
TRANSLATIONAL NEUROSCIENCES - ORIGINAL ARTICLE

Conjugated linoleic acid-enriched butter improved memory
and up-regulated phospholipase A2 encoding-genes in rat brain
tissue
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Abstract Reduced phospholipase A2 (PLA2) activity has

been reported in blood cells and in postmortem brains of

patients with Alzheimer disease (AD), and there is evi-

dence that conjugated linoleic acid (CLA) modulates the

activity of PLA2 groups in non-brain tissues. As CLA

isomers were shown to be actively incorporated and me-

tabolized in the brains of rats, we hypothesized that feeding

a diet naturally enriched in CLA would affect the activity

and expression of Pla2-encoding genes in rat brain tissue,

with possible implications for memory. To test this hy-

pothesis, Wistar rats were trained for the inhibitory

avoidance task and fed a commercial diet (control) or ex-

perimental diets containing either low CLA- or CLA-en-

riched butter for 4 weeks. After this period, the rats were

tested for memory retrieval and killed for tissue collection.

Hippocampal expression of 19 Pla2 genes was evaluated by

qPCR, and activities of PLA2 groups (cPLA2, iPLA2, and

sPLA2) were determined by radioenzymatic assay. Rats fed

the high CLA diet had increased hippocampal mRNA

levels for specific PLA2 isoforms (iPla2g6c; cPla2g4a,

sPla2g3, sPla2g1b, and sPla2g12a) and higher enzymatic

activity of all PLA2 groups as compared to those fed the

control and the low CLA diet. The increment in PLA2

activities correlated significantly with memory enhance-

ment, as assessed by increased latency in the step-down

inhibitory avoidance task after 4 weeks of treatment

(rs = 0.69 for iPLA2, P\ 0.001; rs = 0.81 for cPLA2,

P\ 0.001; and rs = 0.69 for sPLA2, P\ 0.001). In face of

the previous reports showing reduced PLA2 activity in AD

brains, the present findings suggest that dairy products

enriched in cis-9, trans-11 CLA may be useful in the

treatment of this disease.
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Abbreviations

CLA Conjugated linoleic acid

PLA2 or

Pla2

Phospholipase A2

AD Alzheimer disease

sPLA2 Secretory Ca2?-dependent PLA2

cPLA2 Intracellular cytosolic Ca2?-dependent

PLA2

iPLA2 Intracellular Ca2?-independent PLA2

PPAR Peroxisome proliferator-activated receptors

DHA Docosahexaenoic acid

FAME Fatty acid methyl esters

AA Arachidonic acid

NPD1 Neuroprotectin D1

SFA Saturated fatty acids

LTP Long-term potentiation
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Introduction

Alzheimer disease (AD) is the most frequent cause of de-

mentia in the elderly, with both genetic and environmental

factors being involved in its pathology (Barberger-Gateau

et al. 2007). The economic and social impact of AD is

becoming more critical as the population ages, increasing

thus the need for therapeutic or preventive strategies to

counteract or delay dementia onset. Cholinesterase in-

hibitors have shown symptomatic benefits in patients with

mild to moderate AD, but to date there is no pharmaco-

logical treatment able to halt or slow the disease progres-

sion (Frisardi et al. 2010). There is growing evidence that

nutrition plays an important role in the prevention of AD,

and a great deal of attention has been paid to dietary fat and

antioxidants (Butterfield et al. 2002; Luchsinger and

Mayeux 2004). Most of the studies evaluating the potential

benefits of dietary lipids on AD have focused on n-3 fatty

acids. Overall, both epidemiological and animal studies

suggest that the consumption of docosahexaenoic acid

(DHA) is associated with a reduced risk of AD (Morris

et al. 2003; Green et al. 2007), but results from controlled

clinical trials have been less promising (Dangour and Uauy

2011). In addition to DHA and its n-3 counterparts, another

group of bioactive fatty acids—the so-called conjugated

linoleic acid (CLA)—has attracted the attention of the

scientific community since the discovery of its anticar-

cinogenic activity nearly 30 years ago (Pariza 2004). CLA

is a group of positional and geometric isomers of linoleic

acid with conjugated double bonds which have shown

potential health-promoting effects in both in vitro and

animal studies (Bhattacharya et al. 2006).

