalcitrantie) opnieuw geëvalueerd, en thans 

is men tot de opvatting gekomen dat de lage afbraaksnelheid van bodemorganische stof eerder 

bepaald wordt door interactie met andere bodembestanddelen (leidend tot bescherming tegen 

afbraak) dan door de intrinsieke recalcitrantie. Voor biochar bleef echter de opvatting bestaan 

dat het materiaal intrinsiek recalcitrant is. Mijn onderzoek laat echter zien dat ook de stabiliteit 

van biochar in de bodem sterk bepaald wordt door de omgeving en dat de recalcitrantie van 

biochar overschat is. In dit hoofdstuk voer ik ook aanvullende pad-analyses uit om een beter 

begrip te krijgen van de mechanismen die het effect van biochar op biologische stikstofbinding 

kunnen verklaren. In deze pad-analyses combineerde ik biologische stikstofbinding, 

wortelkolonisatie door mycorrhizaschimmels en bodemorganische stof in één model. Er bleek 

geen significante relatie te bestaan tussen mycorrhiza en biologische stikstofbinding. Wel was 

er een significant verband, voor de vierde gewascyclus, tussen wortelkolonisatie door 

mycorrhizaschimmels en bodemorganische stof, een verband dat in de eerste gewascyclus 

afwezig was. Deze resultaten wijzen op de mogelijkheid dat biochar de stabiliteit van 

bodemorganische stof kan verhogen door middel van een toegenomen mycorrhiza-activiteit. 

Deze uitkomst is in overeenstemming met onze kennis over bodemaggregatie en koolstofvast-

legging door mycorrhizaschimmels. Ik introduceer de hypothese dat hetzelfde mechanisme, 

waardoor arbusculaire-mycorrhizaschimmels bodemorganische stof stabiliseren, ook stabili-

serend kan werken voor de vastlegging van biochar in de bodem. 

Ik kom tot de conclusie dat de voornaamste positieve effecten van biochar op mycorrhiza en 

gewasopbrengst zich met de tijd ontwikkelen, maar dat zulke effecten niet erg belangrijk zijn 

onder omstandigheden van optimaal beheer. Hoewel toevoegen van biochar aan de bodem een 

effectieve manier is om koolstof vast te leggen, moet tegelijk worden vastgesteld dat de posi-

tieve effecten van biochar op gewasopbrengst pas optreden doordat de biochar gedeeltelijk 

afgebroken wordt. Mijn stelling is dan ook dat weliswaar sommige voordelen (koolstofvast-

legging, verhoogde gewasopbrengst) van het toevoegen van biochar aan de bodem tegelijkertijd 

kunnen worden behaald, maar dat deze voordelen niet tegelijkertijd kunnen worden ge-

maximaliseerd. Dat betekent dat ook biochar het koolstofdilemma hoogstens gedeeltelijk kan 

oplossen. 
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Sumário 

A matéria orgânica pirolisada (PyOM), conhecida como biochar, é o produto da combustão de 

biomassa sob baixa concentração de oxigênio. Atualmente, há um interesse crescente em 

pesquisas sobre o uso de PyOM como condicionador do solo, inspirado pela existência de solos 

antropogênicos altamente férteis na bacia amazônica, ricos em PyOM. A presença de PyOM 

nestes solos - conhecidos como Terra Preta de Índio (TPI) - em quantidades muito maiores do 

que nos solos adjacentes não-antrópicos, é considerada uma das principais razões para a sua 

elevada fertilidade. 

As adições de PyOM têm sido promovidas como forma de aumentar a fertilidade dos solos e a 

produtividade das culturas, além de proporcionar importantes serviços ambientais. A redução 

das emissões de CO2 por meio do sequestro de carbono orgânico recalcitrante no solo é um 

desses serviços ambientais. Simultaneamente, tal prática pode sustentar a atividade microbiana 

do solo melhorando sua qualidade, mediante ciclagem de nutrientes e consequentemente 

promovendo o crescimento das plantas. Este cenário de ganhos múltiplos sugere que a adição 

de PyOM ao solo poderia solucionar o "dilema do carbono", que implica em benefícios 

biológicos da presença da matéria orgânica do solo (MOS) decorrentes principalmente da sua 

decomposição e não somente de seu acúmulo e manutenção. É improvável, entretanto, que tanto 

o aumento do sequestro de C, como os benefícios decorrentes de sua decomposição sejam 

maximizados simultaneamente. Assim, ao invés de um cenário de ganhos múltiplos, é possível 

que o uso de PyOM como condicionador do solo esteja também subordinado a um cenário 

inevitável de compensações (ganhos parciais). 