Phospholipases A2 (PLA2) are a family of hydrolytic

enzymes which cleave the membrane phospholipids at sn-2

position, resulting in lysophospholipids and free fatty acids,

usually arachidonic acid, which is the precursor of eico-

sanoids and other active products. Both fatty acid and

lysophospholipids are important mediators in the trans-

mission and processing of neuronal signals (Piomelli 1993;

Bazan et al. 1993) by modulating ion channels, acting as

second messengers regulating gene expression, and altering

the release and neurotransmitter uptake (Lautens et al.

1998).

The three main groups of PLA2, intracellular, calcium

independent (iPLA2), intracellular, calcium dependent

(cPLA2), and extracellular, calcium dependent (sPLA2),

differ in several aspects (e.g. substrate specificity, re-

quirement for calcium, cell localization, and mechanisms

of action) (Dennis et al. 2011). Reduced PLA2 activity was

first reported in postmortem brains of patients with AD

about two decades ago, and the reduction was correlated

with the severity of dementia (Gattaz et al. 1995; Ross

et al. 1998). Because PLA2 influences amyloid formation

and Tau pathology, it is assumed that the modulation of

different PLA2 groups in the brain may have implications

for the disease (Schaeffer et al. 2010).

Most of the studies evaluating the immunomodulatory

effects of CLA used a mixture of cis-9, trans-11 and trans-

10, cis-12 isomers in nearly equal amounts and focused on

their effects on eicosanoids and cytokines synthesis

(O’Shea et al. 2004). However, few studies have addressed

the effect of these CLA isomers on activity and expression

of PLA2, with responses being reported in tissues other

than brain (Eder et al. 2003; Stachowska et al. 2007). In-

terestingly, these two CLA isomers were shown to be ac-

tively incorporated and metabolized in rat brain tissue and

in cultures of astrocytes (Fa et al. 2005). Based on the anti-

inflammatory effects of CLA reported in previous studies,

it has been hypothesized that CLA activity in the brain

could positively impact neurological disorders such as AD

(Fa et al. 2005), which is supported by the reduction in the

levels of prostaglandin E2 (PGE2)—a strong pro-inflam-

matory eicosanoid—in brain tissue of mice fed synthetic

CLA (Nakanishi et al. 2003).

Dairy products are the main source of CLA in the human

diet (Lawson et al. 2001), and a pronounced increase in

milk fat cis-9, trans-11 CLA content can be achieved by

supplementing the diets of dairy cows with plant oils

(Collomb et al. 2006). Butter naturally enriched in CLA

was shown to reduce the risk of mammary cancer in rats (Ip

et al. 1999) and improve the plasma lipoprotein profile in

hamsters (Lock et al. 2005). However, to our knowledge,

no study has addressed the neuroprotective potential of

butter naturally enriched in CLA.

The objective of this study was to evaluate the effects of

a cis-9, trans-11 CLA-enriched butter on the expression of

Pla2-encoding genes and enzymatic activity of PLA2

groups in rat brain tissue. In the present study we analyzed

the hippocampal mRNA expression of 19 out of 27 genes

identified in the rat brain tissue as PLA2 subtypes at the

NCBI Gene database (http://www.ncbi.nlm.nih.gov/gene,

June 2014). We also investigated whether changes in PLA2

activity or gene expression induced by the CLA-enriched

butter were associated with memory improvement.

Materials and methods

Animals and environment

Thirty (n = 30) male Wistar rats (aged 8–10 weeks and

weighing 200–250 g) were obtained from the animal house

from the University of Sao Paulo Medical School, São

Paulo, Brazil. During the experimental period, animals
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were housed in polypropylene cages (n = 4/cage) at

22 ± 2 �C with 12-h light/dark cycles, with free access to

water.

Treatments

After 7 days of acclimatization, animals (n = 30) were

assigned the following dietary treatments for 4 weeks: (1)

control (n = 10): a commercial diet (NUVILAB CR1,

NUVITAL�, Curitiba, Paraná, Brazil), (2) Low CLA diet

(n = 10): diet containing a low CLA butter, and (3) High

CLA diet (n = 10): diet containing an enriched-CLA but-

ter. The commercial diet contained (per kg of product) as

declared by the manufacturer: 22 % crude protein, 4 % fat,

8 % crude fiber, and 10 % ash. Low and high CLA butters

were produced from dairy cows fed on diets containing

either 0 or 4.5 % sunflower oil on a dry matter (DM) basis,

respectively. Diet supplementation with plant oils has been

shown to be an effective dietary strategy to increase the

milk fat CLA content of dairy cows (Collomb et al. 2006).

Low and high CLA butters were produced according to the

procedure described elsewhere (Gonzalez et al. 2003) and

were used as ingredients (210 g/kg of diet) of low and high

CLA diets as shown in Table 1. Butters were melted in a

water bath at 40 �C and mixed with other dietary ingredi-

ents to obtain a homogeneous mass which was used to

produce handmade pellets. Samples of pellets were col-

lected and analyzed for chemical composition and fatty

acid profile (Table 2). All animals had the same intake of

food and it was recorded daily throughout the study.

Behavioral procedures

Animals were trained on inhibitory avoidance tasks

(Izquierdo et al. 2003; Rossato et al. 2006) 2 days before

the beginning of the treatment period. Latency to step

Table 1 Feed composition of both low and high CLA diets

Ingredientsa g/kg

Casein 195.0

DL-Methionine 3.0

Sucrose 341.5

Corn starch 150.0

Butterb 210.0

Cellulose 50.0

Mineral mix (AIN-93G-MX) 35.0

Vitamin mix (AIN-93-VX) 10.0

Calcium carbonate 4.0

Antioxidant (BHT) 0.04

a TD.88137 (Harlan Teklad, Harlan Laboratories, Inc.)
b Low or CLA-enriched butter

Table 2 Chemical composition and fatty acid profile of low and high

CLA diets

Low CLA diet High CLA diet

Dry matter (DM) content, % 93.4 93.3

Crude protein, % diet DM 17.6 17.5

Fat, % diet DM 17.7 18.1

Fiber, % diet DM 4.2 4.6

Fatty acid profile, g/100 g of total FA

C4:0 3.60 3.13

C5:0 0.02 0.04

C6:0 2.01 1.35

C7:0 0.02 0.01

C8:0 1.10 0.63

C9:0 0.02 0.01

C10:0 2.07 1.08

C10:1 cis-9 ? C11:0 0.28 0.11

C12:0 2.30 1.19

C12:1 cis-9 0.09 0.05

C13:0 0.07 0.02

C14:0 iso 0.15 0.11

C14:0 9.44 6.09

C15:0 iso 0.37 0.25

C15:0 anteiso 0.65 0.49

C14:1 cis-9 0.80 0.39

C15:0 1.39 1.02

C16:0 iso 0.29 0.21

C15:1 cis-9 0.01 0.01

C16:0 30.1 19.5

C17:0 iso 0.45 0.41

C17:0 anteiso 0.68 0.55

C16:1 cis-9 1.32 0.77

C17:0 0.65 0.63

C18:0 iso 0.06 0.07

C17:1 cis-9 0.29 0.20

C18:0 8.97 17.9

C18:1 trans-4 0.01 0.08

C18:1 trans-5 0.01 0.04

C18:1 trans-6 to 8 0.10 0.47

C18:1 trans-9 0.20 0.50

C18:1 trans-10 0.20 0.68

C18:1 trans-11 1.50 5.97

C18:1 trans-12 0.14 0.84

C18:1 trans-13/14 0.34 1.00

C18:1 cis-9 ? trans-15 18.7 25.5

C18:1 cis-11 0.98 1.11

C18:1 cis-12 0.23 0.70

C18:1 cis-13 0.08 0.14

C18:1 trans-16 0.15 0.53

C18:1 cis-15 0.07 0.18

C18:2 cis-9, trans-12 0.08 0.11

C18:2 n-6 1.42 1.44
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down onto the grid with all four paws was measured; upon

stepping down the animals received a 0.8 mA, 4-s scram-

bled footshock and were immediately withdrawn from the

training apparatus. This brief but high footshock guarantees

the persistence of the inhibitory avoidance memory for the

length of the treatment period (Izquierdo et al. 2003). In the

test sessions, animals were placed again on the platform,

but the footshock was omitted and step-down latency was

used as a measure of memory retention. Retention test

sessions were conducted after the treatment period.

Tissue collection

Once tested for memory retrieval, the animals were killed

after total exsanguination under anesthesia with ketamine

and xylazine (90 and 10 mg/kg, respectively). Hippocampi

were dissected in a cooled phosphate-buffered saline so-

lution (PBS) and stored at -80 �C. Tissue aliquots were

mixed with 5 mmol/L Tris–HCI pH 7.4 and ground in a

pot. Tissue homogenates were divided into two aliquots,

which were used to evaluate the transcriptional levels of

selected Pla2 genes and enzymatic activity of PLA2 groups.