Adições de PyOM ao solo podem acelerar ou desacelerar a decomposição da MOS nativa, por 

meio de um mecanismo conhecido como “priming”. Embora a adição de PyOM possa causar 

priming positivo (aceleração da decomposição de MOS nativa), a ocorrência de priming 

negativo (desaceleração da decomposição da MOS nativa) após adições de PyOM também tem 

sido reportada. A grande quantidade de C não-pirogênico nas TPI, comparada à dos solos 

adjacentes não-antrópicos, é considerada evidência de que adições de PyOM podem estabilizar 

a MOS nativa no longo prazo. Um fator complicador nos estudos disponíveis diz respeito ao 

risco de interpretação errônea de que os aumentos de curto prazo na emissão de CO2 em solos 

manejados com PyOM, sejam devidos ao priming positivo da MOS, quando na verdade, podem 

ter se originado da decomposição de frações lábeis da PyOM. 

Outro aspecto da adição de PyOM se refere à alteração na atividade e na estrutura das 

comunidades microbianas do solo. Mudanças nas populações microbianas podem ter impacto 

na sua funcionalidade, favorecendo simbioses mutualísticas das plantas com fungos 

micorrízicos arbusculares (FMA) e com rizóbio em leguminosas, o qual é responsável pela 

fixação biológica de nitrogênio (FBN). Embora adições de PyOM ao solo possam estimular os 

FMA’s e a FBN, os resultados são contrastantes e os mecanismos envolvidos não estão claros. 

A maioria dos estudos sobre os efeitos da PyOM na MOS e nas simbioses mutualísticas são 
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oriundas de experimentos de curta duração, na maioria das vezes realizados em casas de 

vegetação ou em laboratório. Embora tais estudos ajudem a elucidar os fatores potencialmente 

responsáveis pelas mudanças na MOS e nas relações simbióticas em solos manejados com 

PyOM, eles não permitem avaliar mudanças em condições reais de campo por períodos de 

tempo mais longos do que um ou poucos ciclos de cultivo. Há portanto, lacunas no 

conhecimento quanto à compreensão sobre a duração e a magnitude dos efeitos ao longo do 

tempo em condições de campo, bem como, os possíveis mecanismos envolvidos. Esta tese 

abordará aspectos relacionados a estas lacunas. 

O objetivo desta pesquisa foi o de proporcionar uma melhor compreensão acerca das interações 

entre a PyOM e a MOS, bem como, dos fatores que controlam os padrões simbióticos ao longo 

do tempo, em solo tropical manejado com PyOM. Para atingir esse objetivo, combinou-se 

estudos em casa de vegetação e de campo. Foi também efetuada uma meta-análise, a fim de 

sintetizar quantitativamente dados disponíveis na literatura. 

No Capítulo 2, foram combinados os resultados de 46 estudos em uma meta-análise. Foram 

investigadas mudanças nos padrões de emissão de CO2 a partir de diferentes solos manejados 

com PyOM, identificando-se as causas destas mudanças e os possíveis fatores envolvidos. 

Observou-se um aumento geral de 29% na emissão de CO2 de solos manejados com PyOM. 