The experimental protocols used in the study conform to

the Guide for the Care and Use of Laboratory Animals of

the National Institute of Health and were approved by the

local Animal Care Committee (COBEA/UFJF).

RNA extraction and cDNA synthesis

Hippocampi were homogenized (1:10 w/v) in 5 mmol/L

Tris–HCl buffer pH 7.4 and 35 % of the homogenate of

each sample was used for RNA extraction with TRIZOL�

(Life Technologies, Carlsbad, CA, USA) (Chomczynski

and Sacchi 1987). The quality and quantity of all the RNA

samples were determined using NanoDrop� (Nano-drop

Technologies, Wilmington, DE, USA) and the integrity of

the total RNA was checked by electrophoresis in 1 %

agarose gels containing 1 mol/L of guanidine isothio-

cyanate. cDNA synthesis was performed at 42 �C for

90 min, using 1 lg of total RNA, 200 U of ImProm-II TM

Reverse Transcriptase (Promega, USA), 0.5 lg oligo (dT)

12–18, 0.5 mmol/L dNTPs, 3 mmol/L MgCl2 and 19 re-

action buffer in a 20 lL reaction volume.

Gene expression analyses by qPCR

Differential gene expression was evaluated by quantitative

real-time PCR (qPCR), using SYBR Green PCR Master

Mix in an ABI 7500 Sequence Detection System (Applied

Biosystems, CA, USA). The qPCR experiment workflow

and analysis are in compliance with the MIQE (Minimum

Information for Publication of Quantitative Real-Time

PCR Experiments) guidelines (Bustin et al. 2009).

Assessing gene expression stability of putative normalized

genes was performed using geNorm program (http://med

gen.ugent.be/*jvdesomp/genorm/) (Vandesompele et al.

2002) and the reference genes selected were used to nor-

malize the amounts of cDNA used in each experiment. For

each qPCR assay we used 7.5 ng cDNA equivalents and

3.75 pmol of each primer in 15 lL reactions. For each

target gene we included a no-template control as well as

two geNorm-selected reference genes. The amplification

program consisted of an initial step at 95 �C for 10 min,

followed by 40 cycles of 95 �C for 15 s, and 60 �C for

1 min. qPCR data were captured using the software Se-

quence Detector System 1.3.1 (Applied Biosystems).

Relative gene expression levels were normalized according

to the geometric mean of selected reference genes (Van-

desompele et al. 2002). Oligonucleotide primers used for

PCR amplification of Pla2 genes and reference genes from

rat cDNA are shown in Supplemental Table 1.

Determination of PLA2 activity by radioenzymatic

assay

Protein concentration was determined using the Bio-Rad

DC protein assay (Bio-Rad, USA), modified from a pre-

viously described procedure (Lowry et al. 1951). Aliquots

of hippocampus homogenates were used to determine the

activity of PLA2 groups by radioenzymatic assays. Briefly,

Table 2 continued

Low CLA diet High CLA diet

C20:0 0.14 0.17

C20:1 cis-9 0.13 0.11

C20:1 cis-11 0.04 0.05

C18:3 n-3 0.21 0.14

CLA cis-9, trans-11a 0.72 1.98

CLA trans-9, cis-11 0.02 0.04

C21:0 0.04 0.04

CLA trans-10, cis-12 0.01 0.02

C20:2 n-6 0.02 0.02

C22:0 0.07 0.10

C20:3 n-6 0.06 0.04

C20:4 n-6 0.14 0.08

C20:5 n-3b 0.08 0.06

C22:5 n-3 0.05 0.04

C22:6 n-3 nd nd

n-6:n-3 ratioc 4.8:1 6.7:1

nd not detected
a Co-elutes with trans-7, cis-9 and trans-8, cis-10 isomers
b Co-elutes with C24:0 in our analytical conditions
c Calculated as follows: (R C18:2 n-6 ? C20:2 n-6 ? 20:3

n-6 ? C20:4 n-6)/(R C18:3 n-3 ? C20:5 n-3 ? C22:5 n-3 ? C22:6

n-3)
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the substrate used was L-a-1-palmitoyl-2-arachidonyl-

phosphatidyl-choline labeled with [l-14C] in the arachi-

donyl tail at position sn-2 (14C-PC) (48 mCi/mmol specific

activity, PerkinElmer, MA). Prior to the enzymatic reac-

tion, a mixture of arachidonyl-1-14C-PC and toluol-etha-

nol-butylhydroxytoluol antioxidants (1:10, v/v) was

evaporated under a nitrogen stream (0.075 lCi/sample),

resuspended in 0.3 mg/mL BSA in ultrapure water, and

homogenized by sonication. Total brain tissue ho-

mogenates were diluted to a final protein concentration of

1.5 mg/mL with 50 mmol/L Tris–HCl (pH 8.5 for sPLA2

and cPLA2 or pH 7.5 for iPLA2). The assays contained

100 mmol/L Tris–HCl buffer (pH 8.5 or pH 7.5), 1 lmol/L

(for cPLA2 and iPLA2) or 2 mmol/L CaCl2 (for sPLA2),

100 lmol/L BEL (Biomol, USA), 300 lg of protein from

diluted homogenates, and 0.075 lCi arachidonyl-1-14C-

PC. After 30 min of incubation at 37 �C, the reactions were
interrupted by adding a mixture of HCl-isopropanol (1:12,

v/v). The released [l-14C] AA was extracted and the ra-

dioactivity of 14C-AA was measured in a liquid scintilla-

tion counter (Tri-Carb 2100 TR; Packard, USA) for

calculating PLA2 activities (pmol 9 mg/protein 9 1/min).

All PLA2 activity assays were performed in triplicate.

Analysis of low and high CLA diets

The chemical composition of the experimental diets was

determined according to AOAC (2000) for dry matter

(DM), protein and fat contents, and as previously described

for fiber content (Van Soest et al. 1991). For fatty acid

profile analysis, lipids were extracted using a 3:2 (v/v)

mixture of hexane and isopropanol followed by a 67 g/L

sodium sulfate solution (Hara and Radin 1978). The FAME

were obtained by base-catalyzed transmethylation using a

freshly prepared methylation reagent (0.4 mL of 5.4 mol/L

sodium methoxide solution ? 1.75 mL methanol) with

modifications (Christie 1982; Chouinard et al. 1999). The

mixture was neutralized with oxalic acid (1 g oxalic acid in

30 mL of diethyl ether) and calcium chloride was added to

remove methanol residues. The FAME were determined by

gas chromatography (model 6890N; Agilent Technologies)

fitted with a flame-ionization detector and equipped with a

CP-Sil 88 fused-silica capillary column (100 m 9

0.25 mm 9 0.2 lm film thickness; Varian Inc., Missis-

sauga, ON). Operating conditions included injector and

detector temperatures both at 250 �C, H2 as carrier gas

(1 mL/min) and for the flame-ionization detector (35 mL/

min), N2 as makeup gas (30 mL/min), and purified air

(286 mL/187 min). The initial temperature was 45 �C and

held for 4 min, increased by 13 �C/min to 175 �C and held

for 27 min, increased by 4 �C/min to 215 �C, and held for

35 min (Cruz-Hernandez et al. 2007). The FAME were

identified by comparison with reference FAME standards

(Sigma Aldrich�, Nu-Chek-Prep Inc. and Larodan Fine

Chemicals), and minor cis/trans-C18:1 isomers were

identified according to their order of elution reported under

the same chromatographic conditions (Cruz-Hernandez

et al. 2007).

Statistical analysis

Data from PLA2 activity and gene expression assays were

analyzed by one-way ANOVA followed by post hoc Tukey

test, and results were expressed as mean ± SEM. The

behavioral data were expressed as median ± interquartile

range and required non-parametric statistics (Duncan

multiple range test). Correlations between PLA2 activities

and memory were calculated using the Spearman’s coef-

ficient (rs). Statistical analysis was performed using SPSS

version 17.0 and two-tailed probabilities were considered

significant at P\ 0.05.

Results

The hippocampal mRNA levels were increased

(P\ 0.001) in rats fed the high CLA diet when compared

to both control and low CLA diet for five of the 19 Pla2
genes investigated: iPla2g6c; cPla2g4a, sPla2g3, sPla2g1b,
and sPla2g12a (Fig. 1). Furthermore, the expression of the

sPla2g12a gene was also increased (P = 0.024) by the low

CLA diet when compared to control (Fig. 1e). The mRNA

levels of the remaining Pla2 genes were unaltered by both

low- and high-CLA diets (data not shown).