Esses aumentos só foram evidentes quando a relação entre o carbono da PyOM (PyC) e o 

carbono orgânico do solo (COS) foi maior que 2 (relação PyC:COS >2). Estes dados são 

consistentes com a hipótese de que o aumento das emissões de CO2 após adições de PyOM é 

aditivo, derivando principalmente, da decomposição de frações lábeis de C da própria PyOM, 

ao invés do COS. O aumento das emissões de CO2 em solos manejados com PyOM não é, 

portanto, decorrente de priming positivo do COS. A relação PyC:COS revelou-se como sendo 

o melhor preditor do aumento da emissão de CO2 após adições de PyOM ao solo. Esta meta-

análise revelou (i) a importância de se levar em conta a quantidade de PyC aplicado em relação 

ao COS, como forma de planejar futuros experimentos de decomposição da MOS e revelou que 

(ii) a recalcitrância da PyOM no solo pode ser menor do que normalmente se supõe. 

Uma limitação técnica para se distinguir um possível efeito priming da PyOM na MOS, de 

outras interações não-aditivas, diz respeito à incerteza quanto à origem do CO2 respirado (se do 

COS ou da própria PyOM). Esta limitação só pode ser superada por meio do uso de análises 

isotópicas. A partir de dados de um estudo de campo (Capítulo 3), foram quantificadas 

mudanças nos estoques PyOM e de COS ao longo de quatro ciclos de cultivo (CC) de soja, em 

um Latossolo Amarelo arenoso, previamente dominado por plantas C4. Os tratamentos 

consistiram de diferentes doses de PyOM (0, 5, 10, 20 e 40 Mg ha-1). A PyOM foi produzida a 

partir de espécies lenhosas C3, usando métodos de pirólise tradicionalmente empregadas no 

Nordeste do Brasil. Foram efetuadas análises da assinatura isotópica de carbono (13C) a fim de 

se discriminar a origem do C remanescente no solo e quantificar as taxas de decomposição tanto 

do COS nativo, quanto da PyOM. Os resultados revelaram que a decomposição da PyOM 

produzida por métodos tradicionais é mais rápida em condições de campo (25-60% no primeiro 

ano), do que normalmente se supunha (10-20% em 5-10 anos), podendo vir a ser maior do que 
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a taxa de decomposição do COS nativo (5-14%). Os dados demonstram ainda, a decomposição 

preferencial da PyOM em comparação com o COS nativo. A intensidade dos efeitos revelou 

ser dependente da dose de PyOM aplicada ao solo. Apenas ao longo de períodos mais longos 

(>1 ano), a adição de PyOM parece estabilizar o COS. 

No Capítulo 4, foram explorados os mecanismos que controlam a atividade dos FMA’s e o 

rendimento da soja em solos manejados com PyOM, mediante uso de Modelos de Equações 

Estruturadas (análise de trilha). Foram testados os efeitos de doses de PyOM e adubação com 

P na colonização das raízes de soja por FMA’s, nos teores de P no solo e no desempenho das 

plantas ao longo de quatro ciclos de cultivo (CC). Os resultados evidenciaram um efeito 

dominante do CC e do P, assim como da interação entre PyOM x CC, sobre a colonização 

micorrízica. Houve redução linear na colonização de raízes por FMA’s no CC1 com o aumento 

das doses de PyOM, em contraste com um aumento linear consistente das taxas de colonização 

micorrízica no CC4. O desempenho das plantas foi afetado principalmente pelo CC, havendo 

também efeito significativo da interação PyOM x P para o rendimento de grãos. No CC4, o 

rendimento de grãos foi maior nas maiores doses de PyOM (20 e 40 Mg ha-1), 

predominantemente nos tratamentos com adubação fosfatada. No CC1 houve aumento linear 

do pH do solo com o aumento das doses de PyOM, mas no CC4 não foram observados efeitos 

no pH do solo. A análise de trilha indicou que os efeitos da PyOM na colonização de raízes por 

FMA’s não foram mediados por alterações no pH do solo ou pelos teores de P. Os dados obtidos 

são consistentes com a hipótese de que a interferência da PyOM nos processos de sinalização 

entre planta e FMA é determinante para as mudanças na atividade micorrízica e que os efeitos 

positivos da PyOM sobre os FMA’s e sobre a produtividade das culturas só se tornam evidentes 

com o tempo. 