Compared to control, the hippocampal activity of some

PLA2 groups was increased by the high-CLA diet or both

low- and high-CLA diets. The iPLA2 activity (Fig. 2a) was

increased by 22.5 % (P = 0.023) and 55.0 % (P\ 0.001),

whereas cPLA2 activity (Fig. 2b) was increased by 28.6 %

(P = 0.014) and 71.4 % (P\ 0.001) in rats fed low- and

high-CLA diets, respectively. Consistent with the mRNA

results, sPLA2 activity was significantly increased (74 %,

P\ 0.001) in the hippocampus of rats fed the high CLA

diet when compared to control (Fig. 2c). Increased

(P\ 0.001) hippocampal activity of all PLA2 groups was

observed in rats fed the high CLA diet as compared to

those fed the low CLA diet (Fig. 2).

The increase in the PLA2 activities correlated sig-

nificantly with memory enhancement, as indicated by the

improved performance in the step-down inhibitory avoid-

ance task after 4 weeks of treatment (rs = 0.69 for iPLA2,

P\ 0.001; rs = 0.81 for cPLA2, P\ 0.001; and rs = 0.69

for sPLA2, P\ 0.001).
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Fig. 1 Effects of low and high CLA diets on the expression of Pla2-

encoding genes (a iPla2g6gamma, b cPla2g4a, c sPla2g3, d sPla2g1b,

e sPla2g12a) in rat hippocampi. Results are expressed as

mean ± SEM (n = 10/group). Statistical analysis was performed by

one-way ANOVA followed by post hoc Tukey test
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Discussion

The immunomodulatory properties of CLA have been

demonstrated in a number of studies (O’Shea et al. 2004);

however, only a few of them have addressed the effect of

CLA on activity and expression of PLA2, with alterations

in PLA2 being measured in tissues other than brain (Eder

et al. 2003; Stachowska et al. 2007). As CLA isomers were

shown to be actively incorporated and metabolized in

cultures of astrocytes (Fa et al. 2005), we hypothesized that

feeding CLA through its main natural source (i.e. dairy fat)

could affect the activity and expression of Pla2-encoding

genes in rat brain tissue. As shown in the Figs. 1 and 2, rats

fed the high CLA diet had higher hippocampal mRNA

levels for five of the 19 Pla2 genes evaluated, which was

associated with increased enzymatic activity of their re-

spective PLA2 groups. In contrast, reduced total PLA2

activity and sPLA2 mRNA levels were observed in human

macrophages (Stachowska et al. 2007) and aortic en-

dothelial cells (Eder et al. 2003) incubated with cis-9,

trans-11 CLA (the main CLA isomer in dairy fat), sug-

gesting a tissue-specific response of PLA2 expression and

activity.

Reduced enzymatic activities of total PLA2, cPLA2, and

iPLA2 have been reported in the postmortem cortex, hip-

pocampus, and cerebrospinal fluid of subjects with AD

(Gattaz et al. 1995, 1996; Ross et al. 1998; Talbot et al.

2000; Smesny et al. 2008). Furthermore, the reduction in

the activity of total PLA2 in the brains of individuals with

AD reported above (Gattaz et al. 1995; Ross et al. 1998)

were correlated with the severity of dementia as well as the

density of senile plaques and neurofibrillary tangles, which

are the neuropathological hallmarks of AD (Selkoe 2003).

However, it should be noticed that one study reported

Fig. 2 Effects of low and high CLA diets on the enzymatic activity of PLA2 groups (a iPLA2; b cPLA2 and c sPLA2) in rat hippocampi. Results

are expressed as mean ± SEM (n = 10/group). Statistical analysis was performed using one-way ANOVA followed by post hoc Tukey test
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increased PLA2 activity in the cerebrospinal fluid of AD

patients (Chalbot et al. 2010). Moreover, one study re-

ported that the reduction of arachidonic acid in the brain

improved cognitive deficits in hAPP J20 transgenic mice

(Sanchez-Mejia et al. 2008). However, in the latter no

PLA2 activity was measured. Nevertheless, these dis-

crepant findings suggest caution in the interpretation of the

relationship between phospholipids metabolism and

cognition.

The increase in the activity of cPLA2 and iPLA2 groups

in brain tissue, as observed in the hippocampus of rats fed

both low and high-CLA diets in the present study suggest a

beneficial impact on AD pathology. This is supported by

animal studies showing that, conversely, the selective in-

hibition of iPLA2 or of both iPLA2 and cPLA2 in the brain

impaired spatial learning in mice (Fujita et al. 2000) and

memory acquisition and retrieval of a contextual learning

task in rats (Schaeffer and Gattaz 2005, 2007),

respectively.

The catalytic activity of PLA2 is responsible for the

production of free fatty acids, particularly arachidonic acid

(AA), and long-term potentiation (LTP) Ca2? sensitive

induction in hippocampus slices of rat brains has been

shown to be facilitated by the addition of AA (Nishizaki

et al. 1999). Depending upon the interaction of AA prod-

ucts with different G-protein-coupled receptors, AA prod-

ucts may have both neuroprotective and neurotoxic effects.

We found in a series of experiments that an increase in

PLA2 activity, which increases AA products, improves

memory (Fattahi and Mirshafiey 2014; Schaeffer and

Gattaz 2005, 2007; Schaeffer et al. 2009, 2010, 2011),

although contradictory findings were also reported (San-

chez-Mejia et al. 2008; Chalbot et al. 2010).

In the present study, mRNA levels for the iPla2g6c
isoform (which belongs to the VI iPLA2 group) were in-

creased in the hippocampus of rats fed the high-CLA diet

(Fig. 1a), which suggests that an increased DHA release

from brain phospholipids may have occurred, as there is

evidence from cell culture and rodent studies that the VI

iPLA2 group is involved in cleaving DHA from brain

phospholipids (Green et al. 2008). Free DHA can be con-

verted through 15-lipoxygenase enzyme (15-LOX) into

neuroprotectin D1 (NPD1), a lipid mediator that exhibits

potent neuroprotective properties (Lukiw and Bazan 2010).

Accordingly, the addition of CLA to mouse cortical

neurons cultured with glutamate increased the expression

of Bcl-2 (Hunt et al. 2010), an antiapoptotic gene shown

to be up-regulated by NPD1 in human brain cells (Lukiw

and Bazan 2010). Thus, it is possible that a higher

availability of free DHA induced by increased hip-

pocampal iPla2g6c levels contributed, through its con-

version to NPD1, to the improved memory observed in

rats fed the high-CLA diet. However, this hypothesis

warrants further investigation as the hippocampal levels of

free DHA and NPD1 were not measured in the present

study; furthermore, DHA was not detected in the high

CLA diet and, although brain cells and in particular as-

trocytes have the capacity to synthesize DHA from C18:3

n-3 (Williard et al. 2001), it seems to occur to a limited

extent (Demar et al. 2005). As observed for iPla2g6c, the
hippocampal cPLA2-IVA levels also increased in rats fed

the high CLA diet, which may also contribute to memory

improvement since cPLA2a appears to play an important

role in LTP and maintenance of synaptic membranes un-

der normal physiological conditions (Farooqui et al. 2006;

Qu et al. 2013).

The mechanisms by which CLA modulates the activity

and gene expression of PLA2 groups in brain tissue are still

unclear, but recent evidence suggests that it may involve

the activation of peroxisome proliferator-activated recep-

tors (PPARs), a class of transcription factors which are

regulated by steroids and lipid metabolites (Kummer and

Heneka 2008). Agonists of PPARa and PPARc have been

reported to possess anti-inflammatory activity in astrocytes

(Xu and Drew 2007; Bernardo and Minghetti 2008), and

there is evidence that PPARc is activated by CLA in ani-

mal models and clinical studies (Reynolds and Roche

2010). Interestingly, a recent in vitro study (Sergeeva et al.

2010) showed that the expression of cPLA2 and sPLA2 was

inhibited by PPARa and PPARc agonists in naı̈ve astro-

cytes, but was increased by PPARc activation in

lipopolysaccharide (LPS)-stimulated astrocytes. Thus, if

the anti-inflammatory properties of CLA reported in sev-

eral studies are mediated by the activation of PPARc, the
resulting effects on the activity and gene expression of

PLA2 groups in brain tissue seem to depend on the in-

flammatory status of the tissue.

In conclusion, feeding rats with a cis-9, trans-11 CLA-

enriched diet resulted in increased hippocampal mRNA

levels for specific PLA2 isoforms and higher enzymatic

activity of all PLA2 groups, which was closely correlated to

memory improvement. Further studies in transgenic animal

models of AD and in humans are needed to confirm the

potential of CLA-enriched dairy products as a comple-

mentary strategy to delay or alleviate memory decline as-

sociated with AD.
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