No capítulo 5, foram avaliados os efeitos das doses de PyOM e fertilização com P sobre a FBN 

em soja inoculada com Bradyrhizobium japonicum, ao longo de quatro ciclos de cultivo. Foi 

observado efeito significativo do CC sobre a maioria das variáveis dependentes, ao passo que 

a adição de PyOM não se consolidou como uma fonte de variação relevante. Houve efeito 

significativo da interação PyOM × CC na concentração de N na parte aérea das plantas. No 

CC1, a concentração de N na parte aérea das plantas na dose de 5 Mg ha-1 de PyOM foi 

significativamente menor do que a concentração de N nas plantas oriundas dos tratamentos com 

10 ou 20 Mg ha-1 de PyOM. No CC4, a concentração de N na parte aérea não foi afetada pelas 

doses de PyOM. O efeito dominante dos ciclos de cultivo pode ser explicado pelas mudanças 

no manejo de nutrientes, especificamente devido à adubação com micronutrientes nos CC3 e 

CC4. A correção da deficiência de micronutrientes no solo aumentou a FBN além de ter 

desencadeado um efeito positivo da adubação com P na fixação biológica de nitrogênio. 

Conclui-se que em condições de manejo adequado, aplicações de PyOM não aumentam a FBN 

em soja. 

No Capítulo 6 (Discussão Geral) são sintetizadas as principais descobertas descritas nos 

capítulos anteriores. Foram também utilizados dados de experimentos adicionais realizados em 

casa de vegetação, além de experimentos de campo com bolsas de decomposição (litterbags), 
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como forma de integrar os resultados e aprofundar a discussão neste capítulo. Uma análise 

integrada dos capítulos 2 e 3 mostrou que, caso algum efeito priming positivo ocorra devido à 

adição de PyOM ao solo, tal processo se trata de um evento de curto prazo e não leva a perdas 

significativas de COS nativo. Isto foi confirmado por dados de um experimento de campo 

adicional, de 2 anos de duração com litterbags, o qual mostrou não haver interação entre PyOM 

e matéria orgânica nativa, com reflexos em mudanças nas taxas de decomposição. 

A estabilidade do COS tem sido recentemente considerada como sendo um produto de 

interações com o ecossistema e não uma consequência da sua recalcitrância, mas esta definição 

não inclui PyOM. Os resultados obtidos demonstram que este conceito é equivocado e que a 

estabilidade da PyOM também pode ser influenciada pelo ambiente edáfico. Como forma de 

integrar os efeitos da PyOM no COS e nas interações mutualísticas, foram empregadas análises 

de trilha incluindo também os dados de colonização de raízes por COS (capítulo 3), FMA 

(Capítulo 4) e FBN (capítulo 5) em um mesmo modelo. Não foram observados coeficientes 

significativos vinculando FMA’s e FBN. O modelo indicou um coeficiente positivo 

significativo vinculando a colonização das raízes por FMA’s aos teores de COS no CC4, mas 

não no CC1. Os dados sugerem que a PyOM pode aumentar a estabilidade do COS ao longo do 

tempo, por meio do aumento da atividade de FMA. A agregação do solo e o sequestro de COS 

são fatores fortemente correlacionados com a abundância de FMA no solo. Os dados sugerem 

que o mesmo mecanismo por meio do qual os FMA’s estabilizam o COS nativo, podem também 

influenciar positivamente na estabilização da PyOM no longo prazo. 

Em conclusão, os principais efeitos benéficos da PyOM sobre a atividade dos FMA’s e sobre a 

produtividade das culturas desenvolvem-se com o tempo. Entretanto, em solos bem manejados, 

o aumento da produtividade não é uma consequência direta do aumento da atividade dos 

FMA’s, por sua vez decorrente da adição de PyOM. Por fim, embora adições PyOM 

representem uma forma eficaz de sequestrar C no solo, os efeitos positivos da PyOM na 

produtividade possivelmente ocorrem somente pós a decomposição parcial da PyOM. Embora 

alguns benefícios da adição de PyOM possam ser simultaneamente obtidos (sequestro de C e 

aumento da produtividade), eles não podem ser simultaneamente maximizados. Isto significa 

que o dilema do carbono pode ser apenas parcialmente resolvido pela adição de PyOM ao solo. 
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